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ABSTRACT. Two limitation methods, A and B, are said to be consistent for a class

b of sequences, iff, every sequence belonging to b is limitable both by A and B and
that the A-limit equals the B-limit. Any two regular limitation methods are con-
sistent for the class-c of convergent sequences. However, this is not true in
general and in fact, corresponding to every bounded non-convergent sequence it is
possible to determine two T-matrices such that they limit the sequence to two
different values. In this paper, we establish the necessary and sufficient con-
ditions for the consistency of two limitation methods, for (N,pn) summable sequences.
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1. INTRODUCTION.

Let {sn} be a sequence of real or complex terms. Let A = (a ), ® x o

m n

be an infinite matrix over a real or complex field. Then the transform, given

by

o
Tm =n£1 2n nSn? (1.1)

if it exists for every m, is called the A-transform of the sequence {sn}. If

lim _ . 1lim - _
o> o Tm = s, {sn} is said to be A-limitable to s. Moreover if NSy~ S im

Lim T = s, the matrix A is said to be regular. In 1911, Toeplitz obtain-

plies m> o Im
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ed necessary and sufficient conditions for a regular matrix as follows:

A Matrix A = (am n) is regular, jff,

(1) Sgp g ‘amn' < M, an absolute constant; (1.2)
(ii) mlimw a .= 0, for every fixed n; (1.3)
(ii1) LA >lasm>e. (1.4)

Let T be a class of matrices satisfying the conditions (1.2) to (1.4). Any
matrix of the class T is called a Toeplitz matrix or simply a T-matrix. Thus, a
matrix A is regular if it belongs to the class T.

Let {pn}be a sequence of constants, real or complex, such that
P = (p0 +pp ot t pm) #0, foranym=20, 1, 2, ...... Then the limitation

method for which

Pon
, forn <m
Pn -
mn " (1.5)
0, forn>m

is called the Norlund method, or simply (N,pn) method. A (N,pn) method is regu-

lar, iff,
m
(1) len| = O(IPnI), for all m, (1.6)
=0
P
1lim m
(ii) msowo B 0. (1.7)
m
We use the following notations:
(1) p(x) = Ip x; (1.8)
1 _ n,
(ii) ﬁ—' = chx H (1.9)
. _ 2 ]
(iii) {p b €M, iff,p =1, p >0 and p_; < PP .05 (1.10)
1 ©
(iv) to =P_ z Pon So0 Po # 0; (1.11)
m n=o
(v) Throughout the paper, M is taken for an absolute constant

not necessarily the same at each occurence.
2. MAIN RESULTS.

Two limitation methods, A and B, are said to be consistent for a class b of
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sequences, 1ff, every sequence belonging to b is limitable both by A and B, and the
A-limit is equal to the B-limit. Thus, any two matrix methods, generated by the
matrices of the class T, are consistent for the class-c of convergent sequences.
However, this is not true in general, and in fact, corresponding to every bounded
non-convergent sequence it is always possible to determine two T-matrices such
that they limit the sequence to two different values (see Cooke [1], page 97).

A limitation method Q is said to include a limitation method P if every se-
quence limitable by P is limitable by Q and to the same limit. Sometimes we in-
dicate this by set theoretic inclusion as, P & Q, meaning thereby that space of
sequences limitable by Q includes that limitable by P.

Two limitation methods, determined by the matrices A = (am n) and B = (b_ )

mn

are said to be equivalent for a class b of sequences, iff, for every {sn} €b

lim 1, _
oo e ('I‘m - Tm) =0, (2.1)
where
© 1 o
T = X, a s and T = I. b s .
m n=1l mn n m n=l mn n

Hence two limitation methods A and B are consistent for a class b of sequences

iff,
) A and B are equivalent, for class b, (2.2)
(ii) A and B limit every sequence € b. (2.3)

Let b be the class of all sequences that are (N,pn) summable. To ensure condition
(2.2), we prove the following theorems in section 3.

THEOREM 1. Let (N,pn) be a regular N¥rlund method and let {pn} € M. The
necessary and sufficient conditions that any two limitation methods A and B,
determined respectively by the matrices (am n) and (bm n)’ are equivalent for all

such (N,pn) summable sequences are

1lim _ .
(1) moeo Ymn - 0, for all fixed n; (2.4)

. lim _ .
(11) mow I Ypn =0 (2.5)

(iii) < M, for every m, §2.6)

(-] (-]
kgo Pk ngk Yn n Sn-k

where
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(ay ) - by ) = Oy e
Condition (2.3) implies that (N,pn) € A and (N,pn)‘: B. In section 4, we
prove the following theorem:
THEOREM 2. Let (N,pn) be a regular Norlund method and let {pn}|€ M. Then

the limitation method A, determined by the matrix A = (a_ ), ®» x =, belonging

mn

to the class T, includes (N,pn), iff,
Sup ¢ p| §oa < < M (2.7)
m k=0 "k| nsk “mn n-k| — *

where c is as defined in (1.9).
We required the following lemma of Kaluza (see Hardy ['2 ], page 68) in proving
our theorem.

LEMMA. If p(x) = anxn is convergent for |x| < 1, and {pn},E M, and further

-1 2
p(x) =1+ c X + Cox+ il
then

Z’cnl < 2. If Ip, = =, then nzl 'cn' = 2.

3. PROOF OF THEOREM 1.

At the outset we observe that if (N,pn) is regular and P, > 0, for each n,

lim Pn+1

n > «
Pn

z pnxn is absolutely convergent for |xl < 1, as such the series

then in view of the regularity condition, = 1 and the series

* n
néo an 1 - %), (3.1)
is also so, for |x| < 1. But then the series (3.1) equals Epnxn , and accordingly
the series Epnxn is absolutely convergent for |x| < 1.
Now we lay down the proof.

(1If part): We have

1 0
tn = F; kgo Pok5k°

Then, for |x| < 1, we have

I tPx

-] n _
n=o nn = ngo (kgo pn—k sk) x = p(x) S(x).

Hence
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s(x) -1 _ ¥t pnxn

p(x) n=0o n
= ngo (lkg‘o t:kr“‘k"':n--k) x

Equating the coefficients of xn, from both sides, we have

n

Sa = kZo TkPkCn-k°

(3.2)
Now
n

n=o Ym n Sn = nzo Ym n kgo pktkcn-k

= % 5
~ k%o "%Pk nfk Ym n Sn-k
Let us put t =t +€k, where t = klimw k and {Ek} is a null sequence. Then
ngo Ym nSn " kgo k n= Y Cn-k + kgo (9k nzk Ym ncn-k)’ek
b T P + % ¢ ¥ €
t k%o Ym n k%o "kSn-k 7 kfo ( k ngk Ym n cn—k) k
=tk(é’oymn-'-kgo (Pkn= Ymn nk)e
Taking the limit as m + ® and making use of condition (2.5), we have
1im ¥ vy s = 1um ¥ (¢ ¥ v ) €,
mow PO mnn T ko k n=k mnnk
= lim ¥ 4 L€
o _)mm ko ‘m K "k, say,
where
dn k= P ol Ym n Sk
Hence the proof is completed if we show that
1im £ 4 = 0.
e S
But since {ek} + 0 as k + =, it is sufficient to show
1) 12(? Idm k| <M, for every m; (3.3)
(11) ml:_i;mm dm k= 0, for every fixed k. (3.4)

Here (3.3) follows from (2.6). For establishing (3.4), it is sufficient to show

that

lim ¢ f’z‘fk Y 0, (3.5)

c =
mo o D= mnn—k)

for every fixed k.
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Now since I Icn] is convergent, for any arbitrary small € > 0, we can have n

such that
€
z ]Cnl <oy s (3.6)
n>n°
where M is as specified in (2.6).
Further let
eyl <A, 3.7

n<n

— 0
where A is a finite constant. In view of (2.4) and the fact that n, is a finite
positive integer, we can have m dependent on € such that
I €

I'Y < 'ﬂ > (3.8)

mn

for all m > mo(e ) and all n=k, k+l, ... , n_+ k. Also

1 ® n_-h
g bl '|n§h "a o ko pkcn—h-k|

|k§o Py n=§;k Yo nCn-h-k|

2]

K&o Pk+h|n=§+k Ym ncn-h-kl

| A

| A

v§h Pvlnzv Ym ncn-v|

< M, by (2.6), (3.9)

for all m and h. Hence, finally

l nzLYm ncn-k l = Inz; Ym,n+kcnI
%
A l ngo Ym,n+kcn| + 'ngn Ym,n+kcn|
n o
5"%% Lo lcn| +M I |cn|, for m > m_, by (3.8) and (3.9).
n>n

<1&£ A+m £, by (3.7) and (3.6).
— 2A 2M . :

m

. (3.10)
- 1 ”

Hence éépm)dm k= 0, for every fixed k, and the "if part" of the theorem is

proved.

(Only if part):

Let the limitation method of A and B be equivalent for all (N,pn) summable
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sequences. Then

where (am n) - (bm S T (Ym n)’ and {sn} is a (N,p ) summable sequence.

We have

Ys=(§(P

c
n=0 mnn k=o

(o] ]
k n§k Ym n n-k) tk'

As {sn} is a (N,p ) summable sequence,
P

(1) take {s_} = {Gh}, so that t, = ﬂ, for every k > h.
n n k Pk
Then
3 = ¥ $
n Ym n°n = k2o Pk-h n=k Ym nn-k
n
= nzo Ytn n kgo pk-hcn-k
ngh
" nZo Ym n k¥ Pk cn—k
=X
m n
Hence

mlimoo LY 8 = mlym Yo = 0, for every fixed h.

n mnn

Thus hypothesis (2.4) is necessary.

(ii) Take s, =1in {sn}, so that t, = 1, for every k. Then

k

m]'j’m o E Ym n°n ° m1im © kzo Pk nzk Ym nn-k
n
mllm o ngo Ym n kgo PrCn-k

= ml-%mm n-z-o Yan ~ 0,

which is hypothesis (2.5).

(111) Take t, =t +€k, where;{ek} is a null sequence. Then

§ Y ¢ + lim f(P ¥

lim I 1lim
% mnn-k m-> o k=o

m-+® n Ymnsn=m+°°tk=o Pkn=k

lim f(P fY

= 6
m o ko Pk nfk Tm oS-k T BV 3-12)

k n=k Ym n

[

161

(3.11)

(3.12)

n—k) ek
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But Um 1 Y _s_ =0, for all sequences{sn} that are (N,pn) summable, as such

m=>° n mnn

1lim
m > kgo

(Pk nzk Ym ncn—k) 6k =0,

for all null sequencesf{€ k}'

Hence
Sup I Pk ngL Ym ncn—k <M
m k
Thus Theorem 1 is established.
4. PROOF OF THEOREM 2.
(If part): We have
T = s

= X a
m ns0 mnn
n

o]
nzo % n kZo tkP.ccn -k, by (3.2),

]

- % er § - %
= k% "kPk n¥k %m n%n-k T k%o Pm K%k, say,
where
bm k- Pk nzk an ncn—k. (4.1)

In order to establish this part, it is sufficient to show that (bm k) is regular,
that is, it belongs to T.

Clearly

% Ibm kl = E Pk Inzk an ncn-kI M, by (2.7).

Since (am n) €T, for every fixed positive integer n and € > 0,

Iam nl < € » for all m > mO (na e)’ (4'2)
and also
Sup
e | | f_M' (4.3)

Now, making use of (4.2) and (4.3), and proceeding along the lines of (3.10), we

can easily establish that

= li =
m}%pm b K Jnm Pk nfk a nn-k 0, for every fixed k.
Finally, since

n

kgo Ekcn-k =1, for every n,
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£b - Fp § b T
25 Pok T k2o Pk n2k ®m nCn-k " nZo %m n k2o PkCn-k
o]
= ) a =A >1, asm >,
nZo “m n m

Hence (bm k) satisfies all the regularity conditions. This proves the "if part"

of Theorem 2.
(Only if part): We have
L a
m n=0 mnn

¥

nzo % n k=0 tkPkcn—k

oo

b
ko "kB nZk 2m nSn-k

b

= kzo m ktk, say.

Since A includes (N,pn), (bm k) is regular. Thus

o
Lo |Pa il = ko B Inzk 3 nCnk| =M
which is the required condition.
This completes the proof of Theorem 2.

5. CLOSING REMARKS.

Theorem 1 generalizes the result of Zaman [3]. It assumes a much simplified
form if A and B belong to the class T and we have:

THEOREM 3. Let (N,Pn) be a regular N8rlund method and let {pnﬂ€ M. Then a ne-
cessary and sufficient condition that any two limitation methods, determined by
the matrices A = (am n) and B = (bm n)’ belonging to the class T, are equivalent
for all such (N,pn ) summable sequences, is that (2.6) hold.

Theorem 2 and 3 together lead to the following Theorem of consistency of
matrix limitation metho&s for (N,pn) summable sequences.

THEOREM 4. Let (?,pn) be a regular Norlund method and let {pn} €M. Then
the necessary and sufficient conditions that any two limitation methods, determined
by the matrices of the class T, are consistent for all (N,pn) summable sequences
are that they include (N,pn).
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