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ABSTRACT. Our aim is to establish the Lebesgue decomposition for strongly-bounded

elements in a topological group. In 1963 Richard Darst established a result giving

the Lebesgue decomposition of strongly-bounded elements in a normed Abelian group

with respect to an algebra of projection operators. Consequently, one can establish

the decomposition of strongly-bounded additive functions defined on an algebra of

sets. Analagous results follow for lattices of sets. Generalizing some of the

techniques yield decomposiitons for elements in a topological group.
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i. INTRODUCTION.

In 1963 R. B. Darst 2] established a result giving the Lebesgue decomposition
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of s-bounded elements in a normed Abelian group with respect to an algebra

projection operators. Consequently, one can establish the decomposition of s-

bounded additive functions defined on an algebra of sets ILl- The set of cor-

responding restrictions of additive set functions defined on a lattice of sets

corresponds to a lattice of projection operators 15. The analagous result on

lattices is established by using the same techniques 3. More recently, Traynor

has obtained decompositions of set functions with values in a topological group

theorem for

elements in a topological group by the use of projection operators. It is be-

lieved that this result would aid in obtaining decompositions of eperators on

non-locally convex lattices.

2. PRELIMINARIES

Let G be an Abelia. topological group uder addition, and let T be

algebra of projection operators I 1 on G. For t1, t2 T define t t2 to

mean tIt2 tI ad define t2 to mean tlt2’. This relation induces a

partial ordering on T, which in tur has a lattice structure if we set

providing the sup and inf exist. But, we have t v t2 t + t2 tIt2
(’t2’)’ and t / t2 t2, so T is a Boolean algebra of operators. Let

be the set of all tric neighborhoods about O G. For each

each positive integer n, defie nU x + y: x (n-1)U and y where

OU {O c G, whence U U. Then a subset H C G is bounded if iven U

there exists an integer n such that H c nU. It would make sense to eve say

H c(m/n)U for this would mean nH c mU. We define an element f e G to be s-

bourvd (strongly bounded) if, for every sequence ti T of paiuise disjoint

elements, ti(f) - O. For each positive real number x, Tx shall denote a non-

epty subset of T with the properties
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I) tx e Tx and t T implies ttx Tx, and

2) Tx and e Ty implies txv tye Tx+y.
Several lemmas

L@% I. Let tl, t2 s T. Suppose t2(g) s U implies it(g) U for arbi-

trary g G and U . Then t a_ t2"
2. If ti is a monotone sequence of elements of T, and if f c G

s-botmded, then {ti(f) iS Cauch in G.iS

Given U // w write UO U and for each n > O we write Un to represant

some element of where Un + Un C Un_ whence 2nUn c U. This is possible

since addition is continuous in G.

DEFINITION. T has Property A if given g 6 G and U s // than there axists

a V uch that if a, b s T and (a’b)(g) U then a(g) s V and (a + a’b)(g) F V.

Note that Property A is a condition yielding information about the growth

of elements from G; a condition on the manner in which projections affect the

relative location of elements in symmetric neighborhoods. We also look at a

smaller class of neighborhoods by selecting an arbitrary bounded set U from

UI U2, we then formand forming the sets nU with n I, 2,. . Choosing ,
S .... U2, U, 2U, and set equal to the set

n

It follows that possesses the following property inherited from if

U then there exists U such that U + U c U. This yields the result

LD@tA 3. If T has Property A with respect to , and if t t2 T with

tI t2, then t2(g) U implies t1(g) U for arbitrary g G and U .
From now on we shall assume T has Property A with respect to .
L4MA h. LSt f G be s-bounded, {tk C T and U z,. Then there exists

& positive integer n such that if J - i > n then
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v v
ikj kn

For g G and n s N let S(n,g) {U : t(g) e U for all t T1/n}.
Lemma 3 Kuarantees that no S(n,g) Is e.

%. If t(g) O for s t T1/n, en there e a W s S(n,g)

ch at WI + W2 + + Wn S(n,,) for I choices of W
i e .

F. t U e S(n,g) d coct a suce [Akl c follows. Set

U1 + U2 + + Un for bitr Ui, d set I ()I + ()2 + +

()n ,o bi, ()i" " C 2n-1)/2U, d hen A2 C

e (sen ven 0 ere es > 0 sc

pre=e el se Ak ch con {%(l): t s T in}, d ch ctue

t er. Ts ossible sce t() # 0 for so t.

Let us denote this set W by W(n,g). This lemma implies that out of all the

neighborhoods contalnin t(g): t e T1/n , W(njg) is one of the "smallest."

Since tt(g}i t Tl/(n+l) iS contained in tt(g): t T11n we can choose our

W(n,g) to be nested, W(n,g) D W(n+l ,g). Assuming this sequence of neighborhoods

cnverEes, we are led to defining the following function.

DEFINITION. Let Y:G- by Y(g) lira W(n,g).

This function is the counterpart to the function y in [2]. Our last le,ma is

the following.

L 6. Let G be complete and f e G be s-bounded. Let W(n,f) be an

associated sequence of neighborhoods as above that contain It(f): t e T1/n.
Then given M > O there exists a decreasing sequence [ai in T such that

1) if x > O then there exists an integer i such that ai e Tx, and
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2) lira ai(f) W; + W2 + + where W lira W(n,f), and or allWi.

PROOF. To just sketch %he essentials o the 1emma, we let %i e T/2i+]
such that ti(f) E W1 + W2 + + %+2 for all Wi, i 1,2,’",M+2. This is

possible by the choice of W(n,f). By Lemma there exists a positive integer n

such that J i > n implies V tk v tk)(f) e .3. Applying
ikJ kg

Iemma 4 again to the sequence tnl+l, tn1 +2’ "’" tn2’ produces a positive

integer n suc that / t V t)(Z) W. rot j i > ne.ikj nl< kn2
Continuing this process we get an increasing sequence {nj of positive integers

such that V tk
/ tk)(Z) .j.e wenever p q > nj.

q - k -p nj. < k & nj
If uj k/ ti then uj T1/2nj+ and k > j implies

nj < i nj+
/ u uj)(f) +j+3. Setting / uj produces the desired

j<pk p
jk

decreasing sequence.

We now can state and prove our main decomposition result.

THEOREM. Let G be an Abelian topological group, and let T be an algebra of

projection operators on G. Assume Tx, and . are as before with G being

complete, and with T possessing Property A with respect to . If f e G is s-

bounded then there exists unique elements h, s e G such that

1)f=h+s,

2) given U e .I there exists a positive real number x such that if t e T
X

then t(h) e U,

3) given U e and > 0 there exists t T such that t’(s) e U.

PROOF. First, as counterparts to the classical Lebesgue decomposition

theorem, the element h is to represent the continuous portion of f, while s

represents the singular portion. Again, to just sketch some of the essentials

of the proof, we bypass the uniqueness and, turning our attention to existence
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note that if h f satisfies condition (2) then there is nothing to prove. De-

noting Y(f) by W(f), we assume W(f) contains points other than O e G. Then, from

Lemma 6, there exists a sequence i in T such that lim i
f W1 f + W2(f

’Cf}. ffor allWi(f). Let s lira ali(f) G and fl f Sl itm

Y(fl ) 0, then fl satisfies (2) and the proof is completed because i(f)- s

’(s1)- O and thus fl is also s-bounded. So given U s and s Oimplies i
there exists t e Te such that t’(s) e U, namely t i for large i. If fl does

satisfy (2), applying Lemma 6 to fl produces another sequence a2iot T

such that llm a2i(f1) Wl(f1) + W2(fl). Let s2 lim a2i(f1) and f2 fl s2
’(fl ) Then f2 is s-bounded and f f2 + (Sl + s2)" To show s + s2lim a2i

satisfies condition (3) we let U and > O. We have ali’(sI) -, O and

’(s U and’(s2) - O. So there exists a positive integer N such that

’( U for all i greater than N. Then (ally a21)’(s + s2a2i s2)
(all A a2i’)(sI) + (i A a2i’)(s2) U. Condition (3) is satisfied by letting

t i v a2i for large i. So if Y(f2 O then let h f2 and s s + s2

and the proof is completed. If not, continue the process. If for some positive

integer k, Y(fk O}, we are through. Otherwise we obtain a sequence (Sk,fk)
s eaences

i=1
of elements of T such that for each positive integer k we have

1) there exists a sequence Xki of positive reals where i-* O
i=1

and ald. T

2) sk with

3) fk fk-1 Sk il aki’ (fk-l)’
4) sk Wl(fk.ll * W2(fk.11 for all Wi(fk.1 )’

k

5) f fk * si
i=1
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In the end we will have our decomposition f h + s with s si and h f s.

Toward this goal, although the steps shall be omitted, the next step is to show

lira sk 0 by showing that sk eventually belongs to an arbitrarily selected U

And then it must be established that lira s
i exists. Assuming this, we then

n
n

lt s si ’d h f s. I shall, sl tlt s satisfies c’I.t&on
n

i

i’ (sk) e Uk+ for all i greater than some positive integer . Since s

lira si then there exists a positive integer N such that si e UI, and fen

N i=N+1

k VN aki] (s) V aki sj + V aki sj
-j>N

N

k:N(sJ) + ba s.
j=1 [k N / S

J>N

+ U for large i maxim1,---,MNe U2
+ + UN+

s U.

So, let t V aki where i max_M1,-.-, M... and condition (3)is satis-
k-N

fled. Now h f s lira
nf- and Y(fn "O’" Then Y(h) O and the

decomposition is finished.

These results are Dart of the author’s dissertation from Colorado State

University.
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