ON RANK 4 PROJECTIVE PLANES

O. BACHMANN

Département de mathématiques Ecole polytechnique fédérale CH-1007 Lausanne, Suisse

(Received October 4, 1979)

<u>ABSTRACT</u>. Let a finite projective plane be called rank m plane if it admits a collineation group G of rank m, let it be called strong rank m plane if moreover $G_p = G_1$ for some point-line pair (P,1). It is well known that every rank 2 plane is desarguesian (Theorem of Ostrom and Wagner). It is conjectured that the only rank 3 plane is the plane of order 2. By [1] and [7] the only strong rank 3 plane is the plane of order 2. In this paper it is proved that no strong rank 4 plane exists.

KEY WORDS AND PHRASES. Projective planes, rank 4 groups. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODE: 50 Geometry.

1. INTRODUCTION.

In [6] Kallaher gives restrictions for the order n of a finite rank 3 pro-

jective plane and conjectures that no such plane exists if $n \neq 2$. Let a finite projective plane be called a strong rank m projective plane if it admits a rank m collineation group G such that $G_p = G_1$ for some point-line pair (P,1). By Bachmann [1] and Kantor [7] no strong rank 3 projective plane of order $n \neq 2$ exists. If the conjecture is true that for projective designs the representations on the points and on the blocks of an arbitrary transitive collineation group are similar (see Dembowski [2], p. 78), then every rank m projective plane is a strong rank m plane.

We shall prove in this article the following

THEOREM: No strong rank 4 projective plane exists.

To prove the Theorem we first divide the strong rank 4 planes into 3 classes (see Lemma 2 and 3). Then we associate with each such plane (0,1)-matrices A and C of trace 0 (see [3]). Finally we show that for each class the trace condition contradicts the integrality of the multiplicities of the eigenvalues of A or C.

We shall use the following notations, definitions and basic results (see Dembowski [2]):

A collineation group of a projective plane has equally many point orbits and line orbits. The rank of a transitive permutation group is the number of orbits of the stabilizer of one of the permuted elements. If G is a (point or line) transitive collineation group of a projective plane, then the point and line ranks are equal (Kantor [8]). A rank m projective plane is a projective plane which admits a transitive collineation group whose (point or line) rank is m ($m \ge 2$). The lines (points) are identified with the set of points (lines) on them. We write $P \in 1^G$ if and only if $P \in 1^Y$ for all $\gamma \in G$.

306

2. PROOF OF THE THEOREM.

Let $\mathbb{P} = (P, L, \epsilon)$ be a projective plane of finite order n and let G be a rank 4 collineation group of \mathbb{P} such that $G_{P_o} = G_{1_o}$ for some point-line pair $(P_o, 1_o)$. It is easily seen that $n \ge 3$. A bijective map $\sigma : P \longrightarrow L$ is defined by $P^{\sigma} = 1$ if and only if $P = P_o^{\gamma}$ and $1 = 1_o^{\gamma}$ for some $\gamma \in G$. If $i \in \mathbb{N}$ we write 1_i for P_i^{σ} . Clearly $P_o^{\sigma} = 1_o$ and $q_{\gamma} = \gamma q_o^{-1} \gamma = \gamma q^{-1}$

$$P^{\sigma\gamma} = P^{\gamma\sigma}$$
, $1^{\sigma^{-1}\gamma} = 1^{\gamma\sigma^{-1}}$ for all $P \in \mathbf{P}$, $1 \in L$, $\gamma \in G$. (1)

For $P \in \mathcal{P}$ G_P has exactly 4 orbits {P}, $\Delta(P)$, $\Gamma(P)$, $\Pi(P)$. We choose the notation in such a way that

$$(\Delta(P))^{\Upsilon} = \Delta(P^{\Upsilon}), \quad (\Gamma(P))^{\Upsilon} = \Gamma(P^{\Upsilon}), \quad (\Pi(P))^{\Upsilon} = \Pi(P^{\Upsilon}) \quad \text{for all } P \in \mathcal{P}, Y \in G(2)$$

$$\text{LEMMA 2.1: If } \Lambda_{1}, \Lambda_{2}, \Lambda_{3} \in \{\Delta, \Gamma, \Pi\}, \text{ then } |\Lambda_{1}(A) \cap \Lambda_{2}(B)| = |\Lambda_{1}(A') \cap \Lambda_{2}(B')| \quad \text{if } A \in \Lambda_{3}(B) \text{ and } A' \in \Lambda_{3}(B').$$

$$\text{PROOF: If } A \in \Lambda_{3}(B), A' \in \Lambda_{3}(B'), \text{ then for some } Y \in G, \quad Y_{o} \in G_{B}$$

$$B' = B^{\Upsilon} = B^{\Upsilon_{o}Y}, \quad A' = A^{\Upsilon_{o}Y}, \text{ whence by } (2)$$

$$|\Lambda_{1}(A') \cap \Lambda_{2}(B')| = |\Lambda_{1}(A)^{\Upsilon_{o}} \cap \Lambda_{2}(B)^{\Upsilon_{o}Y}| = |(\Lambda_{1}(A) \cap \Lambda_{2}(B))^{\Upsilon_{o}Y}| = |\Lambda_{1}(A) \cap \Lambda_{2}(B)|.$$

LEMMA 2.2: Suppose that $P_0 \in I_0$. Then $I_0 - \{P_0\}$ and $P_0 - \{I_0\}$ are G_{P_0} orbits, say $\Delta(P_0) = I_0 - \{P_0\}$ and $I_2^{P_0} = P_0 - \{I_0\}$ with $P_2^{P_0} = \Gamma(P_0)$. $P_1 \in \Delta(P_0)$ and $P_3 \in \Pi(P_0)$ can be chosen such that $P_1 \in I_0$; P_0 , P_2 , $P_3 \in I_2$; $P_2 \in I_1$; $P_1 \notin I_3$ (Fig. 1).

The case described by Lemma 2 will be called case I.

PROOF: If $1_o - \{P_o\}$ is not a G_{P_o} - orbit, then it is the union of 2 orbits, say $1_o - \{P_o\} = \Delta(P_o) \cup \Gamma(P_o)$. Then $P_o - \{1_o\}$ is a line orbit $1 = P_o^{\sigma}$ and $\pi(P_o) = G_{P_o}^{\sigma}$ with $1 = P_o^{\sigma}$. This leads to the contradiction

$$G_{\mathbf{P}_{o},\mathbf{P}_{1}} = G_{\mathbf{P}_{o},\mathbf{P}_{2}}$$
(3)

Further

$$P_2 \notin I_1^{\gamma_o}$$
 for some $\gamma_o \in G_{P_o}$, (4)

for otherwise $P_2^{\gamma_0'} \in I_1^{\gamma_0''}$ for all $\gamma_0', \gamma_0'' \in G_{P_0}$ which cannot occur.

$$P_2^{I_0} \in I_1$$
 for some $Y_0 \in G_{P_0}$ if and only if $Y_0 \in G_{P_2}$. (5)

To prove (5) note that by (4) through any point of $1_2 - \{P_o\}$ goes at least one and hence exactly one line of $1_1^{G_P}$ (3) and $P_2 \in 1_1$ then imply (5).

Let's apply (5) to
$$G_{P_1}$$
 in place of G_{P_o} :
 $\Delta(P_1) = 1_1 - \{P_1\}; \Gamma(P_1) = \Gamma(P_o^{\gamma}) = (\Gamma(P_o))^{\gamma} = P_2^{-\sigma} = P_o^{-1} G_{P_o^{\gamma}} = P_o^{-1} G_{P_o^{\gamma}}$

where $Y \in G$ such that $P_o^Y = P_1$, $P_2^Y = P_o$; $I(P_1) = S^{G_{P_1}}$ for some $S \in 1_o - \{P_o, P_1\}$; hence $P_o^{Y_1} \in 1_2$ for some $Y_1 \in G_{P_1}$ if and only if $Y_1 \in G_{P_o}$. It follows that $R \notin P_o^{P_1}$ for eny $R \in 1_2 - \{P_o, P_2\}$. Let $r = R^{\sigma}$ for some such R. Of the 3 orbits $(P_o, 1_1)^G$, $(P_o, 1_2)^G$, $(P_o, r)^G$ induced by G on $P \times L - (P_o, 1_o)^G$ only one consists of flags. Thus $(P_1, 1_o)$ and (P_1, r) and then also $(P_o, 1_1)$ and $(R, 1_1)$ belong to the same G-orbit. This contradicts $R \notin P_o^{G_1}$. Hence there exists $P_3 \in I(P_o) \land 1_2$ such that $P_1 \notin 1_3$.

LEMMA 2.3: Suppose that $P_o \notin 1_o$. Then 1_o and dually P_o are G_{P_o} -orbits, say $\Delta(P_o) = 1_o$. $P_1 \in \Delta(P_o)$, $P_2 \in \Gamma(P_o)$, $P_3 \in \Pi(P_o)$ can be chosen such that either P_o , P_2 , $P_3 \in 1_1$; $P_1 \in 1_2$, 1_3 ; $P_2 \notin 1_3$; $P_3 \notin 1_2$ or P_o , P_1 , $P_3 \in 1_2$; $P_1 \in 1_o$; $\Gamma(P_o) \land 1_2 = \{P_2^{\gamma_o}\}$ for some $\gamma_o \in G_{P_o}$; $P_2^{\gamma_o} \in 1_1$; P_1 , P_2 , $P_3 \notin 1_1$, 1_3 . In both cases $n \ge 4$.

The 2 cases described by Lemma 3 will be called case II1 resp. case II2 (Fig. 2).

PROOF: It is easily seen that l_o and P_o are G_{P_o} - orbits; say $\Delta(P_o) = l_o$. Let $P_1 \in \Delta(P_o)$. We have to distinguish 2 cases: Case III: $P_o \in l_1$ Case II2: $P_o \notin l_1$. $= P_2^{G_{P_o}}$, $\pi(P_o) = P_3^{G_{P_o}}$ for some

Case II2: $P_0 \notin I_1$. CASE III: Clearly $P_0 = I_1^{G_{P_0}}$ and $\Gamma(P_0) = P_2^{G_{P_0}}$, $\Pi(P_0) = P_3^{G_{P_0}}$ for some $P_2, P_3 \in I_1 - \{P_0, I_0 \cap I_1\}$. If $P_2 \in I_3$ then $(P_2, I_3) \in (P_0, I_1)^G$, hence $(P_3, I_2) \in (P_1, I_0)^G$, so $P_3 \in I_2$.

Analogously $P_2 \in I_3$ if $P_3 \in I_2$. Thus

 $P_2 \in I_3$ if and only if $P_3 \in I_2$. (6)

Similarly one proves

$$P_1 \in I_2, I_3.$$
 (7)

If n > 3 then, by (6), we can choose P_2 , P_3 such that $P_2 \notin 1_3$, $P_3 \notin 1_2$. Let's show that n > 3 (Fig. 3). Suppose that n = 3. Put $P_4 = 1_0 \cap 1_1$.

\ Figure 3

Then, since $P_o \in 1_1$ and $P_1 \in 1_o$, $1_4 = P_o P_1$. Let $P_5 \in 1_o - \{P_1, P_4\}$. Then $P_o \in 1_5$ and then $1_5 \land 1_2 =$ $(P_o P_5 \land 1_3)P_4 \land 1_2$. Denote this point by T. Clearly $P_2 P_5 \land 1_2 =$ T. Since $(P_2 P_5)^{\circ -1} \in 1_2 \land 1_5$ we obtain the contradiction $(P_2 P_5)^{\circ -1} \in P_2 P_5$. CASE II2: We may assume that P_0 , P_1 , $P_3 \in I_2$ where $P_2 \in \Gamma(P_0)$. Then $G_{P_0}, P_1 = G_{P_0}, P_2$. We first assume that n > 3. $|P_2^{\circ}| = |I_2^{\circ}| = n+1$, hence $|I_2 \cap \Gamma(P_0)| = 1$; let $I_2 \cap \Gamma(P_0) = \{P_2^{\gamma_0}\}$ with some $\gamma_0 \in G_{P_0}$. Then P_3° , $P_1 = I_2 = \{P_0, P_1, P_2^{\circ}\}$ and hence, since $P_2^{\gamma_0}$ is invariant under G_{P_0}, P_1 and since n > 3, $I_1 \cap I_2 = P_2^{\gamma_0}$.

The only G-orbit of $P_{x,L}$ consisting of flags is $(P_0, 1_2)^G$. Hence $(P_1, 1_2)$, $(P_3, 1_2)$, $(P_1, 1_0) \in (P_0, 1_2)^G$. $P_0 \notin 1_1$ then implies that $(P_2, 1_1)$, $(P_2, 1_3)$, $(P_0, 1_1)$, $(P_2, 1_0) \notin (P_0, 1_2)^G$, in particular $P_2 \notin 1_0$, 1_1 , 1_3 .

If $P_1 \in I_3$ then $(P_1, I_3) \in (P_0, I_2)^G$ and hence $(P_3, I_1) \in (P_2, I_0)^G$. Since also $(P_0, I_1) \in (P_2, I_0)^G$ we have $P_0^{\gamma_1} = P_3$ for some $\gamma_1 \in G_{I_1} = G_{P_1}$. This implies that G_{P_1} is transitive on $I_2 - \{P_1, P_2^{\gamma_0}\}$ which is impossible. Hence $P_1 \notin I_3$.

If n=3 then $l_2 = \{P_0, P_1, P_2^{\gamma_0}, P_3\}$. γ_0 is of order 4, for if $\gamma_0^2 = 1$ then $(P_2, l_2^{\gamma_0}) \in (P_2^{\gamma_0}, l_2)$ which is impossible. Moreover $P_2^{\gamma_0^2} \neq P_2$ since otherwisw $\gamma_0^2 \in G_{P_0}, P_2 = 1$. It follows that $|(P_2P_2^{\gamma_0^2})^{G_2}P_0| = 4$ which contradicts $(P_2P_2^{\gamma_0^2})^{\sigma_0} = \{P_2P_2^{\gamma_0^2}, P_2^{\gamma_0}P_2^{\gamma_0^3}\}$. This completes the proof of the Lemma.

Let us now associate with (G,P) 3 (0,1)-matrices.

If $\rho(P)$ is a G-orbit then let $\rho'(P)$ denote the paired orbit (see Wielandt [9]). If $Q \in \rho(P)$ then $Q = P^{\gamma}$ for some $\gamma \in G$ and $Q^{\gamma} \in (\rho(P))^{\gamma} = \rho(P^{\gamma}) = \rho(Q)$. Hence $Q = P \in \rho'(Q)$, i.e.

$$Q \in \rho(P)$$
 implies that $P \in \rho'(Q)$. (8)

This implies that in

Case I:	Case II1:	Case II2:
$\Delta^{*}(P) = \Gamma(P)$	$\Delta^{*}(\mathbf{P}) = \Delta(\mathbf{P})$	$\Delta'(\mathbf{P}) = \Gamma(\mathbf{P})$
$\Gamma'(P) = \Delta(P)$	$\Gamma'(P) = \Pi(P)$ resp. $\Gamma(P)$	$\Gamma^{\bullet}(\mathbf{P}) = \Delta(\mathbf{P})$
$\Pi^{*}(\mathbf{P}) = \Pi(\mathbf{P})$	$\Pi'(P) = \Gamma(P) \text{ resp. } \Pi(P)$	$\Pi^{*}(\mathbf{P}) = \Pi(\mathbf{P}).$

Now let $P = \{P_1, P_2, \dots, P_v\}, L = \{l_1, l_2, \dots, l_v\}, l_k = P_k^{\sigma}$ (k = 1, 2, ..., v). Let A be the (0,1)-matrix with rows enumerated by the points P_k and columns by $\Delta(P_k)$ and such that $(P_k, \Delta(P_i)) = 1$ if and only if $P_k \in \Delta(P_i)$. Let B, C be the analogous matrices with $\Gamma(P_k)$ resp. $\mathbb{I}(P_k)$ in place of $\Delta(P_k)$.

We have in

case I:

$$A^{t} = B, C^{t} = C$$
 $A^{t} = A, B^{t} = C$
 $A^{t} = A, B^{t} = C$
 $A^{t} = A, B^{t} = B, C^{t} = C$
 $A^{t} = A, B^{t} = B, C^{t} = C$
 $A^{t} = A, B^{t} = B, C^{t} = C$
 $A^{t} = A, B^{t} = B, C^{t} = C$
 $A^{t} = A, B^{t} = B, C^{t} = C$

Let $k = |\Delta(P)|$, 1 = |T(P)|, $m = |\Pi(P)|$,

$$\begin{split} |\Delta(\mathbf{P}) \cap \Delta(\mathbf{Q})| &= \begin{cases} \lambda \\ \mu \\ \nu \end{cases} & \text{if } \mathbf{Q} \in \begin{cases} \Delta(\mathbf{P}) \\ \Gamma(\mathbf{P}) \\ \Pi(\mathbf{P}) \end{cases} \\ |\Pi(\mathbf{P}) \cap \Pi(\mathbf{Q})| &= \begin{cases} \lambda^{\dagger} \\ \mu^{\dagger} \\ \nu^{\dagger} \end{cases} & \text{if } \mathbf{Q} \in \begin{cases} \Pi(\mathbf{P}) \\ \Delta(\mathbf{P}) \\ \Gamma(\mathbf{P}) \end{cases} \end{split}$$

A straightforward calculation shows that

I + A + B + C = J, the vxv-matrix with 1's in every entry $A^{t} A = k I + \lambda A + \mu B + \nu C$ $C^{t} C = m I + \mu'A + \nu'B + \lambda'C$

Now we determine the eigenvalues of A in case II1 and of C in the cases I and II2.

CASE III:

$$k = n + 1$$

$$l = n_{2}(n + 1) \quad \text{where} \quad n_{2} = |P_{2}^{G_{P_{0}},P_{1}}|$$

$$m = n_{3}(n + 1) \quad \text{where} \quad n_{3} = |P_{3}^{G_{P_{0}},P_{1}}|$$

$$k + 1 + m + 1 = v = n^{2} + n + 1, n_{2} + n_{3} = n - 1, \lambda = \mu = v = 1.$$
It follows that $A^{2} = A^{t}A = (n + 1) I + A + B + C = n I + J$; hence
$$(A - (n + 1) I) (A^{2} - n I) = 0. \text{ This gives the eigenvalues of } A:$$

$$\lambda_{1} = n + 1, \quad \lambda_{2,3} = \pm \sqrt{n}.$$
CASE I:
$$k = 1 = n, m = n (n - 1), k + 1 + m + 1 = v = n^{2} + n + 1.$$
We have
$$\lambda' = |\pi(P_{0}) \cap \pi(P_{3})|$$

$$\mu' = |\pi(P_{0}) \cap \pi(P_{2})|.$$

Let's calculate λ ':

$$n(n-1) = |\Pi(P_3)| = |\Pi(P_3) \cap \Delta(P_0)| + |\Pi(P_3) \cap \Gamma(P_0)| + |\Pi(P_3) \cap \Pi(P_0)| + 1 \quad (9)$$

(note that $\Gamma(P_3) = P_2^{G_P}$ and hence $P_0 \in \Pi(P_3)$).

$$n = |\Delta(P_0)| = |\Delta(P_0) \cap \Delta(P_3)| + |\Delta(P_0) \cap T(P_3)| + |\Delta(P_0) \cap T(P_3)|.$$
 (10)

Clearly

$$|\Delta(P_0) \cap \Delta(P_3)| = 1$$
(11)

$$|\Delta(\mathbf{P}_{o}) \cap \Gamma(\mathbf{P}_{3})| = |\Delta(\mathbf{P}_{3}) \cap \Gamma(\mathbf{P}_{o})| = 2.$$
(12)

PROOF of (12): $P_{o} \in \mathbb{H}(P_{3})$ and $P_{3} \in \Pi(P_{0})$, hence, by Lemma 1, $|\Delta(P_{0}) \cap \Gamma(P_{3})|$ = $|\Delta(P_{3}) \cap \Gamma(P_{0})| \cdot P_{2} \notin 1_{1}^{\gamma_{0}}$ for some $\gamma_{o} \in G_{p}$. Thus $|P_{3}^{O} \circ^{P_{2}}| = n - 1$ implies that $|1_{1}^{\gamma_{0}G_{p}} \circ^{P_{2}}| \ge n - 1$. Hence $|1_{1}^{\gamma_{0}G_{p}} \circ^{P_{2}}| = n - 1$. Since $P_{1} \notin P_{1}^{\gamma_{0}G_{p}} \circ^{P_{2}}$ we then have $P_{1}^{\gamma_{0}} \circ^{P_{2}} = P_{1}$, i.e. $G_{P_{0}}, P_{2} \in G_{P_{0}}, P_{1}$. Since both groups are conjugate (see the proof of Lemma 2) this gives $G_{P_{0}}, P_{1} = G_{P_{0}}, P_{2}$. $\gamma'_{0} \gamma''_{0} \gamma'''_{0} \gamma''_{0} \gamma''_{0} \gamma'''_{0} \gamma''_{0} \gamma''_{0} \gamma''_{0} \gamma''_{0} \gamma$

Equations (10), (11), (12) imply

$$|\Pi(\mathbf{P}_3) \cap \Delta(\mathbf{P}_0)| = n - 3.$$
⁽¹³⁾

To determine $|\Pi(P_3) \cap T(P_0)|$ we use

$$\mathbf{n} = |\mathbf{\Gamma}(\mathbf{P}_{o})| = |\mathbf{\Gamma}(\mathbf{P}_{o}) \cap \Delta(\mathbf{P}_{3})| + |\mathbf{\Gamma}(\mathbf{P}_{o}) \cap \mathbf{T}(\mathbf{P}_{3})| + |\mathbf{\Gamma}(\mathbf{P}_{o}) \cap \mathbf{T}(\mathbf{P}_{3})|.$$
(14)

By (12) $|\Gamma(P_0) \cap \Delta(P_3)| = 2$. Since $\Gamma(P_3) = P_2^{G_P} 3$, $|\Gamma(P_0) \cap \Gamma(P_3)| = \begin{pmatrix} G_P & G_P & G_P \\ G_P & G_P & G_P & G_P \\ P_2^{P_0} \cap P_2^{P_3} 3 | = |1_2^{P_0} \cap 1_2^{P_3} | = 1$. It follows that

$$\left| \mathbb{T}(\mathbb{P}_{3}) \cap \mathbb{F}(\mathbb{P}_{0}) \right| = n - 3.$$
(15)

Equations (9), (13) and (15) imply that

$$\lambda' = n^2 - 3n + 5.$$
 (16)

Analogously we calculate μ' and ν' :

$$\begin{split} \mathbf{n}(\mathbf{n}-1) &= \left| \, \mathbb{I}(\mathbf{P}_1) \right|^{\prime} = \left| \, \mathbb{I}(\mathbf{P}_1) \cap \, \Delta(\mathbf{P}_0) \right|^{\prime} + \left| \, \mathbb{I}(\mathbf{P}_1) \cap \, \Gamma(\mathbf{P}_0) \right|^{\prime} + \left| \, \mathbb{I}(\mathbf{P}_1) \cap \, \mathbb{I}(\mathbf{P}_0) \right|^{\prime} \\ \text{with} \left| \, \mathbb{I}(\mathbf{P}_1) \cap \, \Delta(\mathbf{P}_0) \right|^{\prime} = \mathbf{n} - 1. \end{split}$$

$$In \quad n = |\Gamma(P_o)| = |\Gamma(P_o) \cap \Delta(P_1)| + |\Gamma(P_o) \cap \Gamma(P_1)| + |\Gamma(P_o) \cap \Pi(P_1)|$$

$$\begin{split} |\Gamma(P_{0}) \cap \Delta(P_{1})| &= 1 \quad \text{by the proof of (12) and } |\Gamma(P_{0}) \cap \Gamma(P_{1})| &= |P_{2}^{G_{p}} \cap P_{0}^{G_{p}} 1| = \\ |1_{2}^{G_{p}} \cap 1_{0}^{G_{p}} 1| &= 0. \text{ Hence } |\Pi(P_{1}) \cap \Gamma(P_{0})| &= n - 1 \text{ and thus} \\ \mu' &= (n - 1)(n - 2). \end{split}$$
(17)
$$n(n - 1) &= |\Pi(P_{2})| &= |\Pi(P_{2}) \cap \Delta(P_{0})| + |\Pi(P_{2}) \cap \Gamma(P_{0})| + |\Pi(P_{2}) \cap \Pi(P_{0})|. \\ \text{In } n &= |\Delta(P_{0})| &= |\Delta(P_{0}) \cap \Delta(P_{2})| + |\Delta(P_{0}) \cap \Gamma(P_{2})| + |\Delta(P_{0}) \cap \Pi(P_{2})| \\ |\Delta(P_{0}) \cap \Delta(P_{2})| &= 0 \text{ and } |\Delta(P_{0}) \cap \Gamma(P_{2})| &= |P_{1}^{G_{p}} \cap P_{1}^{G_{p}} 2| &= |I_{1}^{G_{p}} \cap I_{1}^{G_{p}} 2| = 1 \\ (\text{note that } |I_{1}^{G_{p}} 2| &= |P_{1}^{G_{p}} 2| = n \text{ and hence } \Gamma(P_{2}) &= P_{1}^{G_{p}} 2). \text{ Hence } |\Pi(P_{2}) \cap \Delta(P_{0})| \end{split}$$

Further
$$|\mathbb{I}(\mathbb{P}_2) \cap \mathbb{T}(\mathbb{P}_0)| = |\mathbb{T}(\mathbb{P}_0)| - |\mathbb{T}(\mathbb{P}_0) \cap \Delta(\mathbb{P}_2)| - |\mathbb{T}(\mathbb{P}_0) \cap \Gamma(\mathbb{P}_2)| - 1$$

where $|\mathbb{T}(\mathbb{P}_0)| = n$, $|\mathbb{T}(\mathbb{P}_0) \cap \Delta(\mathbb{P}_2)| = 0$ and $|\mathbb{T}(\mathbb{P}_0) \cap \Gamma(\mathbb{P}_2)| = |\mathbb{P}_2^{\circ} \circ \cap \mathbb{P}_1^{\circ} = |\mathbb{P}_2^{\circ} \cap \mathbb{P}_1^{\circ} = |\mathbb{P}_2^{\circ} \circ \cap |\mathbb{P}_2^{\circ} \cap = |\mathbb{P}_2$

v' = (n - 1)(n - 2). (18)

Equations (16), (17) and (18) imply that $C^2 = C^{t}C = n(n-1) I + (n-1)(n-2)(A + B) + (n^2 - 3n + 5) C = n(n-1) I + (n-1)(n-2)(J - I) + 3C$ and then $(C - n(n-1) I)(C^2 - 3C - 2(n-1) I) = 0$.

The eigenvalues of C are $\lambda_1 = n(n-1); \lambda_{2,3} = (3 \pm \sqrt{8n+1})/2.$

CASE II2: k = 1 = n + 1, m = (n - 2)(n + 1), $k + 1 + m + 1 = v = n^2 + n + 1$. By the proof of Lemma 3 $n \ge 4$. Let's determine λ' , μ' , ν' :

 $(n + 1)(n - 2) = |\mathbf{T}(P_3)| = |\mathbf{T}(P_3) \cap \Delta(P_0)| + |\mathbf{T}(P_3) \cap \Gamma(P_0)| + |\mathbf{T}(P_3) \cap \mathbf{T}(P_0)| + |\mathbf{T}(P_3) \cap \mathbf{T}(P_0)| + |\mathbf{T}(P_3)| + |\Delta(P_0) \cap \mathbf{T}(P_3)| + |\Delta(P_0) \cap \mathbf{T}($

$$|\Delta(\mathbf{P}_{o}) \cap T(\mathbf{P}_{3})| = |\Delta(\mathbf{P}_{3}) \cap T(\mathbf{P}_{o})| = 2$$
⁽¹⁹⁾

$$\left| \Delta(\mathbf{P}_{1}) \cap \Gamma(\mathbf{P}_{0}) \right| = 2.$$
⁽²⁰⁾

PROOF of (19) and (20): By Lemma 1
$$|\Delta(P_0) \cap \Gamma(P_3)| = |\Delta(P_3) \cap \Gamma(P_0)|$$
.
For $\gamma'_0 \in G_{P_0}$
 $P_2^{\gamma_0} \in I_1^{\gamma_0}$, $\gamma'_0 \neq P_2^{\gamma_0} P_2$ if and only if $\gamma'_0 \in G_{P_0}, P_1$, (21)
for otherwise $P_2^{\gamma_0} \in I_1^{\gamma'_0 \circ G_{P_0}}, P_1, I_1 \notin I_1^{\gamma'_0 \circ G_{P_0}}, P_1, |I_1^{\gamma'_0 \circ G_{P_0}}, P_1| = n - 2, P_2 \in [1, 1], P_1^{\gamma'_0}, P_1^{\gamma'_0}, P_1^{\gamma'_0}, P_1^{\gamma'_0}, P_1^{\gamma'_0}]$, which leads to the contradiction $n + 1 = |I_1^{\circ}P_0| \ge (|P_2^{\gamma_0}| - 2) + (|P_2| - 2) = 2(n - 1).$

Further

$$\begin{array}{c} \gamma_{o} \\ \gamma_{2} \\ \gamma_{2} \\ \gamma_{1} \\ \psi \\ \gamma_{2} \\ \gamma_{2} \\ \gamma_{0} \\ \gamma_{0} \\ \varphi \\ \gamma_{0} \\ \gamma_{0} \\ \varphi \\ \gamma_$$

otherwise, since $|P_2^{G_p} \circ| \ge 5$, every line of $1_1^{G_p} \circ$ would contain at least 3 points of $P_2^{G_p} \circ$ and this would imply that a point of $P_2^{G_p} \circ - (1_1 \cup P_2^{O_p} P_2)$ exists. By (21) and (22) P_2^{γ} , $P_2^{\gamma} \in 1_3^{\gamma}$, $P_2^{\gamma} \neq P_2^{\gamma}$ for some $\gamma_{\circ}^{*} \in G_p$. Since $|1_3^{\gamma} \circ P_1| = n - 2$, $|P_2^{P_p} \circ \cap 1_3| = |T(P_0) \cap \Delta(P_3)| = 2$. This proves (19).

Each of the n - 2 lines of $1_3^{G_P} \circ - \{P_2^{\gamma} \circ_P_2\}$ through $P_2^{\gamma} \circ$ contains exactly one point of $P_2^{G_P} \circ - \{P_2^{\gamma}\}$. Together with $P_2^{\gamma} \circ_P_2$ this gives n points of $P_2^{G_P} \circ_P_2$. It follows that exactly one point of $P_2^{G_P} \circ - \{P_2^{\gamma}\}$ lies on 1_1 . This proves (20).

By means of (19) we obtain $|\mathcal{I}(P_3) \cap \Delta(P_0)| = n - 2$.

In $n + 1 = |T(P_o)| = |T(P_o) \land \land (P_3)| + |T(P_o) \land T(P_3)| + |T(P_o) \land \Pi(P_3)|$ $|T(P_o) \land \land (P_3)| = 2$ by (19) and $|T(P_o) \land T(P_3)| = |P_2^{\circ} \circ \land P_2^{\circ} 3| = |1_2^{\circ} \circ \land 1_2^{\circ} 3|$ = 1. Hence $|\Pi(P_3) \land T(P_o)| = n - 2$. It follows that $\lambda' = n^2 - 3n + 1$.

$$\mu' = |\Pi(P_0) \cap \Pi(P_1)| = |\Pi(P_1)| - |\Pi(P_1) \cap \Delta(P_0)| - |\Pi(P_1) \cap \Gamma(P_0)| \text{ where}$$

$$|\Pi(P_1)| = (n + 1)(n - 2), |\Pi(P_1) \cap \Delta(P_0)| = n - 2 \text{ and } |\Pi(P_1) \cap \Gamma(P_0)| = |\Gamma(P_0)| - |\Gamma(P_0) \cap \Delta(P_1)| - |\Gamma(P_0) \cap \Gamma(P_1)| + |\Gamma(P_0) \cap \Delta(P_1)| = 2 \text{ by } (20) \text{ and } |\Gamma(P_0) \cap \Gamma(P_1)| = |P_2 \cap P_2 \cap P_$$

$$(n - 2) (n - 1).$$

$$v' = |\Pi(P_0) \cap \Pi(P_2)| = |\Pi(P_2)| - |\Pi(P_2) \cap \Delta(P_0)| - |\Pi(P_2) \cap \Gamma(P_0)| \text{ where }$$

$$|\Pi(P_2)| = (n + 1) (n - 2),$$

$$|\Pi(P_2) \cap \Delta(P_0)| = |\Pi(P_0) \cap \Delta(P_1)| \text{ by Lemma } 1$$

$$= |\Delta(P_1)| - |\Delta(P_1) \cap \Delta(P_0)| - |\Delta(P_1) \cap \Gamma(P_0)|$$

$$= (n + 1) - 1 - 2 = n - 2 \text{ by } (20),$$

$$|\Pi(P_2) \cap \Gamma(P_0)| = |\Pi(P_0) \cap \Gamma(P_1)| \text{ by Lemma } 1$$

$$= |P_3^{G_p} \cap P_0^{G_p} 1| = |\{1_3^{\gamma_0}: \gamma_0 \in \frac{G_p}{G_p}, P_1 \in \frac{\gamma_0}{3}\}| = n - 2 \text{ since }$$

through any point on 1_o goes exactly one line of 1_1^{Po} and one of 1_2^{Po} . Hence v' = (n - 2)(n - 1).

It follows that $C^2 = C^{t}C = (n + 1)(n - 2) I + (n - 1)(n - 2)(A + B) + (n^2 - 3n + 1) C = (n + 1)(n - 2) I + (n^2 - 3n + 2)(A + B + C) - C and C^2 + C - 2(n - 2) I = (n - 1)(n - 2) J$ whence $(C - (n + 1)(n - 2) I)(C^2 + C - 2(n - 2) I) = 0$. The eigenvalues of C are $\lambda_1 = (n + 1)(n - 2)$, $\lambda_{2,3} = (-1 \pm \sqrt{8n - 15})/2$.

REMARK: Let $\Phi: G \longrightarrow \operatorname{GL}_{V}(\mathbf{f})$ be the matrix representation of G obtained by associating with each YeG the corresponding permutation matrix $\Phi(\Upsilon)$ (the ordering of P is the same as used in constructing the matrices A, B, C). By (2) $\Phi(\Upsilon)$ commutes with A, B, C for all YeG. Hence, by [9] Theorem 28.4, {I, A, B, C} is the basis of the commuting algebra $\nabla(G)$ of Φ . By [9] Theorem 29.5 $\nabla(G)$ is commutative and hence, by [9] Theorem 29.4, the representation Φ has 4 irreducible constituents $D_1 = 1$, D_2 , D_3 , D_4 , each with multiplicity 1. If f_i is the degree of D_i then $f_1 = 1$ and $\frac{4}{12}f_i = v$.

Let us finally show how the fact that A and C have trace 0 contradicts the integrality of the multiplicities of λ_1 , λ_2 , λ_3 .

O. BACHMANN

In the 3 cases λ_1 appears with multiplicity 1. Let f denote the multiplicity of λ_2 ; then v - f - 1 is the multiplicity of λ_3 . This leads to 0 = n(n - 1) + f(3 + $\sqrt{8n + 1}$)/2 + (n(n + 1) - f)(3 - $\sqrt{8n + 1}$)/2 in case I, 0 = (n + 1) + f \sqrt{n} + (- \sqrt{n})(n(n + 1) - f) in case II1, 0 = (n + 1)(n - 2) + f(-1 + $\sqrt{8n - 15}$)/2 + (n(n + 1) - f)(-1 - $\sqrt{8n - 15}$)/2

in case II2.

In any case this contradicts the fact that $n \ge 2$ and $f \ge 1$ are integers: In case II1 this is clear.

In case I suppose that a prime p divides $\sqrt{8n + 1}$. Then $p \not/ n$, hence $p \mid 5n + 1$ and then $p \mid 3n$, i.e. p = 3. This implies that $8n + 1 = 3^{2i}$ for some $i \ge 2$ and that $n(5n + 1)/\sqrt{8n + 1} = (3^{2i} - 1)(5 \cdot 3^{2i-1} + 1)/8^2 \cdot 3^{i-1} \notin \mathbb{N}$.

In case II2 suppose that a prime p divides $\sqrt{8n - 15}$. Then $p \in \{17, 23\}$ and $p^2 \not/ n + 1$, $p^2 \not/ n - 4$. Hence $8n - 15 \in \{17^2, 23^2, 17^2 \cdot 23^2\}$, i.e. $n \in \{38, 68, 19112\}$. Suppose that n = 38. Since G_{P_0, P_2} is transitive on $1_2 - \{P_0, P_1, P_2^{\gamma_0}\}$ [G] is even. This contradicts the fact that if $n \equiv 2 \mod 4$, then the full collineation group is of odd order (Hughes [5]).

Suppose that $n \in \{68, 19112\}$. Then n is not a square and $n^2 + n + 1$ not a prime. Hence, since G is flag-transitive, n is a prime power (Higman and Mc Laughlin [4]) which is absurd.

REFERENCES

- 1. Bachmann, O., On rank 3 projective designs, Mh. Math. 89 (1980), 175-183.
- 2. Dembowski, P., Finite Geometries, New York, Springer, 1968.
- Higman, D.G., <u>Finite permutation groups of rank 3</u>, <u>Math. Z.</u> <u>86</u> (1964), 145-156.
- Higman, D.G. and J.E. Mc Laughlin, <u>Geometric ABA-groups</u>, <u>111. J. Math. 5</u> (1961), 382-397.

- 5. Hughes, D.R., <u>Generalized incidence matrices over group algebras</u>, <u>II1. J.</u> <u>Math.</u> <u>1</u> (1957), 545-551.
- Kallaher, M.J., <u>On rank 3 projective planes</u>, <u>Pacif. J. Math.</u> <u>39</u> (1971), 207-214.
- Kantor, W.M., Moore geometries and rank 3 groups having µ=1, Quart. J. Math. Oxford (2) 28 (1977), 309-328.
- 8. Kantor, W.M., Automorphism groups of designs, Math. Z. 109 (1969), 246-252.
- 9. Wielandt, H., Finite permutation groups, New York, Academic Press, 1964.