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ABSTRACT. Solutions of nonlinear stochastic differential equations in series form

can be put into convenient symmetrized forms which are easily calculable. This

paper investigates such forms for polynomial nonlinearities, i.e., equations of

the form Ly + ym x where x is a stochastic process and L is a linear sto-

chastic operator.
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l. INTRODUCTION.

This paper extends some results for nonlinear stochastic differential equa-

tions in which firsi and second order statistical measures of the solution process

were obtained in terms of stochastic Green’s functions by a special iterative pro-

cedure [l]. The kernel of the integral which expresses the desired statistical

measure of the dependent stochastic process in Eerms of the corresponding statis-

tical measure of the forcing function and appropriate statistical measures of the
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stochastic coefficients of the differential equation is called the stochastic

Green’s function. This iterative method has been found to be effective in finding

expressions for stochastic Green’s functions because it does not require invalid

closure approximations inherent in hierarchy methods and is not a perturbation

method limited to small fluctuations. In this method higher order terms can be

computed in terms of previously computed terms and the iteration can be stopped

when the desired accuracy has been achieved. A new and convenient symmetrized

form, (which is computationally very useful for polynomial nonlinearities) is de-

rived for the solutions. The symmetric form means that any term of the series can

be written immediately to assess its contribution.

By a stochastic differential equation, we mean one in which the differential

operator is stochastic. (The forcing function and initial conditions are also

allowed to be stochastic.) We are considering the general class of equations

represented by Fy x(t) where F is a nonlinear stochastic operator. Assume

F is decomposable into a linear part L and a nonlinear part N. Thus, we have

Ly + N(y,,...) x(t) where x(t) is a stochastic process on a suitable index

space T and probability space (,F,u); L is linear stochastic (differential)
n

operator of nth order given by L . av(t)dU/dtu where one or more of the a (t)

for u O,l,...,n-I may be stochastic processes on T x R, statistically inde-

pendent of x(t). In the earlier work Ill, N is a nonlinear term of the form

N m b (t,)(y())mp where y() is the pth derivative and b may be sto-
:0

chastic processes for O,l,...,m on T x . A physically reasonable assump-

tion in many cases is that the processes a b are statistically independent of

x(t) for all u, v. It is further assumed that they are almost surely of class

Cn on T for m (,F,v)’ for allowed , u. As in the earlier work, L is

decomposed into the sum L + R where R is a zero mean random operator and L
n n-l

is deterministic, i.e., L . <au(t,m)>dU/dtU and R Z (t,m)dU/dtu where
=0 =0 u

<a (t,m)> exists and is continuous on T It is convenient for comparison with

earlier work to assume Ly x is a solvable (linear) equation; however, we could



NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS 531

also begin with a solvable nonlinear equation as will be discussed elsewhere. We

have now Ly x Ry N(y,,...). Since we assume L to be invertible,

y L-Ix L-IRy L-IN(y,,...); in terms of the Green’s function (t,T) for

L, y (t,)x()d (t,)R[y()]d- (t,)N(y(),(),...)d
0 0

The L-IRy term may involve derivatives in R; it is replaced with

IR[(t,:)]y(T,)dT where the adjoint operator R+ is given by

n-l
R+[(t,)] X (-l)k(dk/dk)[=k()(t,T)] (I.I)

k=0

assuming the stochastic bilinear concomitant (s.b.c.) vanishes. The latter is

zero if the initial conditions are zero. In the case of random initial conditions,

additional terms arise from the solution of the homogeneous equation and the value

of the s.b.c, at T O, where the s.b.c, is given by [2,3].

s(Y(t,m) ;(t,T))
%=0

n-l k-I
[ ()y(k-l-)

k=O =0

T=t
(l .2)

This expression vanishes at the upper limit because of a well known property of

the Green’s function (t,) where (t,) is the Green’s function for L. For

the linear case (N=0) and if the s.b.c, vanishes, the equation for the solution

process becomes

y(t,) F(t,)- [(t,)]y(t,)d (1.3)
0

for which the solution has been given by the authors [I] in the Volterra integral

form"
t

y(t,m) F(t,m) r(t,;m)F(T,m)dT-
0

I(t,;m) Z (-l)m-IKm(t,T;)
m:l

Km(t,;.) K(t, )Km_ (T ,)dT
0

(l .4)

K K R[(t,)]
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The input process x(t,) is assumed to be bounded almost surely on T and

(t,) is continuous on T thus Ix(t,)l<Ml, a constant, or equivalently,

IF(t,)I<M, a constant. Further, the v, for v O,...,n-l, are assumed to

be bounded almost surely; in fact the kth derivatives of the are bounded for

k O,l,...,n-l; i.e., l(k/Btk)v(t)I<M2, a constant, for t T, (,F,).

This series is convergent under these conditions [4] (also discussed later in this

paper). Mean square definitions can also be used. Derivatives in the differential

equation and integrals in the Volterra integral equation must be in the same mean

square, or almost sure, sense.

2. SYMMETRIZED SOLUTIONS- (UADRATIC CASE

We will assume N(y,,...) N(y); i.e., no derivatives are involved. As a

convenient special case for our first example, let N(y) by2. We write. (-l)iiy and L L + R + N. The quantity allows us to group terms
i=O
more conveniently than in the previous work, yielding very convenient forms for

computation. We have

y L’Ix- L-IRy- L-Iby2 (2.1)

L-Ix L-IR Z (-l)iiy L-Ib l I (-l)i+jiJYiYji=o i=o j=o

YO- )L-1R[Yo- XYl + x2y2 "’’] xL-lb[Yo- XYl + x2y2 "’’]

[Yo- Yl + 2y2 "’’]

YO L-IR[Yo- Yl + 2y2 "’’] L

2yOy + 22yOY2 23yOy3 3yly2 + 4yly3 ...]

YO L-I[Ryo + bye] + 2L-I[Ry + 2bYoYl]

X3L-I[Ry2 + by + 2bYoY2]
Letting and using initial conditions (see [2]), we obtain

-l
YO L x

Yl L-I[Ryo + by]
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Y2 L

Y3 L

-l[Ry + b(yoy + ylYO)]

-l[Ry
2 + b(y + yOy2 + y2YO) ]

(2.2)

These can be rewritten as

or

YO L-Ix

Yl L-I [RYo + bYoYo]

Y2 L-I[Ryl + b(YoYl + YlYo ]

Y3 L-I[Ry2 + b(YoY2 + YlYl + Y2Yo )]

Yn+l L-l[Ryn + b(YoYn + YlYn-1 + Y2Yn-2 YnYo )]

(2.3)

Yn+l L-l Kn(YO (2.4)

+ ynYo and y Yo-L-11(yo withwhere Kn(Yo) Ryn + b(yoyn + ylYn_ +

r(yO) . (-1)iKi(Yo). (The same letters r and K have been used as in the
i=O

linear case but are identical only if N 0 and o 0.)

That the convergence holds can be seen from the form of Kn(YO). In the lin-

ear case convergence is obvious because when each Yi is replaced by Yi-l until

YO is reached, and the quantities are replaced by their bounds as in our initial

left with the n-fold integral Idt and an n in the denom-assumptions, we are

inator as discussed in [4]. For the nonlinear case, if one examines the bracketed

term yoYn + ynYo and replaces each Yi by Yi-l until YO is reached,

each term will yield a product of n’.’s in the demoninator. We now have n such

terms in the general term yielding I/(n-l)’. and convergence follows. (The non-

linear part is analytic by assumption and leads to a finite number of terms in a

Taylor expansion.

3. STATISTICAL MEASURES

To obtain the mean or expected solution <y>, the correlation Ry(tl,t2),
or the covariance Ky(tl,t2), the solution process y must, of course, be aver-

aged over the appropriate probability space to get <y>. Similarly,
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y(tl,)y(t2) is averaged to get Ry(tl,t2). In the linear case (when N 0),

<y> <F(t,m)> <r(t,,m)><F()>dT (3.1)
0

In the nonlinear case (non-zero N) the stochastic coefficients b (t,m) are

assumed bounded almost surely on T for m (R,F,). The iteration now leads to

extra terms arising from L-IA/, which are seen clearly in (l.l). As before, Y0
is bounded by hypothesis. For the nonlinear case, Yl differs from the Yl for

the linear case by the addition of the term L-Iby,- i.e., by only terms involving

Y0 in the N(y) which we can denote by N(Y0). Y2 differs from the Y2 for

the linear case by addition of L-Ib(y0yl, + ylYO), i.e., by terms in N(y) in-

volving only Y0’ Yl which we can symbolize by N(Y0,Yl), etc. for higher terms

Yn

It Ity(t,m) F(t,m) r(t,T;m)F(,m)dT (t,T) N(y,,...)d
0 0

F(t,m) r(t,T;m)F(,m)d (t,T) . b (T,m)(y(p))
0 0 =0

until Y0 is reached; ensemble averages again separate without closure approxima-

tions, etc., to determine first and second order statistics.

4. CUBIC CASE

Let us investigate whether syetrized forms can be obtained for other than

the quadratic case. We consider N(Y) y3. Proceeding as before,

Y L-Ix L-IR[y0 Yl + 2y2 3y4 + "’’] L

In addition to the homogeneous solution, we get

(4.1)

Y0 L-Ix

Yl L-I[Ry0 + bye]
Y2 L-I[Ryl + b(3yYl)]
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etc. It is difficult to see symmetry here immediately or derive convenient rules

for writing the terms. We will return to these expressions shortly.

Returning to the quadratic case N(y) by2, the solution can be given in an

alternative form with the linear part separated out, writing I and rn for the

linear and nonlinear cases" then,

lit L-I (43)y F(t,m) (t,;m)F(,m)d- b?n

where I [. (-l)n Kn(yO and K (yo) is now given by Kn(YO YOYn + YlYnn n=O n

+ ynYo Thus,

IiF It RKRy F(t,m) (t,T;m)F(,m)d (t,T)b(,m) Z (-l) (Yo)dT
0 n=O

(4.4)
since each of the Yi in Kn(YO) can be given in terms of Yi-l
5. FOURTH POWER CASE

Let N(y) by4. Then

y L-lx- XL-1R[y
0 Xy + )2y

2
)t3y

3 X4y4 + ...] (5.1)

YO L-Ix

Y2 L-I[Ryl + b(4YYl)] (5.2)
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The next section will clarify these last two cases.

6. POLYNOMIAL NONLINEARITIES

We now consider the case where N(y) bym. Then

y L-Ix XL-IRy- L-Ibym (6.1)

Let Y YO + XYl + k2y2 + Xnyn + and assume ym= AO + kAl + X2A2 +

+ )tnAn + (We have previously assumed y (-1)ixiyi but we get the same
i:O

series in either case.) The AO, Al, A2, were found in a Danish paper in

1881 by Hansted [5]. The relations are-

mAO YO
A m(Yl/Yo)Ao m(Yl/Yo)y my-lyl
2A2 (m-l)(yl/Yo)A + 2m(Y2/Yo)A0

m(m-l)Yo-2y + 2mY2Yo-l
(6.2)

3A3 (m-2)(yl/Yo)A2 + (2m-l)(y2/Yo)A + 3m(y3Yo)Ao

nAn (m-(n-l))(yl/YO)An_ + (2m-(n-2))(y2/Yo)An_2 + (3m-(n-3))(y3/Yo)
An_3 + + nm(Yn/Yo)A0

Thus we have a systematic way of obtaining expansions for larger m For smaller

m we can use the same method or simply multiply out the power series in and

collect terms of equal powers in . Both methods, of course, yield the same

results. As an example, let m 2. We obtain

A0 yo2 yOYo

A m(Yl/Yo)y 2YlY0
A2 ylYl + 2Y2Y0
A3 2YlY2 + 2Y3Y0
A4 2Y3Y + Y2Y2 + 2Y4Y0 (6.3)
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A5 2Y5Y0 + 2Y4Y + 2Y2Y3
A6 2YoY6 + 2YlY5 + 2Y2Y4 + Y3Y3
etc.

These can be put into symmetrized form where the indices of each term add to

the index of An and all possible sums are taken"

A0 yOYo

A yoYl + YlYo
A2 yOY2 + Y)y) + Y2Yo (6.4)

A3 yOY3 + ylY2 + y2Yl + y3YO

A4 yOY4 + ylY3 + y2Y2 + Y3Yl + y4YO

A5 yOY5 + YlY4 + y2Y3 + Y3Y2 + y4Yl + Y5Yo

An yoYn + YlYn_l + ...+ Yn_lYl + YnYo

Our series obtained by equating equal powers of ;k is

-l
YO L x

Yl -L-I [RYo + bAo]

Y2 -L-I[Ryl + bAl]

Yn+l -L’l [Yn + bAn]
where the An are given above.

In the more general case of ym,
-l

YO L x

Yl -L-I[RyO + bAo] -L-I[RyO + bye]
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Y2 -L-I[Ryl + bAl] -L-I[RYl + bmy-lyl] (6.5)

-L-I[Ry
n + bAn]Yn+l

-L-I[Ryn + b{(m-(n-l))(yl/YO)An_ + (2m (n-2)(y2/Yo)An_2
+ (3m- (n-3)(y3/Yo)An_3 + + nm(Yn/Yo)Ao} ]

If m 3,

-I
YO L x

Yl -L-I[RyO + bYo3]

Y2 -L-l [IYl + b(3y)y ]

_L-lYn+l [RYn + b{3 (n-l)(yl/YO)An_ + (6- (n-2))(y2/Yo)An_2
(6.6)

+ (9- (n-3))(y3/Yo)An_3 + + 3n(Yn/Yo)Ao}]
It is easily verified that these results for m 3 correspond to the earlier re-

sults given in 4; similarly, for m 4, we obtain the results of 5.

We have noted that, if we write Yn+l L-I[Ryn + bAn]’ the expression for

An is simply obtained by writing all terms in which indices add up to n. But

now the number of factors in each term is 3, i.e., the same as m.

A0 yoYoYo

A yoYoY + yoYlYo + YlYoYo
A2 yoYoY2 + yoY2Yo + y2YoY0 + YoYlYl + YlYoY + ylYlYo

A3 ylYlYl + yoYoY3 + YoY3Yo + Y3YoYo + yoYlY2 + ylY2Yo

+ Y2YoYl + ylYoY2 + YoY2Y + y2YlYo

etc.

Similarly for m 4,



NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS 539

A0 yoYoYoYo

A yoYoYoY + YoYoYlY0 + YoYlYoY0 + YlYoYoY0

A2 yoYoYoY2 + yoYoY2Y0 + YoY2YoY0 + Y2YoYoYo + YoYoYlY

+ YlYlYoYo + YoYlYoYl + YlYoYoY + YoYlYlYo

Thus, if N(y) bym,
L -I L -I (6 7)Yn+l P’Yn + bAm,n

where Am, n is given by

YiYjYk "Yw (6.8)Am’n +j+kZ+... +w
where i+j+k+...+w n and the number or multiplicative factors is m. Hence,

any polynomial nonlinearity is easily handled.

7. EXAMPLE" APPROXIMATION FOR (UADRATIC NONLINEARITY

As a simple example of the use of the preceding results for polynomial non-

linearities, we take the quadratic nonlinearity of 2, i.e., the equation

Ly + y2 x (7.1)

We have y (-l)iyi with
i=O

Yi+l L-I[Ryi + A2,i] >_0 (7.2)

where Am, n
y.

has been defined in 6. We now can compare various approximations of

First Stage Approximation

Y YO l’-Ix

Second Stage Approximation

Y YO L-I[Ryo + A2,0] YO (L-IR)yo -l 2L YO
Third Staqe Approximation
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where

3
Y I (-l)iyi Y0 Yl + Y2i=l

Thus,

Yl L-l -l -l + L-l 0
2Ry0 + L A2,0 L Ry0 y and

L-1 -1 + ylYo)Y2 L-1RYl + L-1A2,1 Yl + L (yOYl

Y Y0 (L-IRyo + L-Iy + (L-IR)[(L-IR)y0 + L-Iy] + L-Iyo[(L-IR)Y0
+ + o +

Finally,

Y YO (L-IR)yo- L-Iy + (L-IR)(L-IR)y0 + 2(L-IR)L-Iy

Fourth Staqe Appro.ximation
3

y . (-l)iy
i=O YO Yl + Y2 Y3

We need to compute only Y3 since the previous terms have been calculated.

Y3 L-I L-IRY2 + A2,2
L-l L-lRy2 + (yOY2 + ylYl + y2Y0

L-IR[L-IRyl + L-IA2,1] + L-lyo[L-IRy + L-IA2, l]
+ L-lylYl + L-l[L-IRyl + L-IA2,1]Y0
(L-IR:) (L-IR) (L-I Ry0 + L-lye] + L-IRL-IA2, + L-lyoL-IR[L-IRy0
+ L-Iy02] + LIy0L-IA2,1 + L-IlL-l -ly][L-lYo + L Yo + L-lyg]

+ L-IL-IR[L-I -I 2
0

-1 -1Ry0 + L y ]Y0 + L L A2,1Y0

Y3 (L’IR) (L-IR) (L-IR)y0 + (L-IR)(L-IR)L-ly + (L-IR)L-I(yoYl + ylY0)
+ L-I(L-IR)(L-IR)y + L-l(L-IR)L-ly03 + L-ly0L-l(yoy + ylY0



NONLINEAR STOCHASTIC DIFFERENTIAL EATIONS 541

+ L-I(L-I R)(L-IR)y02 + L-I(L’IR)L-Iy3
0 + L’IL’l(y0y + YlY0)Y0

(L-IR)(L-IR)(L-IR)y
0 + (L-IR)(L’IR)L-Iyo + (L-IR)L-Iyo[(L-IR)y0

+ L-lyo2] + (L-IR)L-I[(L-IR)y0 + L-ly]yo + L’I(L-IR)(L’IR)yo2

+ L-l(L-IR)L-ly + L-IL-ly[(L-IR)y0 + L-lyo2] + L-IL-l[(L-IR)y
0

+ L-l 2 2 L-l L-l L-IR)y + L + L LYo]Y0 + R)( L-I -I L-IR)Yo3 L-I -I -lyo4

+ L-IL-l[(L’IR)y
0 + L-ly]y

We obtain

Y3 (L-IR)3y0 + 6(L-IR)2L-Iy02 + 9(L-IR)L-IL-Iy30 + 5L-IL-IL’Iy40
8. EXPONENTIAL NONLINEARITY

Consider N(y) ey"

LY + ey x (8.1)

By the symmetric method of solution, we must resort to a Taylor expansion for ey,
i.e., y + y2/2’. + y3/3’. + ...; hence, the computation becomes tedious if suffi-

cient terms of the Taylor expansion are to be used for a reasonable approximation

of ey. Let us take four terms for the Taylor expansion; ey y + y2/2’. + y3/3’.
+ y4/4’.. Then, by the symmetric method,

Y Z (-l)iyi_l for >l (8.2)
i-l

wi th

Yi L + L-IAmRYi-I -I

where m is the power of the polynomial term. We realize we would have to corn-

pute quite a large number of terms. For example, we saw how many terms we had to

compute at the fourth stage of approximations for y2; we would have to do the

same thing for y and y3 as well. The inverse method or operator theoretic

method which appear elsewhere [5,6] doesn’t need such decompositions for expres-

sions like ey or log y, so is actually more convenient for such cases; however,
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the synetrtc method is convenient for the polynomial cases.
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