ON RANK 4 PROJECTIVE PLANES

O. BACHMANN
Département de mathématiques Ecole polytechnique fédérale CH-1007 Lausanne, Suisse
(Received October 4, 1979)

ABSTRACT. Let a finite projective plane be called rank m plane if it admits a collineation group G of rank m, let it be called strong rank m plane if moreover $G_{P}=G_{1}$ for some point-line pair ($\mathrm{P}, 1$). It is well known that every rank 2 plane is desarguesian (Theorem of Ostrom and Wagner). It is conjectured that the only rank 3 plane is the plane of order 2. By [1] and [7] the only strong rank 3 plane is the plane of order 2. In this paper it is proved that no strong rank 4 plane exists.

KEY WORDS AND PHRASES. Projective planes, rank 4 groups.
1980 MATHEMATICS SUBJECT CLASSIFICATION CODE: 50 Geometry.

1. INTRODUCTION.

In [6] Kallaher gives restrictions for the order n of a finite rank 3 pro-
jective plane and conjectures that no such plane exists if $n \neq 2$. Let a finite projective plane be called a strong rank m projective plane if it admits a rank m collineation group G such that $G_{P}=G_{1}$ for some point-1ine pair ($P, 1$). By Bachmann [1] and Kantor [7] no strong rank 3 projective plane of order $n \neq 2$ exists. If the conjecture is true that for projective designs the representations on the points and on the blocks of an arbitrary transitive collineation group are similar (see Dembowski [2], p. 78), then every rank m projective plane is a strong rank m plane.

We shall prove in this article the following
THEOREM: No strong rank 4 projective plane exists.
To prove the Theorem we first divide the strong rank 4 planes into 3 classes (see Lemma 2 and 3). Then we associate with each such plane (0,1)-matrices A and C of trace 0 (see [3]). Finally we show that for each class the trace condition contradicts the integrality of the multiplicities of the eigenvalues of A or C.

We shall use the following notations, definitions and basic results (see Dembowski [2]):

A collineation group of a projective plane has equally many point orbits and line orbits. The rank of a transitive permutation group is the number of orbits of the stabilizer of one of the permuted elements. If G is a (point or line) transitive collineation group of a projective plane, then the point and line ranks are equal (Kantor [8]). A rank m projective plane is a projective plane which admits a transitive collineation group whose (point or line) rank is m $(m \geqslant 2)$. The lines (points) are identified with the set of points (lines) on then. We write $P \in 1^{G}$ if and only if $P \in 1^{\gamma}$ for all $\gamma \in G$.
2. PROOF OF THE THEOREM.

Let $\mathbb{P}=(P, L, \epsilon)$ be a projective plane of finite order n and let G be a rank 4 collineation group of \mathbb{P} such that $G_{P_{0}}=G_{1}$ for some point-line pair ($P_{0}, 1_{0}$). It is easily seen that $n \geqslant 3$. A bijective map $\sigma: P \longrightarrow L$ is defined by $P^{\sigma}=1$ if and only if $P=P_{o}^{\gamma}$ and $1=1_{o}^{\gamma}$ for some $\gamma \in G$. If $i \in \mathbb{N}$ we write 1_{i} for P_{i}^{σ}. Clearly $P_{o}^{\sigma}=1_{o}$ and

$$
\begin{equation*}
P^{\sigma \gamma}=P^{\gamma \sigma}, 1^{\sigma^{-1} \gamma}=1^{\gamma \sigma \sigma^{-1}} \text { for all } P \in P, 1 \in L, \gamma \in G . \tag{1}
\end{equation*}
$$

For $P \in P \quad G \quad$ has exactly 4 orbits $\{P\}, \Delta(P), \Gamma(P), \dot{I}(P)$. We choose the notation in such a way that

$$
(\Delta(P))^{\gamma}=\Delta\left(P^{\gamma}\right), \quad(\Gamma(P))^{\gamma}=\Gamma\left(P^{\gamma}\right),(\Pi(P))^{\gamma}=\pi\left(P^{\gamma}\right) \text { for all } P \in P, \gamma \in G(2)
$$

LEMMA 2.1: If $\Lambda_{1}, \Lambda_{2}, \Lambda_{3} \in\{\triangle, \Gamma, \Pi\}$, then $\left|\Lambda_{1}(A) \cap \Lambda_{2}(B)\right|=$ $\left|\Lambda_{1}\left(A^{\prime}\right) \cap \Lambda_{2}\left(B^{\prime}\right)\right| \quad$ if $A \in \Lambda_{3}(B)$ and $A^{\prime} \in \Lambda_{3}\left(B^{\prime}\right)$.

PROOF: If $A \in \Lambda_{3}(B), A^{\prime} \in \Lambda_{3}\left(B^{\prime}\right)$, then for some $\gamma \in G, \gamma_{0} \in G B$

$$
B^{\prime}=B^{\gamma}=B^{\gamma_{0} \gamma}, A^{\prime}=A^{\gamma_{0} \gamma} \text {, whence by (2) }
$$

$\left|\Lambda_{1}\left(A^{\prime}\right) \cap \Lambda_{2}\left(B^{\prime}\right)\right|=\left|\Lambda_{1}(A)^{\gamma_{0} \Upsilon_{\Lambda}} \Lambda_{2}(B)^{\gamma_{0} \Upsilon_{1}}=\right|\left(\Lambda_{1}(A) \cap \Lambda_{2}(B)\right)^{\Upsilon_{0} \Upsilon_{\mid}}=$
$\left|\Lambda_{1}(\mathrm{~A}) \cap \Lambda_{2}(\mathrm{~B})\right|$.
LEMMA 2.2: Suppose that $P_{0} \in 1_{0}$. Then $1_{0}-\left\{P_{0}\right\}$ and $P_{0}-\left\{1_{0}\right\}$ are $G_{P_{0}}$ orbits, say $\Delta\left(P_{0}\right)=1_{0}-\left\{P_{0}\right\}$ and $1_{2}{ }^{P_{0}}=P_{0}-\{1\}$ with $P_{2}{ }^{G} P_{0}=\Gamma\left(P_{0}\right) . P_{1} \in \Delta\left(P_{0}\right)$ and $P_{3} \in \Pi\left(P_{0}\right)$ can be chosen such that $P_{1} \in 1_{0} ; P_{0}, P_{2}, P_{3} \in 1_{2} ; P_{2} \in 1_{1} ; P_{1} \notin 1_{3}$ (Fig. 1).

The case described by Lemma 2 will be called case I.
PROOF: If 1_{0} - $\left\{P_{0}\right\}$ is not a $G_{P_{0}}$-orbit, then it is the union of 2 orbits, say $1_{0}-\left\{P_{0}\right\}=\Delta\left(P_{0}\right) \cup \Gamma\left(P_{0}\right)$. Then $P_{0}-\left\{1_{0}\right\}$ is a line orbit $1^{G} P_{0}$ and $\Pi\left(P_{0}\right)=$ $P^{G}{ }^{P_{0}}$ with $1=P^{\delta}$. This leads to the contradiction

Hence we may assume that $\Delta\left(P_{0}\right)=1_{0}-\left\{P_{0}\right\}$.
Dually: $P_{0}-\left\{1_{0}\right\}$ is a $G P_{0}$ - orbit, say $\quad 1_{2}{ }^{G} P_{0}=P_{0}-\left\{1_{0}\right\}$ where ${ }^{P_{2}}{ }_{2}{ }_{0}=\Gamma\left(P_{0}\right)$ (note that $\left.P_{0} \notin 1_{1}\right)$.

$$
\left|P_{2}^{G} P_{0}\right|=\left|1_{2}{ }^{G} P_{0}\right|=\left|P_{0}-\left\{1_{0}\right\}\right|=n \quad \text { implies } \quad \Gamma\left(P_{0}\right) \cap 1_{2}=\left\{P_{2}\right\}
$$

For any point $Q \neq P_{0}, P_{2}$ on 1_{2} holds $Q^{G} P_{0}=\mathbb{L}\left(P_{0}\right)$.
Let $P_{1}^{\prime} \in \Delta\left(P_{0}\right)$. If $P_{2} \in \mathcal{I}_{1}^{\prime}$ put $P_{1}=P_{1}^{\prime}$. If $P_{2} \notin 1_{1}^{\prime}$ then $\left|P_{1}^{\prime}{ }^{G} P_{0}, P_{2}\right|=\left|{ }_{1}^{\prime}{ }^{G} P_{0}, P_{2}\right| \geqslant\left|\left(1_{1}^{\prime} \cap 1_{2}\right){ }^{G} P_{0}, P_{2}\right|=n-1=\left|\left(1_{1}^{\prime} \cap 1_{2}\right) \quad{ }^{\circ}{ }^{G} P_{0}, P_{2}\right|$
$\geqslant\left|\left(\left(I_{1}^{\prime} \cap 1_{2}\right)^{\sigma} \cap 1_{0}\right){ }^{G} P_{0}, P_{2}\right|$; this implies ${ }_{P_{1}}{ }^{P_{0}}, P_{2}=P_{1}$ for some point $P_{1} \in \Delta\left(P_{o}\right)$ and hence $P_{2} \in 1_{1}$.
It remains to prove that $\mathrm{P}_{3} \in \mathbb{I}\left(\mathrm{P}_{0}\right) \cap 1_{2}$ exists such that $\mathrm{P}_{1} \notin 1_{3}$. If no such P_{3} exists then $P_{1} \in Q^{\sigma}$ for all $Q \in 1_{2}-\left\{P_{0}, P_{2}\right\}$ and hence $G_{P_{0}}, P_{2} \leqslant G_{P_{0}}, P_{1}$. Let $r \in G$ be such that $P_{2}^{\gamma}=P_{0}$. Then $1_{2}^{\gamma}=1_{0}$ and therefore $P_{0}^{\gamma} \in 1_{0}, P_{0}^{\gamma} \neq P_{0}$ and $\mathrm{P}_{0}^{\gamma \gamma_{0}}=\mathrm{P}_{1}$ for some $\gamma_{0} \in \mathrm{G}_{\mathrm{P}_{0}}$. It follows that $\mathrm{G}_{\mathrm{P}_{0}, \mathrm{P}_{1}}=\left(\bar{\gamma} \gamma_{0}\right)^{-1} \mathrm{G}_{\mathrm{P}_{0}, P_{2}} \bar{\gamma} \gamma_{0}$. Hence

$$
\begin{equation*}
G_{P_{0}, P_{1}}=G_{P_{0}, P_{2}} \tag{3}
\end{equation*}
$$

Further

$$
\begin{equation*}
P_{2} \notin 1_{1}^{\gamma_{0}} \quad \text { for some } \gamma_{0} \in G_{P_{0}} \tag{4}
\end{equation*}
$$

for otherwise $P_{2}^{\gamma_{0}^{\prime}} \in 1_{1}^{\gamma_{0}^{\prime \prime}}$ for all $\gamma_{0}^{\prime}, \gamma_{0}^{\prime \prime} \in G_{P_{0}}$ which cannot occur.

$$
\begin{equation*}
{ }_{P_{2}}^{\gamma_{0}} \in 1_{1} \text { for some } \gamma_{0} \in G_{P_{0}} \text { if and only if } \gamma_{0} \in G_{P_{2}} \tag{5}
\end{equation*}
$$

'To prove (5) note that by (4) through any point of $1_{2}-\left\{P_{0}\right\}$ goes at least one and hence exactly one line of $1_{1}{ }^{G} P_{0}$ (3) and $P_{2} \in 1_{1}$ then imply (5). Let's apply (5) to $G_{P_{1}}$ in place of $G_{P_{0}}$:

$$
\begin{aligned}
& \text { Let's apply (5) to } G_{P_{1}} \text { in place of } G_{P_{0}} \text { : } \\
& \Delta\left(P_{1}\right)=1_{1}-\left\{P_{1}\right\} ; \quad \Gamma\left(P_{1}\right)=\Gamma\left(P_{0}^{\gamma}\right)=\left(\Gamma\left(P_{0}\right)\right)^{\gamma}={ }_{P_{2}}{ }_{P_{0}}^{\gamma}=P_{0}^{\gamma}{ }^{-1} G_{P_{0}}^{\gamma}=P_{0}^{G} P_{1}
\end{aligned}
$$

where $r \in G$ such that $P_{0}^{\gamma}=P_{1}, P_{2}^{\gamma}=P_{0} ; \mathbb{I}\left(P_{1}\right)=S^{G} P_{1}$ for some $S \in 1_{0}-$ $\left\{P_{0}, P_{1}\right\}$; hence $P_{0} \gamma_{1} \in 1_{2}$ for some $\gamma_{1} \in G_{P_{1}}$ if and only if $\gamma_{1} \in G_{P_{0}}$.

It follows that $R \notin P_{0}{ }^{G} P_{1}$ for any $R \in 1_{2}-\left\{P_{0}, P_{2}\right\}$. Let $r=R^{\delta}$ for some such R.
Of the 3 orbits $\left(P_{0}, 1_{1}\right)^{G},\left(P_{0}, 1_{2}\right)^{G},\left(P_{0}, r\right)^{G}$ induced by G on $P \times L-$ $\left(P_{o}, 1_{o}\right)^{G}$ only one consists of flags. Thus $\left(P_{1}, 1_{o}\right)$ and ($\left.P_{1}, r\right)$ and then also $\left(P_{0}, 1_{1}\right)$ and ($R, 1_{1}$) belong to the same G-orbit. This contradicts $R \notin P_{0} P_{1}$. Hence there exists $P_{3} \in \mathbb{\pi}\left(P_{0}\right) \cap 1_{2}$ such that $P_{1} \notin 1_{3}$.

LEMMA 2.3: Suppose that $P_{0} \notin 1_{0}$. Then 1_{0} and dually P_{0} are $G_{P_{0}}$-orbits, say $\Delta\left(P_{0}\right)=1_{0}, P_{1} \in \Delta\left(P_{0}\right), P_{2} \in \Gamma\left(P_{0}\right), P_{3} \in \pi\left(P_{0}\right)$ can be chosen such that either $P_{0}, P_{2}, P_{3} \in 1_{1} ; P_{1} \in 1_{2}, 1_{3} ; P_{2} \notin 1_{3} ; P_{3} \notin 1_{2}$ or $\quad P_{0}, P_{1}, P_{3} \in 1_{2} ; P_{1} \in 1_{0} ; \quad I\left(P_{0}\right) \cap 1_{2}=\left\{P_{2}^{\gamma_{0}}\right\}$ for some $Y_{0} \in G_{P_{0}} ; P_{2}^{Y_{0}} \in 1_{1} ; P_{1}, P_{2}$, $P_{3} \notin 1_{1}, 1_{3}$. In both cases $n \geqslant 4$.

The 2 cases described by Lemma 3

Figure 1
will be called case IIl resp. case II2 (Fig. 2).

PROOF: It is easily seen that
1_{0} and P_{0} are $G_{P_{0}}$ - orbits; say
$\Delta\left(P_{0}\right)=1_{0}$. Let $P_{1} \in \Delta\left(P_{0}\right)$. We
have to distinguish 2 cases:
Case III: $P_{0} \in 1_{1}$
Case II2: $P_{0} \notin 1_{1}$.

CASE IIl: Clearly $P_{0}=1_{1}{ }^{G} P_{o}$ and $\Gamma\left(P_{o}\right)=P_{2}{ }^{G} P_{o}, \quad \Pi\left(P_{o}\right)=P_{3}{ }^{P_{0}}$ for some $P_{2}, P_{3} \in 1_{1}-\left\{P_{0}, 1_{0} \cap 1_{1}\right\}$. If $P_{2} \in 1_{3}$ then $\left(P_{2}, 1_{3}\right) \in\left(P_{0}, 1_{1}\right)^{G}$, hence $\left(P_{3}, 1_{2}\right) \in\left(P_{1}, 1_{o}\right)^{G}$, so $P_{3} \in 1_{2}$.

Figure 2

Analogously $P_{2} \in 1_{3}$ if $P_{3} \in 1_{2}$. Thus

$$
\begin{equation*}
P_{2} \in 1_{3} \quad \text { if and only if } \quad P_{3} \in 1_{2} \tag{6}
\end{equation*}
$$

Similarly one proves

$$
\begin{equation*}
P_{1} \in 1_{2}, 1_{3} \tag{7}
\end{equation*}
$$

If $n>3$ then, by (6), we can choose P_{2}, P_{3} such that $P_{2} \notin 1_{3}, P_{3} \notin 1_{2}$. Let's show that $n>3$ (Fig. 3). Suppose that $n=3$. Put $P_{4}=1_{0} \cap 1_{1}$.

Figure 3

Then, since $P_{0} \in I_{1}$ and $P_{1} \in I_{0}$,
$1_{4}=P_{0} P_{1}$. Let $P_{5} \in 1_{0}-\left\{P_{1}, P_{4}\right\}$.
Then $P_{0} \in 1_{5}$ and then $1_{5} \cap 1_{2}=$ $\left(P_{0} P_{5} \cap 1_{3}\right) P_{4} \cap 1_{2}$. Denote this point by T. Clearly $P_{2} P_{5} \cap 1_{2}=$ T. Since $\left(P_{2} P_{5}\right)^{\delta^{-1}} \in 1_{2} \cap 1_{5}$ we obtain the contradiction
$\left(\mathrm{P}_{2} \mathrm{P}_{5}\right)^{\delta^{-1}} \in \mathrm{P}_{2} \mathrm{P}_{5}$.

CASE II2: We may assume that $P_{0}, P_{1}, P_{3} \in 1_{2}$ where $P_{2} \in \Gamma\left(P_{0}\right)$. Then $G_{P_{0}, P_{1}}=G_{P_{0}, P_{2}}$. We first assume that $n>3 .\left|P_{2}{ }^{G_{0}}\right|=\left|1_{2}{ }^{G_{0}}\right|=n+1$, hence $\left|1_{2} \cap \Gamma\left(P_{0}\right)\right|=1$; let $1_{2} \cap \Gamma\left(P_{0}\right)=\left\{P_{2}^{\gamma_{0}}\right\}$ with some, $\gamma_{0} \in G_{P_{0}}$. Then $P_{3}^{P_{0}, P_{1}}=$ $1_{2}-\left\{P_{0}, P_{1}, P_{2}^{\gamma_{0}}\right\}$ and hence, since $P_{2}^{Y_{0}}$ is invariant under $G_{P_{0}}, P_{1}$ and since $\mathrm{n}>3,1_{1} \cap 1_{2}=\mathrm{P}_{2}^{\mathrm{ro}}$.

The only G-orbit of $P_{1} x_{L} L$ consisting of flags is $\left(P_{0}, 1_{2}\right)$. Hence $\left(P_{1}, 1_{2}\right)$, $\left(P_{3}, 1_{2}\right),\left(P_{1}, 1_{0}\right) \in\left(P_{0}, 1_{2}\right) . P_{0} \notin 1_{1}$ then implies that $\left(P_{2}, 1_{1}\right),\left(P_{2}, 1_{3}\right)$, $\left(P_{0}, 1_{1}\right),\left(P_{2}, 1_{0}\right) \notin\left(P_{0}, 1_{2}\right)$, in particular $P_{2} \notin 1_{0}, 1_{1}, 1_{3}$.

If $P_{1} \in 1_{3}$ then $\left(P_{1}, 1_{3}\right) \in\left(P_{0}, 1_{2}\right)^{G}$ and hence $\left(P_{3}, 1_{1}\right) \in\left(P_{2}, 1_{0}\right)^{G}$. Since al so $\left(P_{0}, 1_{1}\right) \in\left(P_{2}, 1_{0}\right)^{G}$ we have $P_{0}^{\gamma_{1}}=P_{3}$ for some $\gamma_{1} \in G_{1}=G_{P_{1}}$. This implies that $G_{P_{1}}$ is transitive on $I_{2}-\left\{P_{1}, P_{2} \gamma_{0}\right\}$ which is impossible. Hence $\quad P_{1} \notin 1_{3}$.

If $n=3$ then $1_{2}=\left\{P_{G_{P}}, P_{1}, P_{2}^{\gamma_{0}}, P_{3}\right\} . \gamma_{0}$ is of order 4, for if $\gamma_{0}^{2}=1$ then $\left(P_{2}, 1_{2}^{\gamma_{0}}\right) \in\left(P_{2}^{\gamma_{0}}, 1_{2}\right){ }^{G_{0}}$ which is impossible. Moreover $P_{2}^{\gamma_{0}^{2}} \neq P_{2}$ since otherwisw $\gamma_{0}^{2} \in G_{P_{0}, P_{2}}=1$. It follows that $\mid\left(P_{2} P_{2} \gamma_{0}^{2},{ }^{G} P_{0} \mid=4\right.$ which contradicts $\left(\mathrm{P}_{2} \mathrm{P}_{2}{ }^{\mathrm{O}^{2}}\right)^{\mathrm{G}_{\mathrm{P}}}{ }_{0}=\left\{\mathrm{P}_{2} \mathrm{P}_{2}{ }^{\gamma_{0}}, \mathrm{P}_{2}{ }_{\gamma_{0}} \mathrm{P}_{2}^{\gamma_{0}^{3}}\right\}$. This completes the proof of the Lemma.

Let us now associate with $(G, \mathbb{P}) 3(0,1)$-matrices.
If $P(P)$ is a G-orbit then let $P^{\prime}(P)$ denote the paired orbit (see Wielandt [9]). If $Q \in P(P)$ then $Q_{Q}=P^{\boldsymbol{\gamma}}$ for some $\gamma \in G$ and $Q^{\gamma} \in(\rho(P))^{\boldsymbol{\gamma}}=P\left(P^{\gamma}\right)=P(Q)$. Hence $Q^{Q^{-1}}=P \in \rho^{\prime}(Q)$, i.e.

$$
\begin{equation*}
Q \in P(P) \text { implies that } P \in P^{\prime}(Q) \tag{8}
\end{equation*}
$$

This implies that in

Case I:
$\Delta^{\prime}(P)=\Gamma(P)$
$\Gamma^{\prime}(P)=\Delta(P)$
$\Pi^{\prime}(P)=\Pi(P)$

Case II1:
$\Delta^{\prime}(P)=\Delta(P)$
$\Gamma^{\prime}(P)=\Pi(P)$ resp. $\quad \Gamma(P)$
$\Pi^{\prime}(P)=\Gamma(P) \quad$ resp. $\quad \Pi(P)$
$\Pi^{\prime}(P)=\Pi(P)$

Now let $P=\left\{P_{1}, P_{2}, \ldots, P_{v}\right\}, L=\left\{1_{1}, 1_{2}, \ldots, 1_{v}\right\}, 1_{k}=P_{k}^{\sigma} \quad(k=1,2$, $\ldots, v)$. Let A be the $(0,1)$-matrix with rows enumerated by the points P_{k} and columns by $\Delta\left(P_{k}\right)$ and such that $\left(P_{k}, \Delta\left(P_{i}\right)\right)=1$ if and only if $P_{k} \in \Delta\left(P_{i}\right)$. Let B, C be the analogous matrices with $\Gamma\left(P_{k}\right)$ resp. $\Pi\left(P_{k}\right)$ in place of $\Delta\left(P_{k}\right)$.

We have in
case I:

case II1:

case II2:

$$
\begin{array}{ll}
A^{t}=B, C^{t}=C \quad & A^{t}=A, B^{t}=C \quad \text { if } \Gamma^{\prime}(P)=\Pi(P) \quad A^{t}=B, C^{t}=C \\
& A^{t}=A, B^{t}=B, C^{t}=C \text { if } \Gamma^{\prime}(P)=\Gamma(P) \\
\text { Let } k=|\Delta(P)|, 1=|\Gamma(P)|, m=|\Pi(P)|, \\
|\Delta(P) \cap \Delta(Q)| & =\left\{\begin{array}{l}
\lambda \\
\mu \\
\nu
\end{array}\right\} \text { if } Q \in\left\{\begin{array}{l}
\Delta(P) \\
\Gamma(P) \\
\Pi(P)
\end{array}\right. \\
|\Pi(P) \cap \Pi(Q)|=\left\{\begin{array}{l}
\lambda^{\prime} \\
\mu^{\prime} \\
v^{\prime}
\end{array}\right\} \text { if } Q \in\left\{\begin{array}{l}
\Pi(P) \\
\Delta(P) . \\
\Gamma(P)
\end{array}\right.
\end{array}
$$

A straightforward calculation shows that
$I+A+B+C=J$, the $v \times v$-matrix with $1^{\prime} s$ in every entry

$$
\begin{aligned}
& A^{t} A=k I+\lambda A+\mu B+\nu C \\
& C^{t} C=m I+\mu^{\prime} A+\nu^{\prime} B+\lambda^{\prime} C
\end{aligned}
$$

```
A J = k J
B J = 1 J
C J =m J.
```

Now we determine the eigenvalues of A in case $I I 1$ and of C in the cases I and II2.

$$
\text { CASE II1:. } \quad \begin{aligned}
& k=n+1 \\
& 1=n_{2}(n+1) \quad \text { where } \quad n_{2}=\left|P_{2} P_{0}, P_{1}\right| \\
& m=n_{3}(n+1) \quad \text { where } \quad n_{3}=\left|P_{3} P_{0}, P_{1}\right| \\
& k+1+m+1=v=n^{2}+n+1, n_{2}+n_{3}=n-1, \lambda=\mu=\nu=1 .
\end{aligned}
$$

It follows that $A^{2}=A^{t} A=(n+1) I+A+B+C=n I+J$; hence $(A-(n+1) I)\left(A^{2}-n I\right)=0$. This gives the eigenvalues of A :
$\lambda_{1}=n+1, \quad \lambda_{2,3}= \pm \sqrt{n}$.
CASE I:

$$
\mathrm{k}=1=\mathrm{n}, \mathrm{~m}=\mathrm{n}(\mathrm{n}-1), \mathrm{k}+1+\mathrm{m}+1=\mathrm{v}=\mathrm{n}^{2}+\mathrm{n}+1
$$

We have

$$
\begin{aligned}
& \lambda^{\prime}=\left|\pi\left(P_{0}\right) \cap \mathbb{I}\left(P_{3}\right)\right| \\
& \mu^{\prime}=\left|\mathbb{I}\left(P_{0}\right) \cap \mathbb{I}\left(P_{1}\right)\right| \\
& \nu^{\prime}=\left|\mathbb{I}\left(P_{0}\right) \cap \mathbb{I}\left(P_{2}\right)\right|
\end{aligned}
$$

Let's calculate λ^{\prime} :

$$
\begin{equation*}
n(n-1)=\left|\Pi\left(P_{3}\right)\right|=\left|\Pi\left(P_{3}\right) \cap \Delta\left(P_{0}\right)\right|+\left|\Pi\left(P_{3}\right) \cap \Gamma\left(P_{0}\right)\right|+\left|\Pi\left(P_{3}\right) \cap \Pi\left(P_{0}\right)\right|+1 \tag{9}
\end{equation*}
$$

(note that $\Gamma\left(P_{3}\right)=P_{2}^{G} P_{3}$ and hence $P_{0} \in \Pi\left(P_{3}\right)$).
$n=\left|\Delta\left(P_{0}\right)\right|=\left|\Delta\left(P_{0}\right) \cap \Delta\left(P_{3}\right)\right|+\left|\Delta\left(P_{0}\right) \cap \Gamma\left(P_{3}\right)\right|+\left|\Delta\left(P_{0}\right) \cap \Pi\left(P_{3}\right)\right|$.
Clearly

$$
\begin{align*}
& \left|\Delta\left(P_{0}\right) \cap \Delta\left(P_{3}\right)\right|=1 \tag{11}\\
& \left|\Delta\left(P_{0}\right) \cap \Gamma\left(P_{3}\right)\right|=\left|\Delta\left(P_{3}\right) \cap \Gamma\left(P_{0}\right)\right|=2 \tag{12}
\end{align*}
$$

PROOF of (12): $P_{0} \in \mathbb{H}\left(P_{3}\right)$ and $P_{3} \in \Pi\left(P_{o}\right)$, hence, by Lemma 1, $\left|\Delta\left(P_{0}\right) \cap \Gamma\left(P_{3}\right)\right|$ $=\left|\Delta\left(P_{3}\right) \cap \Gamma\left(P_{0}\right)\right| \cdot P_{2} \notin 1_{1}^{\gamma_{0}}$ for some $\gamma_{0} \in G_{P}$. Thus $\left|P_{3}{ }^{G_{0}}, P_{2}\right|=n-1$ implies that $\left|1_{1} \gamma_{0} G_{P_{0}}, P_{2}\right| \geqslant n-1$. Hence $\left|1_{1}^{\gamma_{0}}{ }^{\circ}{ }_{P_{0}}, P_{2}\right|=n-1$. Since $P_{1} \notin P_{1}^{\gamma_{0}}{ }^{G_{P}}{ }_{0}, P_{2}$ we then have $P_{1}{ }_{P_{0}}, P_{2}=P_{1}$, i.e. $G_{P_{0}, P_{2}} \leqslant G_{P_{0}, P_{1}}$. Since both groups are conjugate (see the proof of Lemma 2) this gives $G_{P_{0}, P_{1}}=G_{P_{0}}, P_{2}$.
 P_{2} for some $\gamma_{0}^{\prime}, \gamma_{0}^{\prime \prime} \in G_{P_{0}}$. Since, by the above, $G_{P_{0}, P_{2}}$ is transitive on 1_{o} -
 proves (12).

Equations (10), (11), (12) imply

$$
\begin{equation*}
\left|\Pi\left(P_{3}\right) \cap \Delta\left(P_{o}\right)\right|=n-3 . \tag{13}
\end{equation*}
$$

To determine $\left|\Pi\left(P_{3}\right) \cap T\left(P_{0}\right)\right|$ we use

$$
\begin{equation*}
n=\left|\Gamma\left(P_{0}\right)\right|=\left|\Gamma\left(P_{o}\right) \cap \Delta\left(P_{3}\right)\right|+\left|\Gamma\left(P_{o}\right) \cap \Gamma\left(P_{3}\right)\right|+\left|\Gamma\left(P_{o}\right) \cap \pi\left(P_{3}\right)\right| . \tag{14}
\end{equation*}
$$

By (12) $\left|\Gamma\left(P_{Q_{0}}\right) \cap \Delta\left(P_{G_{3}}\right)\right|=2$. Since $\Gamma\left(P_{3}\right)={ }_{P_{2}}^{G_{P}},\left|\Gamma\left(P_{o}\right) \cap \Gamma\left(P_{3}\right)\right|=$ $\left|P_{2}{ }^{G} \circ \cap P_{2}{ }_{P} P_{3}\right|=\left|1_{2}{ }_{P} \circ \cap 1_{2}{ }_{P}\right|=1$. It follows that

$$
\begin{equation*}
\left|\pi\left(P_{3}\right) \cap \Gamma\left(P_{0}\right)\right|=n-3 \tag{15}
\end{equation*}
$$

Equations (9), (13) and (15) imply that

$$
\begin{equation*}
\lambda^{\prime}=n^{2}-3 n+5 . \tag{16}
\end{equation*}
$$

Analogously we calculate μ^{\prime} and ν^{\prime} :

$$
n(n-1)=\left|\pi\left(P_{1}\right)\right|=\left|\pi\left(P_{1}\right) \cap \Delta\left(P_{0}\right)\right|+\left|\pi\left(P_{1}\right) \cap \Gamma\left(P_{0}\right)\right|+\left|\pi\left(P_{1}\right) \cap \pi\left(P_{0}\right)\right|
$$

with $\left|\pi\left(P_{1}\right) \cap \Delta\left(P_{0}\right)\right|=n-1$.

$$
\text { In } \quad n=\left|\Gamma\left(P_{0}\right)\right|=\left|\Gamma\left(P_{0}\right) \cap \Delta\left(P_{1}\right)\right|+\left|\Gamma\left(P_{0}\right) \cap \Gamma\left(P_{1}\right)\right|+\left|\Gamma\left(P_{0}\right) \cap I\left(P_{1}\right)\right|
$$

$\left|\Gamma\left(P_{0}\right) \cap \Delta\left(P_{1}\right)\right|=1$ by the proof of (12) and $\left|\Gamma\left(P_{0}\right) \cap \Gamma\left(P_{1}\right)\right|=\left|P_{2}{ }^{G}{ }_{0} \cap{ }_{P_{0}}{ }^{P_{1}}\right|=$ $\left|1_{2}{ }^{G}{ }^{P} \cap{ }_{0}{ }_{0}{ }^{G} P_{1}\right|=0$. Hence $\left|\Pi\left(P_{1}\right) \cap \Gamma\left(P_{o}\right)\right|=n-1$ and thus

$$
\begin{equation*}
\mu^{\prime}=(n-1)(n-2) \tag{17}
\end{equation*}
$$

$$
\begin{aligned}
& n(n-1)=\left|\pi\left(P_{2}\right)\right|=\left|\pi\left(P_{2}\right) \cap \Delta\left(P_{o}\right)\right|+\left|\pi\left(P_{2}\right) \cap \Gamma\left(P_{o}\right)\right|+\left|\pi\left(P_{2}\right) \cap \pi\left(P_{o}\right)\right| . \\
& \text { In } \quad n=\left|\Delta\left(P_{o}\right)\right|=\left|\Delta\left(P_{o}\right) \cap \Delta\left(P_{2}\right)\right|+\left|\Delta\left(P_{o}\right) \cap \Gamma\left(P_{2}\right)\right|+\left|\Delta\left(P_{o}\right) \cap \pi\left(P_{2}\right)\right|
\end{aligned}
$$

 (note that $\left|I_{1}{ }^{G} P_{2}\right|=\left|P_{1}{ }^{G} P_{2}\right|=n$ and hence $\Gamma\left(P_{2}\right)={ }_{P}{ }_{1}{ }^{G}$). Hence $\left|\Pi\left(P_{2}\right) \cap \Delta\left(P_{o}\right)\right|$ $=n-1$.
 where $\left|\Gamma\left(P_{o}\right)\right|=n,\left|\Gamma\left(P_{o}\right) \cap \Delta\left(P_{2}\right)\right|=0 \quad$ and $\left|\Gamma\left(P_{o}\right) \cap \Gamma\left(P_{2}\right)\right|=\left|P_{2} \cdot{ }^{G}{ }_{\circ} \cap{ }_{1}{ }_{1} P_{2}\right|=$ $\left|1_{2}{ }^{G}{ }_{P} \circ \cap{ }_{1}{ }_{1}{ }^{\mathrm{G}}{ }_{2}\right|=0$. Hence $\left|\Pi\left(P_{2}\right) \cap \Gamma\left(P_{o}\right)\right|=n-1$. It follows that

$$
\begin{equation*}
v^{\prime}=(n-1)(n-2) \tag{18}
\end{equation*}
$$

Equations (16), (17) and (18) imply that $c^{2}=C^{t} c=n(n-1) I+$ $(n-1)(n-2)(A+B)+\left(n^{2}-3 n+5\right) C=n(n-1) I+(n-1)(n-2)(J-I)+3 C$ and then $(C-n(n-1) I)\left(C^{2}-3 C-2(n-1) I\right)=0$.

The eigenvalues of c are $\lambda_{1}=n(n-1) ; \lambda_{2,3}=(3 \pm \sqrt{8 n+1}) / 2$.
CASE II2: $\mathrm{k}=1=\mathrm{n}+1, \mathrm{~m}=(\mathrm{n}-2)(\mathrm{n}+1), \mathrm{k}+1+\mathrm{m}+1=\mathrm{v}=\mathrm{n}^{2}+\mathrm{n}+1$. By the proof of Lemma $3 n \geqslant 4$. Let's determine $\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}:$

$$
(n+1)(n-2)=\left|\pi\left(P_{3}\right)\right|=\left|\mathbb{I}\left(P_{3}\right) \cap \Delta\left(P_{o}\right)\right|+\left|\pi\left(P_{3}\right) \cap \Gamma\left(P_{o}\right)\right|+\mid \pi\left(P_{3}\right) \cap
$$

$\mathbb{I}\left(P_{o}\right) \mid-1$. In $n+1=\left|\Delta\left(P_{o}\right)\right|=\left|\Delta\left(P_{o}\right) \cap \Delta\left(P_{3}\right)\right|+\left|\Delta\left(P_{o}\right) \cap \Gamma\left(P_{3}\right)\right|+\mid \Delta\left(P_{o}\right) \cap$ $\mathbb{I}\left(P_{3}\right) \mid$ clearly $\left|\Delta\left(P_{0}\right) \cap \Delta\left(P_{3}\right)\right|=1$. Let's show that

$$
\begin{gather*}
\left|\Delta\left(P_{0}\right) \cap \Gamma\left(P_{3}\right)\right|=\left|\Delta\left(P_{3}\right) \cap \Gamma\left(P_{0}\right)\right|=2 \tag{19}\\
\left|\Delta\left(P_{1}\right) \cap \Gamma\left(P_{o}\right)\right|=2 \tag{20}
\end{gather*}
$$

PROOF of (19) and (20): By Lemma $1\left|\Delta\left(P_{0}\right) \cap \Gamma\left(P_{3}\right)\right|=\left|\Delta\left(P_{3}\right) \cap \Gamma\left(P_{o}\right)\right|$. For $\gamma_{o}^{\prime} \in G_{P_{0}}$

$$
\begin{equation*}
\underset{\mathrm{P}_{2}}{\gamma_{\mathrm{o}}} \in \mathrm{I}_{1}^{\gamma_{0}^{\prime}}, 1_{1}^{\gamma_{0}^{\prime}} \neq \mathrm{P}_{2}^{\gamma_{\mathrm{O}_{\mathrm{O}}}} \text { if and only if } \gamma_{0}^{\prime} \in \mathrm{G}_{\mathrm{P}_{0}, \mathrm{P}_{1}} \tag{21}
\end{equation*}
$$

for otherwise $P_{2}^{\gamma_{0}} \in 1_{1}^{\gamma_{0}^{\prime} G_{P_{0}}, P_{1}}{ }_{1} 1_{1} \notin 1_{1} \gamma_{0}^{\prime} G_{P_{0}}, P_{1},\left|1_{1} \gamma_{0}^{\prime} G_{P_{0}}, P_{1}\right|=n-2, P_{2} \epsilon$
 $\left(\left|P_{2}\right|-2\right)=2(n-1)$.

Further

$$
\begin{equation*}
{\overline{P_{P}}}_{2}^{\bar{\gamma}_{o}} \notin 1_{1} \cup P_{2}^{\gamma_{o}}{ }_{P_{2}} \text { for some } \bar{\gamma}_{0} \in G_{P_{0}}: \tag{22}
\end{equation*}
$$

otherwise, since $\mid P_{2}{ }^{G}{ }^{\mathrm{P}}$ o| $\geqslant 5$, every line of $1_{1}{ }^{G}{ }^{P}$ o would contain at least 3 points of $\mathrm{P}_{2}{ }^{G} \mathrm{P}$ and this would imply that a point of $\mathrm{P}_{2}{ }^{\mathrm{G}} \mathrm{P}_{\mathrm{O}}-\left(1_{1} \cup \mathrm{P}_{2}{ }^{\gamma_{0}}{ }_{P_{2}}\right)$ exists. By (21)
 $\left|\mathrm{P}_{2}^{\mathrm{G}}{ }^{\mathrm{P}} \mathrm{O}_{\mathrm{O}} 1_{3}\right|=\left|\Gamma\left(\mathrm{P}_{\mathrm{o}}\right) \cap \Delta\left(\mathrm{P}_{3}\right)\right|=2$. This proves (19).

Each of the $n-2$ lines of $1_{3}{ }^{G} P_{o}-\left\{P_{2} \gamma_{O_{P}}\right\}$ through $P_{2}^{\gamma_{0}}$ contains exactly one point of $\quad P_{2}^{G}{ }^{G}-\left\{P_{2}^{\gamma_{o}}\right\}$. Together with ${ }_{P_{2}}^{\gamma_{0}}, P_{2}$ this gives n points of $P_{2}{ }^{G}{ }^{\circ}$. It follows that exactly one point of $P_{2}{ }^{G} P_{0}-\left\{P_{2}^{\gamma_{o}}\right\}$ lies on 1_{1}. This proves (20).

By means of (19) we obtain $\left|\mathbb{I}\left(P_{3}\right) \cap \Delta\left(P_{o}\right)\right|=n-2$.
In $n+1=\left|\Gamma\left(P_{0}\right)\right|=\left|\Gamma\left(P_{0}\right) \cap \Delta\left(P_{3}\right)\right|+\left|\Gamma\left(P_{0}\right) \cap \Gamma\left(P_{3}\right)\right|+\left|\Gamma\left(P_{0}\right) \cap \Pi\left(P_{3}\right)\right|$
$\left|\Gamma\left(P_{0}\right) \cap \Delta\left(P_{3}\right)\right|=2$ by (19) and $\left|\Gamma\left(P_{0}\right) \cap T\left(P_{3}\right)\right|=\left|P_{2}{ }^{G}{ }_{o} \cap{ }_{P_{2}}{ }^{G}{ }_{3}\right|=\left|1_{2}{ }^{G} \circ \cap 1_{2}{ }^{G_{P}}{ }_{3}\right|$
$=1$. Hence $\left|\Pi\left(P_{3}\right) \cap \Gamma\left(P_{0}\right)\right|=n-2$. It follows that $\lambda^{\prime}=n^{2}-3 n+1$.

$$
\begin{aligned}
& \mu^{\prime}=\left|\Pi\left(P_{0}\right) \cap \Pi\left(P_{1}\right)\right|=\left|\pi\left(P_{1}\right)\right|-\left|\Pi\left(P_{1}\right) \cap \Delta\left(P_{0}\right)\right|-\left|\Pi\left(P_{1}\right) \cap \Gamma\left(P_{0}\right)\right| \text { where } \\
& \left|\Pi\left(P_{1}\right)\right|=(n+1)(n-2),\left|\Pi\left(P_{1}\right) \cap \Delta\left(P_{0}\right)\right|=n-2 \text { and }\left|\Pi\left(P_{1}\right) \cap \Gamma\left(P_{0}\right)\right|=\left|\Gamma\left(P_{0}\right)\right|- \\
& \left|\Gamma\left(P_{0}\right) \cap \Delta\left(P_{1}\right)\right|-\left|\Gamma_{G}\left(P_{0}\right) \cap \Gamma\left(P_{G}\right)\right| \cdot\left|\Gamma\left(P_{0}\right) \cap \Delta\left(P_{1}\right)\right|=2 \text { by (20) and }\left|\Gamma\left(P_{0}\right) \cap \Gamma\left(P_{1}\right)\right|= \\
& \left|P_{2}{ }^{G}{ }^{P} \cap{ }_{P}{ }_{2}{ }^{P_{1}}\right|=\left|1_{2}{ }^{G}{ }^{P} \cap \cap 1_{2}{ }_{P} P_{1}\right|=1 \text {. Hence }\left|\Pi\left(P_{1}\right) \cap \Gamma\left(P_{o}\right)\right|=n-2 \text { and } \mu^{\prime}=
\end{aligned}
$$

$(n-2)(n-1)$.

$$
\begin{aligned}
v^{\prime} & =\left|\Pi\left(P_{0}\right) \cap \Pi\left(P_{2}\right)\right|=\left|\Pi\left(P_{2}\right)\right|-\left|\Pi\left(P_{2}\right) \cap \Delta\left(P_{0}\right)\right|-\left|\Pi\left(P_{2}\right) \cap \Gamma\left(P_{0}\right)\right| \text { where } \\
\left|\Pi\left(P_{2}\right)\right| & =(n+1)(n-2)
\end{aligned}
$$

$$
\left|\Pi\left(P_{2}\right) \cap \Delta\left(P_{0}\right)\right|=\left|\Pi\left(P_{0}\right) \cap \Delta\left(P_{1}\right)\right| \text { by Lemma } 1
$$

$$
=\left|\Delta\left(P_{1}\right)\right|-\left|\Delta\left(P_{1}\right) \cap \Delta\left(P_{0}\right)\right|-\left|\Delta\left(P_{1}\right) \cap \Gamma\left(P_{0}\right)\right|
$$

$$
=(n+1)-1-2=n-2 \quad \text { by }(20)
$$

$\left|\Pi\left(P_{2}\right) \cap \Gamma\left(P_{0}\right)\right|=\left|\Pi\left(P_{0}\right) \cap \Gamma\left(P_{1}\right)\right| \quad$ by Lemma 1 $=\left|P_{3}{ }^{G_{0}} \cap \cap P_{0}^{G} P_{1}\right|=\left|\left\{1_{3}^{\gamma_{0}}: \gamma_{0} \in G_{G_{0}}, P_{1} \in 1_{3}^{\gamma_{0}}\right\}\right|=n-2$ since through any point on 1_{0} goes exactly one line of $1_{1} \mathcal{P}_{0}$ and one of $1_{2}{ }^{G} 0$. Hence $v^{\prime}=(n-2)(n-1)$.

It follows that $C^{2}=C^{t} C=(n+1)(n-2) I+(n-1)(n-2)(A+B)+$ $\left(n^{2}-3 n+1\right) C=(n+1)(n-2) I+\left(n^{2}-3 n+2\right)(A+B+C)-C$ and $C^{2}+C-$ $2(n-2) I=(n-1)(n-2) J$ whence $(C-(n+1)(n-2) I)\left(C^{2}+C-2(n-2) I\right)$ $=0$. The eigenvalues of C are $\lambda_{1}=(n+1)(n-2), \lambda_{2,3}=(-1 \pm \sqrt{8 n-15}) / 2$.

REMARK: Let $\Phi: G \rightarrow \mathrm{GL}_{\mathrm{V}}(\mathbb{C})$ be the matrix representation of G obtained by associating with each $\gamma \in G$ the corresponding permutation matrix $\Phi(\gamma)$ (the ordering of P is the same as used in constructing the matrices $A, B, C)$. By (2) $\Phi(\gamma)$ commutes with A, B, C for all $\gamma \in G$. Hence, by [9] Theorem $28.4,\{I, A, B, C\}$ is the basis of the commuting algebra $\mathbb{V}(\mathrm{G})$ of Φ. By [9] Theorem 29.5 $\mathrm{V}(\mathrm{G})$ is commutative and hence, by [9] Theorem 29.4, the representation Φ has 4 irreducible constituents $D_{1}=1, D_{2}, D_{3}, D_{4}$, each with multiplicity 1 . If f_{i} is the degree of D_{i} then $f_{1}=1$ and $\sum_{i=1}^{4} f_{i}=v$.

Let us finally show how the fact that A and C have trace O contradicts the integrality of the multiplicities of $\lambda_{1}, \lambda_{2}, \lambda_{3}$.

In the 3 cases λ_{1} appears with multiplicity 1 . Let f denote the multiplicity of λ_{2}; then $v-f-1$ is the multiplicity of λ_{3}. This leads to
$0=n(n-1)+f(3+\sqrt{8 n+1}) / 2+(n(n+1)-f)(3-\sqrt{8 n+1}) / 2$ in case I,
$0=(n+1)+f \sqrt{n}+(-\sqrt{n})(n(n+1)-f) \quad$ in case III,
$0=(n+1)(n-2)+f(-1+\sqrt{8 n-15}) / 2+(n(n+1)-f)(-1-\sqrt{8 n-15}) / 2$ in case II2.

In any case this contradicts the fact that $n \geqslant 2$ and $f \geqslant 1$ are integers:
In case II1 this is clear.
In case I suppose that a prime p divides $\sqrt{8 n+1}$. Then $p \nmid n$, hence $p \mid 5 n+1$ and then $p \mid 3 n$, i.e. $p=3$. This implies that $8 n+1=3^{2 i}$ for some $i \geqslant 2$ and that $n(5 n+1) / \sqrt{8 n+1}=\left(3^{2 i}-1\right)\left(5 \cdot 3^{2 i-1}+1\right) / 8^{2} \cdot 3^{i-1} \notin \mathbb{N}$.

In case II2 suppose that a prime p divides $\sqrt{8 n-15}$. Then $p \in\{17,23\}$ and $p^{2} \nmid n+1, p^{2} \nmid n-4$. Hence $8 n-15 \in\left\{17^{2}, 23^{2}, 17^{2} \cdot 23^{2}\right\}$, i.e. $n \in\{38,68$, 19112\}. Suppose that $n=38$. Since $G_{P_{0}}, P_{2}$ is transitive on $1_{2}-\left\{P_{o}, P_{1}, P_{2}^{\gamma_{o}}\right\}|G|$ is even. This contradicts the fact that if $n \equiv 2 \bmod 4$, then the full collineation group is of odd order (Hughes [5]).
Suppose that $n \in\{68,19112\}$. Then n is not a square and $n^{2}+n+1$ not a prime. Hence, since G is flag-transitive, n is a prime power (Higman and Mc Laugh1in [4]) which is absurd.

REFERENCES

1. Bachmann, O., On rank 3 projective designs, Mh. Math. 89 (1980), 175-183.
2. Dembowski, P., Finite Geometries, New York, Springer, 1968.
3. Higman, D.G., Finite permutation groups of rank 3, Math. Z. 86 (1964), 145156.
4. Higman, D.G. and J.E. Mc Laugh1in, Geometric ABA-groups, I11. J. Math. 5 (1961), 382-397.
5. Hughes, D.R., Generalized incidence matrices over group algebras, I11. J. Math. 1 (1957), 545-551.
6. Kallaher, M. J., On rank 3 projective planes, Pacif. J. Math. 39 (1971), 207214.
7. Kantor, W.M., Moore geometries and rank 3 groups having $\mu=1$, Quart. J. Math. Oxford (2) 28 (1977), 309-328.
8. Kantor, W.M., Automorphism groups of designs, Math. Z. 109 (1969), 246-252.
9. Wielandt, H., Finite permutation groups, New York, Academic Press, 1964.
