Internat. J. Math. & Math. Sci. Vol. 3 No. 4 (1980) 801-808

A LEBESGUE DECOMPOSITION FOR ELEMENTS IN A TOPOLOGICAL GROUP

THOMAS P. DENCE

Department of Mathematics Bowling Green State University Firelands Campus Huron, Ohio 44839 U.S.A.

(Received May 3, 1979 and in revised form February 29, 1980)

<u>ABSTRACT</u>. Our aim is to establish the Lebesgue decomposition for strongly-bounded elements in a topological group. In 1963 Richard Darst established a result giving the Lebesgue decomposition of strongly-bounded elements in a normed Abelian group with respect to an algebra of projection operators. Consequently, one can establish the decomposition of strongly-bounded additive functions defined on an algebra of sets. Analagous results follow for lattices of sets. Generalizing some of the techniques yield decomposiitons for elements in a topological group.

<u>KEY WORDS AND PHRASES</u>. Lebesgue decomposition, projection operator, stronglybounded, topological group.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 22A10, 28A10, 28A45.

1. INTRODUCTION.

In 1963 R. B. Darst [2] established a result giving the Lebesgue decomposition

of s-bounded elements in a normed Abelian group with respect to an algebra of projection operators. Consequently, one can establish the decomposition of sbounded additive functions defined on an algebra of sets [h]. The set of corresponding restrictions of additive set functions defined on a lattice of sets corresponds to a lattice of projection operators [5]. The analagous result on lattices is established by using the same techniques [3]. More recently, Traynor has obtained decompositions of set functions with values in a topological group [6], [7]. The purpose here is to present a Lebesgue decomposition theorem for elements in a topological group by the use of projection operators. It is believed that this result would aid in obtaining decompositions of operators on non-locally convex lattices.

2. PRELIMINARIES.

Let G be an Abelian topological group under addition, and let T be an algebra of projection operators [1] on G. For t_1 , $t_2 \in T$ define $t_1 \in t_2$ to mean $t_1t_2 = t_1$ and define $t_1 - t_2$ to mean t_1t_2' . This relation induces a partial ordering on T, which in turn has a lattice structure if we set $t_1 \wedge t_2 = \sup \{t \in T: t \in t_1, t \in t_2\}$ and $t_1 \vee t_2 = \inf \{t \in T: t_1 \in t, t_2 \in t\}$ providing the sup and inf exist. But, we have $t_1 \vee t_2 = t_1 + t_2 - t_1t_2 =$ $(t_1't_2')'$ and $t_1 \wedge t_2 = t_1t_2$, so T is a Boolean algebra of operators. Let \mathcal{M} be the set of all symmetric neighborhoods about $0 \in G$. For each $U \in \mathcal{M}$ and each positive integer n, define $nU = \{x + y: x \in (n-1)U$ and $y \in U\}$, where $OU = \{0\} \subset G$, whence 1U = U. Then a subset $H \subset G$ is bounded if given $U \in \mathcal{M}$ there exists an integer n such that $H \subset nU$. It would make sense to even say $H \subset (m/n)U$ for this would mean $nH \subset mU$. We define an element $f \in G$ to be sbounded (strongly bounded) if, for every sequence $\{t_1\} \subset T$ of pairwise disjoint elements, $t_1(f) \rightarrow 0$. For each positive real number x, T_x shall denote a nonempty subset of T with the properties 1) $t_x \in T_x$ and $t \in T$ implies $tt_x \in T_y$, and

2) $t_x \in T_x$ and $t_y \in T_y$ implies $t_x \vee t_y \in T_{x+y}$.

Several lemmas can now be stated, and their proofs follow as in $\begin{bmatrix} 1 \end{bmatrix}$ and $\begin{bmatrix} 2 \end{bmatrix}$.

LEMMA 1. Let t_1 , $t_2 \in T$. Suppose $t_2(g) \in U$ implies $t_1(g) \in U$ for arbitrary $g \in G$ and $U \in \mathcal{U}$. Then $t_1 \leq t_2$.

LEMMA 2. If $\{t_i\}$ is a monotone sequence of elements of T, and if $f \in G$ is s-bounded, then $\{t_i(f)\}$ is Cauchy in G.

Given $U \in \mathcal{U}$ we write $U_0 = U$ and for each n > 0 we write U_n to represent some element of \mathcal{U} where $U_n + U_n \subset U_{n-1}$, whence $2^n U_n \subset U$. This is possible since addition is continuous in G.

DEFINITION. T has Property A if given $g \in G$ and $U \in \mathcal{U}$ then there exists a V $\in \mathcal{U}$ such that if a, b \in T and $(a'b)(g) \notin U$ then $a(g) \in V$ and $(a + a'b)(g) \notin V$.

Note that Property A is a condition yielding information about the growth of elements from G; a condition on the manner in which projections affect the relative location of elements in symmetric neighborhoods. We also look at a smaller class of neighborhoods by selecting an arbitrary bounded set \hat{U} from and forming the sets $n\hat{U}$ with $n = 1, 2, \cdots$. Choosing $\hat{U}_1, \hat{U}_2, \cdots$ we then form $S = \{\cdots, \hat{U}_2, \hat{U}_1, \hat{U}, 2\hat{U}, \cdots\}$ and set $\hat{\mathcal{U}}$ equal to the set $\{\sum_{i=1}^{n} S_i: S_i \in S, S_i \neq S_j \text{ if } i \neq j\}.$

It follows that $\hat{\mathcal{U}}$ possesses the following property inherited from \mathcal{U} : if U $\in \hat{\mathcal{U}}$ then there exists $U_1 \in \hat{\mathcal{U}}$ such that $U_1 + U_1 \subset U_2$. This yields the result,

LEMMA 3. If T has Property A with respect to $\hat{\mathcal{U}}$, and if t_1 , $t_2 \in T$ with $t_1 \leq t_2$, then $t_2(g) \in U$ implies $t_1(g) \in U$ for arbitrary $g \in G$ and $U \in \hat{\mathcal{U}}$.

From now on we shall assume T has Property A with respect to $\hat{\mathcal{M}}_{\bullet}$

LEMMA 4. Let $f \in G$ be s-bounded, $\{t_k\} \subset T$ and $U \in \hat{\mathcal{U}}$. Then there exists a positive integer n such that if $j \ge i > n$ then

$$(\bigvee_{i \leq k \leq j} t_k - \bigvee_{k \leq n} t_k)(f) \in U_{\bullet}$$

For $g \in G$ and $n \in N$ let $S(n,g) = \{ U \in \hat{\mathcal{U}} : t(g) \in U \text{ for all } t \in T_{1/n} \}$. Lemma 3 guarantees that no S(n,g) is empty.

LEMMA 5. If $t(g) \neq 0$ for some $t \in T_{1/n}$, then there exists a $W \in S(n,g)$ such that $W_1 + W_2 + \cdots + W_n \notin S(n,g)$ for all choices of $W_i \in \hat{\mathcal{M}}$.

PROOF. Let U ε S(n,g) and construct a sequence $\{A_k\} \subset \widehat{\mathcal{U}}$ as follows. Set $A_1 = U_1 + U_2 + \cdots + U_n$ for arbitrary U_1 , and set $A_{k+1} = (A_k)_1 + (A_k)_2 + \cdots + (A_k)_n$ for arbitrary $(A_k)_1$. Now $A_1 \subset [(2^n-1)/2^n]^U$, and then $A_2 \subset [(2^n-1)/2^n]^2 U$. In general $A_k \subset [(2^n-1)/2^n]^k$ U. But the coefficient $[(2^n-1)/2^n]^k$ can be made as small as we like (consequently given i > 0 there exists k > 0 such that $A_k \subset U_1$), so if the lemma is not true then given U ε S(n,g) there would exist U_1, U_2, \cdots, U_n such that $U_1 + \cdots + U_n \varepsilon$ S(n,g). Setting $A_1 = U_1 + \cdots + U_n$ we apply the hypothesis again and get $(A_1)_1 + \cdots + (A_1)_n \varepsilon$ S(n,g). Continuing this procedure yields sets A_k which contain $\{t(g): t \in T_{1/n}\}$, and which continue to get smaller. This is impossible since $t(g) \neq 0$ for some t.

Let us denote this set W by W(n,g). This lemma implies that out of all the neighborhoods containing. $\{t(g): t \in T_{1/n}\}$, W(n,g) is one of the "smallest." Since $\{t(g): t \in T_{1/(n+1)}\}$ is contained in $\{t(g): t \in T_{1/n}\}$ we can choose our W(n,g) to be nested, W(n,g) \supset W(n+1,g). Assuming this sequence of neighborhoods converges, we are led to defining the following function.

DEFINITION. Let $Y:G \rightarrow \hat{\mathcal{U}}$ by $Y(g) = \lim W(n,g)$. This function is the counterpart to the function y in [2]. Our last lemma is the following.

LEMMA 6. Let G be complete and f ε G be s-bounded. Let W(n,f) be an associated sequence of neighborhoods as above that contain $\{t(f): t \varepsilon T_{1/n}\}$. Then given M > 0 there exists a decreasing sequence $\{a_1\}$ in T such that

1) if x > 0 then there exists an integer i such that $a_i \in T_x$, and

2) lim $a_{1}(f) \notin W_{1} + W_{2} + \cdots + W_{M}$ where $W = \lim W(n,f)$, and for all W_{1} . PROOF. To just sketch the essentials of the lemma, we let $t_{1} \in T_{1/2}i+1$ such that $t_{1}(f) \notin W_{1} + W_{2} + \cdots + W_{M+2}$ for all W_{1} , $i = 1, 2, \cdots, M+2$. This is possible by the choice of W(n, f). By Lemma h there exists a positive integer n_{1} such that $j \ge i > n_{1}$ implies $(\bigvee_{k \le j} t_{k} - \bigvee_{k \le n_{1}} t_{k})(f) \in W_{M+3}$. Applying Lemma h again to the sequence $t_{n_{1}+1}, t_{n_{1}+2}, \cdots, t_{n_{2}}, \cdots$ produces a positive integer n_{2} such that $(\bigvee_{i \le k \le j} t_{k} - \bigvee_{i_{1} \le k \le n_{2}} t_{k})(f) \in W_{M+\frac{1}{4}}$ for $j \ge i > n_{2}$. Continuing this process we get an increasing sequence $\{n_{j}\}^{\uparrow}$ of positive integers such that $(\bigvee_{q \le k \le p} t_{k} - \bigvee_{n_{j-1} < k \le n_{j}} t_{k})(f) \in W_{M+\frac{1}{2}+2}$ whenever $p \ge q > n_{j}$. If $u_{j} = \bigvee_{n_{j} < i \le n_{j+1}} t_{i}$ then $u_{j} \in T_{1/2}n_{j}+1$ and k > j implies $(\bigvee_{j < p} u_{p} - u_{j})(f) \in W_{M+\frac{1}{2}+3}$. Setting $a_{k} = \bigwedge_{j \le k} u_{j}$ produces the desired downwords

decreasing sequence.

We now can state and prove our main decomposition result.

THEOREM. Let G be an Abelian topological group, and let T be an algebra of projection operators on G. Assume T_x , \mathcal{M} and $\hat{\mathcal{U}}$ are as before with G being complete, and with T possessing Property A with respect to $\hat{\mathcal{M}}$. If $f \in G$ is s-bounded then there exists unique elements h, s ϵ G such that

- 1) f = h + s,
- 2) given U ε \mathcal{U} there exists a positive real number x such that if t ε T x then t(h) ε U,
- 3) given U $\varepsilon \stackrel{\frown}{\mathcal{M}}$ and $\varepsilon > 0$ there exists t εT_s such that t'(s) εU_s .

PROOF. First, as counterparts to the classical Lebesgue decomposition theorem, the element h is to represent the continuous portion of f, while s represents the singular portion. Again, to just sketch some of the essentials of the proof, we bypass the uniqueness and, turning our attention to existence

note that if h = f satisfies condition (2) then there is nothing to prove. Denoting Y(f) by W(f), we assume W(f) contains points other than $0 \in G$. Then, from Lemma 6, there exists a sequence $\{a_{1,i}\}$ in T such that $\lim a_{1,i}(f) \notin W_1(f) + W_2(f)$ for all $W_i(f)$. Let $s_1 = \lim a_{1i}(f) \in G$ and $f_1 = f - s_1 = \lim a_{1i}(f)$. If $Y(f_1) = \{0\}$, then f_1 satisfies (2) and the proof is completed because $a_{1,1}(f) \rightarrow s_1$ implies $a_{1i}'(s_1) \rightarrow 0$, and thus f_1 is also s-bounded. So given U $\varepsilon \stackrel{\frown}{\mathcal{M}}$ and $\varepsilon > 0$ there exists t ε T such that t'(s) ε U, namely t = a_{1i} for large i. If f_1 does not satisfy (2), applying Lemma 6 to f_1 produces another sequence $\{a_{2i}\}\downarrow$ in T such that $\lim a_{2i}(f_1) \notin W_1(f_1) + W_2(f_1)$. Let $s_2 = \lim a_{2i}(f_1)$ and $f_2 = f_1 - s_2 =$ $\lim a_{21}'(f_1)$. Then f_2 is s-bounded and $f = f_2 + (s_1 + s_2)$. To show $s_1 + s_2$ satisfies condition (3) we let $U \in \mathcal{U}$ and $\varepsilon > 0$. We have $a_{1,\varepsilon}(s_1) \rightarrow 0$ and $a_{21}'(s_2) \rightarrow 0$. So there exists a positive integer N such that $a_{11}'(s_1) \in U_1$ and $a_{2i}'(s_2) \in U_1$ for all i greater than N. Then $(a_{1i} \vee a_{2i})'(s_1 + s_2) =$ $(a_{1i} \wedge a_{2i})(s_1) + (a_{1i} \wedge a_{2i})(s_2) \in U$. Condition (3) is satisfied by letting $t = a_{11} \vee a_{21}$ for large i. So if $Y(f_2) = \{0\}$ then let $h = f_2$ and $s = s_1 + s_2$ and the proof is completed. If not, continue the process. If for some positive integer k, $Y(f_k) = \{0\}$, we are through. Otherwise we obtain a sequence $\{(s_k, f_k)\}$ of pairs of elements of G and a sequence $\{\{a_{ki}\}_{i=1}^{\infty}\}$ of non-increasing sequences of elements of T such that for each positive integer k we have

1) there exists a sequence ${x_{ki}}_{i=1}^{\infty}$ of positive reals where $x_{ki} \rightarrow 0$

and
$$a_{ki} \in I_{x_{ki}}$$
,
2) $s_k = \lim_{i} a_{ki}(f_{k-1})$ with $f_0 = f$,
3) $f_k = f_{k-1} - s_k = \lim_{i} a_{ki}(f_{k-1})$,
4) $s_k \notin W_1(f_{k-1}) + W_2(f_{k-1})$ for all $W_1(f_{k-1})$.
5) $f = f_k + \sum_{i=1}^k s_i$.

In the end we will have our decomposition f = h + s with $s = \sum_{i=1}^{n} s_{i}$ and $h = f - s_{i}$. Toward this goal, although the steps shall be omitted, the next step is to show lim $s_k = 0$ by showing that s_k eventually belongs to an arbitrarily selected U $\epsilon \hat{\mu}$. And then it must be established that $\lim_{n \to 1} \sum_{i=1}^{n} s_i$ exists. Assuming this, we then let $s = \lim_{n} \sum_{i=1}^{n} s_{i}$ and h = f - s. We shall show that s satisfies condition (3) of the theorem. We have $s_k = \lim_{i \to ki} a_{ki}(f_{k-1})$. Let $U \in \mathcal{N}$. Then $a_{ki}(s_k) \to 0$, so $a_{ki}'(s_k) \in U_{k+1}$ for all i greater than some positive integer M_k. Since s = $\lim \sum s_i$ then there exists a positive integer N such that $\sum s_i \in U_1$, and then $\begin{bmatrix} \bigvee & \mathbf{a_{ki}} \end{bmatrix}^{\mathbf{i}} (\mathbf{s}) = \begin{bmatrix} \bigvee & \mathbf{a_{ki}} \end{bmatrix}^{\mathbf{i}} \sum_{j=1}^{N} \mathbf{s}_{j} + \begin{bmatrix} \bigvee & \mathbf{a_{ki}} \end{bmatrix}^{\mathbf{i}} \sum_{j=1}^{N} \mathbf{s}_{j}$ $= \sum_{j=1}^{N} \bigwedge_{k=N}^{\wedge} a_{ki}'(s_{j}) + \left[\bigvee_{k \leq N}^{\vee} a_{ki}\right]' \bigvee_{j \geq N}^{\vee}$ ε $U_2 + \cdots + U_{N+1} + U_1$ for large $i = \max \{M_1, \cdots, M_N\}$ εU. So, let $t = \bigvee_{\substack{k \leq N}} a_{ki}$ where $i = \max \{M_1, \dots, M_N\}$ and condition (3) is satis-

 $k \in \mathbb{N}$ fied. Now $h = f - s = \lim_{n \to \infty} f_n$ and $Y(f_n) \rightarrow \{0\}$. Then $Y(h) = \{0\}$ and the decomposition is finished.

These results are part of the author's dissertation from Colorado State University.

REFERENCES

- R.B.Darst. A Decomposition for complete normed abelian groups with applications to spaces of additive set functions, <u>Trans. Amer. Math. Soc.</u>, 103 (1962) 549-558.
- 2. R.B.Darst. The Lebesgue decomposition, Duke Math. Journal 30 (1963) 553-556.

- 3. R.B.Darst. The Lebesgue decomposition for lattices of projection operators, Advances in Math I(1975) 30-33.
- 4. T. Dence. A Lebesgue decomposition for vector valued additive set functions, Pacific Journal of Math., 57 (1975) 91-98.
- 5. T. Dence. A Lebesgue decomposition with respect to a lattice of projection operators, Canad. Journal of Nath., 29(1977) 295-298.
- 6. T. Traynor. Decomposition of group-valued additive set functions, <u>Ann. Inst.</u> <u>Fourier</u> (grenoble) 22 (1972) fasc. 3, 131-140.
- 7. T. Traynor. The Lebesgue decomposition for group-valued set functions, <u>Trans</u> Amer. Nath. Soc., 220 (1976) 307-319.