RESEARCH NOTES

A CHARACTERIZATION OF PSEUDOCOMPACTNESS

PRABDUH RAM MISRA
I.M.F. - U.F.G.
Caixa Postal - 597
74000 - Goiânia - Go, BRASIL
and
VINODKUMAR
I.I.T.
New Delhi, INDIA
(Received October 6, 1980)

Abstract

It is proved here that a completely regular Hausdorff space X is pseudocompact if and only if for any continuous function from X to a pseudocompact space (or a compact space) $Y, f^{*} \phi$ is z-ultrafilter whenever ϕ is a z-ultrafilter on X.

KEY WORDS AND PHRASES. Pseudocompact, BX, z-filter, z-ultra function.

 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 54099.1. INTRODUCTION.

For notations and basic results one is referred to [1]. We only consider here completely regular Hausdorff spaces.

Let f be continuous from X to Y. Let ϕ be a z-ultrafilter on X, then $f^{*}{ }_{\phi}$ denotes the z-filter $\left\{B \in Z(Y): f^{-1}(B) \varepsilon \phi\right\}$ on Y and is known to be prime. We further know that a prime z-filter is contained in a unique z-ultrafilter, Let $\Delta(f) \phi$ denote the z-ultrafilter containing $f^{*} \phi$. Thus we have a function $\Delta(f)$ from βX to βY sending ϕ to $\Delta(f) \phi$. The function f is called z-ultra if $f^{*} \phi=$ $\Delta(f) \phi$ for every z-ultrafilter ϕ on X.

2. main results

PROPOSITION. A continuous function f from X to Y is z-ultra if and only if for every zero-set B in $Y, \Delta(f)^{-1}\left(\overline{B^{\beta Y}}\right)=\overline{f^{-1}(B)}$.

PROOF. Let f be z-ultra. Then, $\phi \in \Delta(f)^{-1}\left(\bar{B}^{\beta Y}\right)$ if and only if $\Delta(f) \phi=$ $\mathrm{f}^{*}{ }_{\phi} \varepsilon \overline{\mathrm{B}}^{\beta \mathrm{Y}}$. But this is equivalent to $\mathrm{B} \varepsilon \mathrm{f}^{*}{ }_{\phi}$ or to $\mathrm{f}^{-1}(\mathrm{~B}) \varepsilon \phi$, which happens if and only if $\phi \varepsilon \overline{f^{-1}(B)}$.

Conversely, $B \varepsilon f^{*} \phi$ if and only if $\phi \varepsilon \bar{f}^{-1}(B)$, i.e. $\Delta(f) \phi \varepsilon \bar{B}^{\beta Y}$, since ${\overline{f^{-1}}(B)}^{\beta X}=\Delta(f)^{-1}\left(\bar{B}^{\beta Y}\right)$. But $\Delta(f) \phi \varepsilon \bar{B}^{\beta Y}$ is equivalent to saying that $B \varepsilon \Delta(f) \phi$. We see that $f^{*} \phi=\Delta(f) \phi$.

In order to prove the main theorem of the paper we need the following observations for pseudocompact spaces. If X is pseudocompact, then a subset of βX is a zero-set if and only if it is closure of a zero-set in X and conversely, a subset of X is a zero-set in X if and only if its closure is so in βX.

THEOREM. If a space X is pseudocompact then any continuous function f from X to any pseudocompact space Y is z-ultra. Conversely, if the inclusion of X in βX is z-ultra, then X is pseudocompact.

PROOF. Let B be a zero-set in Y. Since $\bar{B}^{\beta Y}$ is a zero-set in βY as Y is pseudocompact, $\Delta(f)^{-1}\left(\bar{B}^{\beta Y}\right)$ is a zero-set in βX. Pseudocompactness of X implies that $\Delta(f)^{-1}(\overline{B Y})=\bar{A}^{\beta X}$ for some zero-set A in X. We show that $A=f^{-1}(B)$. Since $\Delta(f) / X=f$, we observe that $\Delta(f)^{-1}(B) \cap X=f^{-1}(B) . \quad$ Clearly, $\Delta(f)^{-1}$ $\left(\bar{B}^{\beta Y}\right) \cap \mathrm{X}=\Delta(\mathrm{f})^{-1}(\mathrm{~B}) \cap \mathrm{X}=\mathrm{f}^{-1}(\mathrm{~B}) . \operatorname{Next}, \Delta(\mathrm{f})^{-1}\left(\bar{B}^{\beta Y}\right) \Gamma_{1} \quad X=\bar{A}^{\beta X} \cap$ $X=A$.. Hence $f^{-1}(B)=A$, and we have f to be z-ultra.

Conversely, let i be the inclusion of X in βX. Since $\Delta(i) / X=i, \Delta(i)$ is the identity on βX. Let B be a nonempty zero-set in βX. Since i is z-ultra, from the above proposition we have that $B=\Delta(i)^{-1}(B)=\bar{i}^{-1}(B)=B X \cap X^{\beta X}$ and [1,6I.1] shows that X is pseudocompact.

As an application of our theorem we prove the following well known theorem due to Glicksberg [2].

THEOREM. If X is pseudocompact and Y is compact, then $X X Y$ is pseudocompact.

PROOF. Let $f: X X Y \rightarrow Z$ be a continuous function, Z some pseudocompact space. Consider a z-ultrafilter ϕ on $\mathrm{X} \times \mathrm{Y}$. Let $\pi_{2}: X \mathrm{X} Y \rightarrow \mathrm{Y}$ denote the projection on the second coordinate. Since Y is compact and $\pi_{2}{ }^{\phi}$ is a z-filter, it is fixed as well. Let $y_{0} \varepsilon \cap \pi_{2}^{*} \phi$. Hence ϕ_{1}, the restriction of ϕ to the subspace $X X\left\{y_{0}\right\}$ is a z-ultrafilter on $X X\left\{y_{0}\right\}$. Let f_{1} denote the restriction of f to the subspace $X X\left\{y_{0}\right\}$. Since X is pseudocompact, f_{1} is $z-u l t r a$. Clearly, $\mathrm{f}^{*}{ }_{\phi} \subseteq \mathrm{f}^{*}{ }_{1} \phi_{1}$. Next, let $B \in \mathrm{f}^{*}{ }_{1} \phi_{1}$. Hence $\mathrm{f}_{1}^{-1}(\mathrm{~B}) \varepsilon \phi_{1}$. Since $\mathrm{f}^{-1}(\mathrm{~B})$ contains $f_{1}^{-1}(B), f^{-1}(B)$ intersects every member of ϕ. Thus $f^{-1}(B) \varepsilon \phi$ as it is a z-ultrafilter. We get that $B \in f^{*} \phi$. Hence $f^{*} \phi=f_{1}^{*} \phi_{1}$ and it follows that f is $z-$ ultra.

ACKNOWLEEDGEMENT
This work was done while the first author was visiting Mehta Research Institute, Allahabad in summer 1977.

REFERENCES

1. Gillman, L. and Jerison, M., Rings of Continuous Functions. Van Nostrand, Princeton, 1960.
2. Glicksberg,I., Stone-Cech Compactifications of Products, Trans. Amer. Math. Soc. 90 (1959), 369-382.
