RESEARCH NOTES

A CHARACTERIZATION OF PSEUDOCOMPACTNESS

PRABDUH RAM MISRA

I.M.F. - U.F.G. Caixa Postal - 597 74000 - Goiânia - Go, BRASIL and

VINODKUMAR

I.I.T. New Delhi, INDIA

(Received October 6, 1980)

<u>ABSTRACT</u>. It is proved here that a completely regular Hausdorff space X is pseudocompact if and only if for any continuous function f from X to a pseudocompact space (or a compact space) Y, $f^{*}\phi$ is z-ultrafilter whenever ϕ is a z-ultrafilter on X.

<u>KEY WORDS AND PHRASES</u>. Pseudocompact, BX, z-filter, z-ultra function. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 54D99.

1. INTRODUCTION.

For notations and basic results one is referred to [1]. We only consider here completely regular Hausdorff spaces.

Let f be continuous from X to Y. Let ϕ be a z-ultrafilter on X, then $f^*\phi$ denotes the z-filter {B \in Z(Y): $f^{-1}(B) \in \phi$ } on Y and is known to be prime. We further know that a prime z-filter is contained in a unique z-ultrafilter. Let $\Delta(f)\phi$ denote the z-ultrafilter containing $f^*\phi$. Thus we have a function $\Delta(f)$ from βX to βY sending ϕ to $\Delta(f)\phi$. The function f is called z-ultra if $f^*\phi =$ $\Delta(f)\phi$ for every z-ultrafilter ϕ on X. 2. MAIN RESULTS

<u>PROPOSITION</u>. A continuous function f from X to Y is z-ultra if and only if for every zero-set B in Y, $\Delta(f)^{-1}(\overline{B}^{\beta Y}) = \overline{f^{-1}(B)}$.

<u>PROOF</u>. Let f be z-ultra. Then, $\phi \in \Delta(f)^{-1}(\overline{B}^{\beta Y})$ if and only if $\Delta(f)\phi = f^*\phi \in \overline{B}^{\beta Y}$. But this is equivalent to B $\in f^*\phi$ or to $f^{-1}(B) \in \phi$, which happens if and only if $\phi \in \overline{f^{-1}(B)}$.

Conversely, B ε f^{*} ϕ if and only if $\phi \varepsilon f^{-1}(B)^{\beta X}$, i.e. $\Delta(f)\phi \varepsilon \overline{B}^{\beta Y}$, since $\overline{f^{-1}(B)}^{\beta X} = \Delta(f)^{-1}(\overline{B}^{\beta Y})$. But $\Delta(f) \phi \varepsilon \overline{B}^{\beta Y}$ is equivalent to saying that B $\varepsilon \Delta(f)\phi$. We see that $f^*\phi = \Delta(f)\phi$.

In order to prove the main theorem of the paper we need the following observations for pseudocompact spaces. If X is pseudocompact, then a subset of βX is a zero-set if and only if it is closure of a zero-set in X and conversely, a subset of X is a zero-set in X if and only if its closure is so in βX .

<u>THEOREM</u>. If a space X is pseudocompact then any continuous function f from X to any pseudocompact space Y is z-ultra. Conversely, if the inclusion of X in β X is z-ultra, then X is pseudocompact.

<u>PROOF</u>. Let B be a zero-set in Y. Since $\overline{B}^{\beta Y}$ is a zero-set in βY as Y is pseudocompact, $\Delta(f)^{-1}(\overline{B}^{\beta Y})$ is a zero-set in βX . Pseudocompactness of X implies that $\Delta(f)^{-1}(\overline{B}^{\beta Y}) = \overline{A}^{\beta X}$ for some zero-set A in X. We show that $A = f^{-1}(B)$. Since $\Delta(f)/X = f$, we observe that $\Delta(f)^{-1}(B) \cap X = f^{-1}(B)$. Clearly, $\Delta(f)^{-1}(\overline{B}^{\beta Y}) \cap X = \Delta(f)^{-1}(B) \cap X = f^{-1}(B)$. Next, $\Delta(f)^{-1}(\overline{B}^{\beta Y}) \cap X = \overline{A}^{\beta X} \cap$ X = A.. Hence $f^{-1}(B) = A$, and we have f to be z-ultra.

Conversely, let i be the inclusion of X in βX . Since $\Delta(i)/X = i$, $\Delta(i)$ is the identity on βX . Let B be a nonempty zero-set in βX . Since i is z-ultra, from the above proposition we have that $B = \Delta(i)^{-1}(B) = i^{-1}(B) = B \cap X$ and [1,6I.1] shows that X is pseudocompact.

As an application of our theorem we prove the following well known theorem due to Glicksberg [2].

408

THEOREM. If X is pseudocompact and Y is compact, then X x Y is pseudocompact.

<u>PROOF</u>. Let f: X x Y + Z be a continuous function, Z some pseudocompact space. Consider a z-ultrafilter ϕ on X x Y. Let π_2 : X x Y + Y denote the projection on the second coordinate. Since Y is compact and $\pi_2^* \phi$ is a z-filter, it is fixed as well. Let $y_0 \in \bigcap \pi_2^* \phi$. Hence ϕ_1 , the restriction of ϕ to the subspace X x $\{y_0\}$ is a z-ultrafilter on X x $\{y_0\}$. Let f_1 denote the restriction of f to the subspace X x $\{y_0\}$. Since X is pseudocompact, f_1 is z-ultra. Clearly, $f^* \phi \subseteq f_1^* \phi_1$. Next, let B $\in f_1^* \phi_1$. Hence $f_1^{-1}(B) \in \phi_1$. Since $f^{-1}(B)$ contains $f_1^{-1}(B)$, $f^{-1}(B)$ intersects every member of ϕ . Thus $f^{-1}(B) \in \phi$ as it is a z-ultrafilter. We get that B $\in f^* \phi$. Hence $f^* \phi = f_1^* \phi_1$ and it follows that f is zultra.

ACKNOWLEDGEMENT

This work was done while the first author was visiting Mehta Research Institute, Allahabad in summer 1977.

REFERENCES

- 1. Gillman, L. and Jerison, M., Rings of Continuous Functions. Van Nostrand, Princeton, 1960.
- Glicksberg, I., Stone-Cech Compactifications of Products, Trans. Amer. Math. Soc. 90 (1959), 369-382.