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ABSTRACT. The problem of flow of a Rivlin-Ericksen type of viscoelastic fluid is dis-

cussed when such a fluid is confined between two infinite rotating coaxial disks. The

governing system of a pair of non-linear ordinary differential equation is solved by

treating Reynolds number to small. The three cases discussed are: (I) one disks is

held at rest while other rotates with a constant angular velocity, (ii) one disk ro-

rates faster than the other but in the same sense and (iii) the disks rotate in op-

posite senses and with different angular velocities. The radial, tranverse and axial

components of the velocity field are plotted for the above three cases for different

values of the Reynolds number. The results obtained for a viscoelastic fluid are corn-

pared with those for a Newtonian fluid. The velocity field for case (i) is also com-

puted when a magnetic field is applied in a direction perpendicular to the discs and

the results are compared with the case when magnetic field is absent. Some interesting

features are observed for a viscoelastic fluid.
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i. INTRODUCTION.

In a recent investigation we have discussed the flow of a viscoelastic fluid

of Rivlln-Erlcksen type between a pair of infinite, coaxial rotating disks (see ref.

and all the other references therein). The disks are taken to rotate with

different constant angular velocities, either, in the same senses or opposite

senses, or, one disk is held at rest and the other is taken to rotate with a constant

angular velocity. The system of non-linear ordinary differential equations governing

the flow was obtained and solved numerically under the appropriate boundary

conditions of the problem using flnite-dlfference technique and successive over-

relaxation procedure. The solutions were given for values of the Reynolds

number up to I000 and some interesting features for the flow of a viscoelastic

fluid were reported.

In the present investigation, therefore, it is our aim to discuss the problem of

flow of a Rivlin-Ericksen fluid between coaxial rotating disks but for small values

of the Reynolds number. As the basic system of equations governing such a flow has

been already derived in [I] we shall briefly formulate the problem in the next sec-

tion. In section 3, we obtain the pertubation solutions for small values of the

Reynolds number. In section 4, we treat the flow in the presence of an externally ap-

plied magnetic field and provide pertubation solutions for the case of one disk at

rest. At the end in section 5, we give some interesting illustrative examples for

radial, transverse and axial components of the velocity and discuss characteristics

of the flow field.
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-2. FORMULATION OF THE PROBLEM.

Let us consider the steady flow of a Rivlin Ericksen type of non-Newtonian

fluid occupying the space between a pair of infinite parallel disks. In a cylindrical

polar co-ordinate system (r, 8, z), let the lower disk situated at z 0 have an

angular velocity S while the other disk, situated at z d have an angular ve-

locity , and S being constants. Let u,v and w represent the components of velocity

in the increasing directions of r,8 and z respectively.

We now write

I
u r fH’(q), v r G(q), w d H(r)

So that the equation 6f continuity is identically satisfied for an axi-symmetric flow.

Here is a non-dimensional axial co-ordinate given by z/d and a dash denotes

differentiation with respect to .
Substituting from (I) into the equations of motion (as was done in If]and elimi--

nating the pressure from the equations in the radial and axial directions respective-

ly, we obtain the following system of non-linear ordinary differential equations for.

the functions G and H:

G" + R(H’G HG’) + R(H’G’’ H’’G’) (2)

+ KR(HG’’’ H’’G’) 0

H
iv R(HH’’’ + 4GG’) + 0LR(12G’G’’ + H’Hiv + 2H’’H’’’) +

I H, HiV I HHv) 0+ 2KR(H’’H’’’ + 8G’G’’ + + (3)

where

d2qp @3
R is the Reynolds number and e-- K

1 pd
2

@2
pd

2

are the non-dimensional parameters characterising the viscoelasticity of the fluid.

The equations (I) and (3) have to be solved under the following non-dimensional-
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ized boundary conditions:

G(0) S G(t) ,
H(0) 0 H() 0,

H’(0) 0 H’I) 0. (4)

When a 0, K 0, the above equations (2) and (3) reduce to the well-known equations

to the corresponding problem for a classical viscous fluid.

3. SOLUTION FOR SMALL VALUES OF REYNOLDS NUMBER R.

We now develop regular pertubation solutions for the functions G and H in the

following manner:

G(n) G0(n) + RGI(n) + R2G2(n) + R3G3(n) + ...,

H(n) -H0(n) + RHl(n) + R2H2(n) + R3H3(n) +

order to obtain the various order solutions for the functions G and H we

substitute their expressions in the equations (2) and (3) and the boundary conditions

(4).

(i) ZERO-ORDER SOLUTION

The equations for G and H0 have the form
o

and

’’ 0 (6)GO

iv
0 (7)Ho

to be solved under the boundary conditions

(0) ’(t) 0C0(0) S, G0() , H0(0) H0() 0 H0 (8)

It can be easily seen that
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G0(n) S + (- S) U

H0() 0 (I0)

(ii) FIRST-ORDER SOLUTION

Making use of (9) and (I0), the equations for GI and HI take the form

and

Hiiv 4(1 S)[S +(I- S)]. 112)

The conditions satisfied by G
I and HI

are

(0) ’() 0GI(0) GI(I) 0, HI(0) HI(1) HI HI (13)

Solving (II) and (12) and making use of (13), we get,

and

G(n) 0 (4)

2 I 3
HI(N) (l-S) (2+3S)N (l-S) (3+7S)

I n4 3 2 5+ s(-s) + (-s) (5)

It may be noted that the zero and first order solutions do not involve the viscoelas-

tic parameters u and K.

(iii) SECOND-ORDER SOLUTION

It can be easily seen that the equations determining the functions G
2

and H
2

have respectively the forms

Gz’’ (HIG -H{G0) + (u + K)HI GO
(16)

and
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to be solved under the boundary conditions

(17)

G2(0) G2(I) 0 H2(0) H2(I) H2(0) H2(I) 0

Thus we get,

(18)

and

l-S
S
2 S(I-S) (2 + sS)D

3
G2() 6300 (27 + 16 S 8)’- 90

I-S N4 I-S 5
-i--(I-4S 12S2) + 3-- (3 + 4S 17S3)n

I 2 6 I 3 7
4- S(l-S) n 315 (l-S) n

+ ( + K) [(0s)2-------(2 + 3s)n
2 2(l-s) (3 + 7S)

3
30

I 2 n4 3 3 n5+ - S(I-S) + (l-S) (19)

H2(n) 0 (2o)

(iv) THIRD-ORDER SOLUTION

Substituting from (5) into the equations (2) and (3), it may be easily verified

that G
3

and H
3 satisfy the following equations respectively:

’’ 0 (21)G
3

iv (HIH{’’ + 4GoG + 4G G2)H
3

+ < ’’ 2G’’ + iv
2H HI12GoG2 + I G

2 HIHI + ’’’)

’’ + 8G’’ + ,, ,,, + 1 iv I HI+ 2K(8G G
2

G
2

HI HI HiHI + HI 0 (22)
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Using the expressions for GO, G
2

and HI in the above equations and solving

them under the prescribed boundary conditions on G3, H
3

and I-13 we firid that, the

third-order solution is given by,

G3(r]) 0 (23)

2 ]3 D4 5H3(r) X
0 D + X

I
+ X

2
+ X

3 D

7 n8 9+ X
4 r]

6
+ X

5
r] + X

6
+ X

7 ]

II+ X
8 rI0 + X

9 r (24)

where X. i 0 to i 9 are given by
1

s(-s) -s
Xo =-[ 2’2’680"0 (461 922 s 1219 s2) + -26’80bb (332

2
o(I-S) (474 1713 SI011 S + 2466 S

2
+ 913 S3)]

567000

2361 S2)
2K(I-S) (552 1059 S 1743 S2)

283500

I 3
+ 31’50 (e + K) (3e + 4K)(l-S) (16 + 19S) (25)

I- S
X1 --2S(I-S)26800 (856- 1712S- 2504 S2) + 2268000" (579- 1277 S

+ 3117 $2 + 1781 S3) (I-S)2
567000 (839 + 8072 S + 8189 S2)

2
K(I-S)
283500

(7 + 4636 S + 5257 S2) + 31 (e + K)(3o + 4K)(I-S) 4, (26)

1X
2 4725

(z+K) 2S(I- S)(8- 16S- 27S2) + 900 (l-S) (2+3S)(3+7S)

I (c, + K)(3e + 4K)(I-S)3(2+3S) (27)
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I i 2
X3 "500 (I-S)2(8-16S 27S2) 4500 (l-S) [(27 + 106 S

(_+..K).(3 / 4K_) 3
+ 117 S2) + K(27+86S+ 87 S2) +

150
(l-S) (3+7S)

X
4 54000 (l-S)(2 + 3S)(3 + 4S + 13S2) +

(’I-S’2
2700

(4 + 29S

+ 57S2) + K(4 + 20S + 36S2)] - ( + K)(3 + 4K)S(I-S) 3

(28)

(29)

I
X5 ’3"7800b (l-S) (27 + 19S + 161S2 + 393S3)

+ (lS,)
2

315 2--0+4S’- 67S2) 2KS2 -(c + K)(3or + 4K)(l-S) 2 (30)

1 3_K 3
X6-- 151200 (I-S)(2 + 17S + 20S

2
99S3) 36 S(l-S) 630 S(I-$) (31)

i 2 (l-S) 4

X7 453600 (l-S) (3 + 4S 107S2) 22680 (7 + 4K) (32)

II 3
X8 226800 S(l-S) (33)

I 4
X9 226800 (I-S) (34)

Thus the components of the velocity field u,v and w have been computed to the

third power of the Reynolds number R.

4. EFFECTS OF TRANSVERSE MAGNETIC FIELD ON THE FLOW FIELD :CASE OF ONE DISK HELD AT

REST.

We now consider the problem of flow of a viscoelastic fluid when a constant mag-

netic field H
0

is applied in a direction perpendicular to the discs. Making use of

the steady state Maxwell’s equations and adding the contributions due to Lorentz

force in the equations of motion, it can be verified that the equations (2) and (3)



FLOW BETWEEN COAXIAL ROTATING DISKS 189

for the functions G and H are modified to have the following forms respectively:

G’’ + R(H’G HG’) + aR(H’G’’ H’’G’)

+ KR(HG’’’ H’’G’) M2G 0 (35)

and

Hiv R(HH’’’ + 4GG’) + eR(12G’G’’ + H’Hiv + 2H’’H’’’)

I H,Hiv I HHv) M2H ,,
+ 2KR(8G’G’’’ + H’’H’’’ + + 0 (36)

where the Hartmann number M is defined as

In the above expression for M, 0 represents the magnetic permeability and o the

conductivity.

The boundary conditions satisfied by G() and H() in equations (35) and (36)

are the same as in (4).

We shall now obtain solutions for the case of one disk at rest, namely, the case

with S 0. Once again treating Reynolds number R to be samall, we expand the func-

tions G(N) and H() in a series in R as was done in (5). The zeroth, first and the

second order solutions are then given as follows:

(i) ZERO-ORDER SOLUTION

When M # 0 the equations for GO and H
0

are

’’ M2G0 0 (37)GO

iv
H0 M H’’= 0 (38)

Solving (37) and (38) and using the boundary conditions (8), it can be easily seen

that

I
Sinh (M) (39)G0(B) S’inh M
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and

H0() 0 (4O)

(ii) FIRST-ORDER SOLUTION

The functions GI() and Hi() satisfy the following equations:

GI’’ M2GI 0 (41)

iv
HI M2H 4GoG 4(3C + 4K) GoG0 (42)

Solving them under the boundary conditions (13), we get

GI () 0 (43)

A BHI() C + DN + Cosh(M) + -- sinh(M) + au sinh(2M)
M M

(44)

where

i
M
2

a
0

[i (3c + 4K)]
6M

3
s inh2M

(45)

a0 M
2

A O (i Cosh M) sinh(2M) + 2(M Cosh M sinh M)

+ 2(sinh(M) M) Cosh(2M)] (46)

a0
M
2

B 00 [2(1 Cosh 2M)(Cosh M I) sinh M(2M sinh 2M)] (47)

a
0C 0 (Cosh M I) sinh 2M 2(M Cosh M Sinh M)

2 Cosh(2M)(Sinh M M)] (48)

a
0D --r--M [- sinh(M)sinh(2M) + 2(Cosh M-17(I + Cosh 2M)]
0

(49)
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and

b M sinh(M) + 2(1"- Cosh M)
0

(iii) SECOND-ORDER SOLUTION

The equation satisfied by G2() is

Solving (51) under the appropriate boundary conditions, we have

(5O)

(51)

G2() PI { Cosh(M)-l} # P2 sinh(M) + P3 Csh(M)

+ P4(2CN + D2) sinh(MN) + P5 sinh(3MN)

where PI’ P2’ P3’ P4 and P5 are given by

P (1 + M-<)
M3sinh (M)

P (1 Cosh M)
2 sinh M

Cosh M

sinh
2
(M)

D
M
2 MDc 2C+D

M
2

4M
(3 K) --- 4 sinh M

K)

a0sinh(3M)
16Msinh

2
(M)

"el M2(3K + 2()

<52)

(5)

I 3a0. M
2 aP3 sinh(M) :4 {i + (2( + K)}- 4 (3 M2K)

I
P4 4Sinh(M’) (I M2K)

and

a
0

16M sinh (M)
{I M2(3K + 2a)}

(55)

(56)

(57)
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As for the case with M 0, here also it can be verified that

M
2
() 0 (58)

This completes the solution for the case of one disk at rest in the presence of tran-

verse magnetic field. The solutions for the case S # 0 will be presented separately.

5. DISCUSSION OF THE RESULTS

(i)-oer dlk hd ret or rog ft than the upper dik:

Throughou our discussion we have taken the values of the Reynolds number R to

be R --0.2, 0.4, 0.6 and 0.8. For the sake of comparison, results are depicted for a

classical viscous fluid (s 0, K 0) and a typical viscoelastic fluid for which

0.I and K 0.05.

Fig. i depicts the curves of H for a classical viscous fluid e 0, K 0

for S 0 and 5.0. For the case S 0, comparison is also made between the curves

of H when the Hartmann number M 0 and 1.0. It is noted that when S 0, the

function H representing the axial velocity is always positive whether M--0 or 1.0.

The effect of the tranverse magnetic field on the flow is to decrease the axial velo-

city for each value of the Reynolds number from R 0.2 to R 0.8. The profiles

are nearly parabolic in character. When S I, the whole system undergoes a rigid

body notation and as S increases further, the function M changes its sign. Ths may

be observed from the curves depicting axial velocity profiles for S 5.0 and R=0.2,

0.4, 0.6 and 0.8 in Fig. i.

In Fig. 2, we hsve drawn the axial velocity profils for a viscoelastic fluid

0.I, K 0.05 for S 0 and 5.0. The values of R are same as in Fig. I.

The .}Eacter of the profiles is similar to those for a classical Newtonian fluid.

It is interesting to note that in the presence of viscoelasticity in the fluid, the

effect of tranverse magnetic field is to decrease the axial velocity much more than

for a Newtonian liquid. This may be easily oSserved from the curves of H for M 1.0
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and comparing them with the corresponding curves in Fig. 1 for 0, K 0. Here also

for S 5.0, i.e. when the lower disk rotates five times faster the upper disk, the

axial velocity becomes completely negative.

Fig. 3 represents the curves for the function H’ for S 0 and 0.I, K--0.05.

It may be recalled that the radial velocity is actually designated by -H’. For each

value of the Reynolds number R from R 0.2 to 0.8, H’ is positive in the lower

half region whereas it is negative in the upper half region between the two disks. The

increase in R gives rise to increase in H’ in the lower half region. The reverse is

true in the upper half region. Once again, it is observed that the presence of tran-

verse magnetic field decreases H’ for each R in the lower half region and that the

reverse holds for the upper half region.

In Fig. 4. we have drawn the profiles of the function H’ for 0.I, K -0.05

and S 5.0. Comparing these curves with the corresponding curves for S 0 in Fig.4,

we note that the flow field is reversed and now H’ is negative in the lower half region

whereas it is positive in the upper, half region between the two disks.

Fig, 5 represents the curves of the tranverse velocity function G for th case of

lower disk held at rest i.e. S 0, the fluid parameters being 0.I, K -0.05.

Choosing the value of the Reynolds number R 0.2, comparison is made for Hartmanr

number M 0 and I. In the absence of magnetic field, G varies linearly from G 0

at the lower disk to G 1 at the upper disk. The tranverse velocity is increased when

magnetic field is applied as it is clear from the curve of G for M 1.0. The situation

is contrary in Fig. 6, which shows curves of G for R 0.4 and 0.I, K -0.05,

the lower disk rotating five times faster than the upper disk, G now decreases linear-

ly between the two disks from G 5 at the lower disk to G 1 at the upper disk.

(ii) two disks rotating in opmosite decto and with different angula veloci-

We now discuss some results for a viscoelastic fluid i, K -0.05 when the
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two disks rotate in opposite directions and with different angular velocities i.e.

S is non-zero negative.

Fig. 7 depicts the curves of the axial velocity function H for R 0.2, 0.4,

0.6, 0.8 and different negative values of S. When S -0.5, H is completely posi-

tive and increases in the entire region with increase in R. However, when S -i.0,

i.e. when the two disks rotate with same angular velocity but in opposite senses,

H is positive but only in the upper half region. In the lower half region, it

takes negative values. They are not shown in the figure because of their extreme

smallness. For S =-0.5, the region of positive H completely disappears and the

axial velocity becomes negative in the entire region between the two disks. In

this case, therefore H decreases with increase in R.

In Fig. 8, we have drawn the curves of H’ for S -0.5 and -i.0. When S -0.5,

H’ takes both positive and negative values. The point where H’ vanishes lies in

the upper half region (n 0.57). The increase in R increases H’ in the lower

region and reverse is true for the upper region. The situation no longer remains

so when S -i.0. The flow region is now divided into three parts with the appear-

ance of a central core in which H’ is positive for all values of R considered. In

the other two regions, one near the lower disk and the other near the upper disk,

H’ is negative. Thus for this case, we have two points where H’ vanishes; one lies

in the lower half plane whereas the other lies in the upper half plane.

From Fig. 9 showing the curves of H’ for S -0.5, we observe that the central

core has disappeared. Now H’ is negative in the lower region whereas it is positive

in the upper region. The point where H’ vanishes lies in the lower half plane.

The increase in R causes increase in H’ in the upper half region while the reverse

is true for the lower half plane between the two disks.

Fig. I0 represents the graph for the function G depicting the tranverse velo-

city for R 0.6, S -5.0 and 0.i, K -0.05. It is observed that G varies

linearly from-5.0 at 0 to 1.0 at 1.0. This behaviour is similar to those

for S 0 as S 5.0 in the absence of magnetic field.

The numerical computations were carried out on the University of Campinas

PDP i0 computer.
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*The paper was presented at the IUTAM Symposium on Non-Newtonian fluid Mechanics

held at Louvain-la-Neuve, Belgium from Aug. 28 to Sept. i, 1978.
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