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ABSTRACT. It is proved here that a completely regular Hausdorff space X is

pseudocompact if and only if for any continuous function f from X to a pseudo-
,

compact space (or a compact space) Y, f # is z-ultrafilter whenever is a

z-ultrafilter on X.
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i. INTRODUCTION.

For notations and basic results one is referred to [i]. We only consider

here completely regular Hausdorff spaces.
,

Let f be continuous from X to Y. Let # be a z-ultrafilter on X, then f #

denotes the z-filter {B . Z(Y): f-l(B)#} on Y and is known to be prime. We

further know that a prime z-filter is contained in a unique z-ultrafilter, Let
,

A(f) denote the z-ultrafilter containing f #. Thus we have a function (f)
,

from 8X to 8Y sending # to A(f)#. The function f is called z-ultra if f

A(f)# for every z-ultrafilter # on X.
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2. MAIN RESULTS

PROPOSITION. A continuous function f from X to Y is z-ultra if and only

B Y,

PROOF. Let f b,e z-ultra. Then, A(f)i (B--BY) if and only if A(f)

* B--BY * -I
f # e But this is equivalent to B e f or to f (B) , which happens

-i X
if and only if e f (B)

, 8X
Conversely, B e f if and only if e f-l(B) i.e. A(f) e B--BY, since
8X

f-l(B) A(f)-I[B--SY). But A (f) B--BY is equivalent to saying that B e (f).
,

We see that f A(f).

In order to prove the main theorem of the paper we need the following

observations for pseudocompact spaces. If X is pseudocompact, then a subset of

8X is a zero-set if and only if it is closure of a zero-set in X and conversely,

a subset of X is a zero-set in X if and only if its closure is so in 8X.

THEOREM. If a space X is pseudocompact then any continuous function f

from X to any pseudocompact space Y is z-ultra. Conversely, if the inclusion

of X in 8X is z-ultra, then X is pseudocompact.

PROOF. Let B be a zero-set in Y. Since B--BY is a zero-set in 8Y as Y is

pseudocompact, A(f)-I(B--BY) is a zero-set in 8X. Pseudocompactness of X implies

that A(f)-I(B--BY) --A--Sx for some zero-set A in X. We show that A f-l(B).
Since A(f)/X-- f, we observe that A (f)-l(B) X f-l(B). Clearly, A(f)-I

(B--BY) C X (f)-l(B) X f-l(B). Next, A(f)-I(B--BY) X A--Sx

X A.. Hence f-l(B) A, and we have f to be z-ultra.

Conversely, let i be the inclusion of X in 8X. Since A(i)/X i, A(i)

ls the identity on 8X. Let B be a nonempty zero-set in 8X. Slnce i is z-ultra,
X X

from the above proposition we have that B (1)-I(B) I-I(B) B X

and [1,61.I] shows that X is pseudocompact.

As an appllcatlon of our theorem we prove the following well known theorem

due to Glicksberg [2].
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THEOREM. If X is pseudocompact and Y is compact, then X x Y is pseudo-

compact.

PROOF. Let f: X x Y / Z be a continuous function, Z some pseudocompact

space. Consider a z-ultrafilter 0 on X x Y. Let X x Y + Y denote the
2 ,

projection on the second coordinate. Since Y is compact and 2 is a z-filter,
,

it is fixed as well. Let Yo 20. Hence 01 the restriction of 0 to the

subspace X x {yo } is a z-ultrafilter on X x {yo }. Let fl denote the restriction

of f to the subspace X x {yo }. Since X is pseudocompact, fl is z-ultra. Clearly,
, ,

f 0 f 101 Next, let B f 101 Hence fl(B) 01. Since f-l(B) contains

fil(B), f-l(B) intersects every member of . Thus f-l(B) 0 as it is a z-ultra-
, ,

filter. We get,that B f 0. Hence f f ii_ and it follows that f is z-

ultra.
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