A LEBESGUE DECOMPOSITION FOR ELEMENTS IN A TOPOLOGICAL GROUP

THOMAS P. DENCE
Department of Mathematics Bowling Green State University
Firelands Campus
Huron, Ohio 44839 U.S.A.

(Received May 3, 1979 and in revised form February 29, 1980)

ABSTRACT. Our aim is to establish the Lebesgue decomposition for strongly-bounded elements in a topological group. In 1963 Richard Darst established a result giving the Lebesgue decomposition of strongly-bounded elements in a normed Abelian group with respect to an algebra of projection operators. Consequently, one can establish the decomposition of strongly-bounded additive functions defined on an algebra of sets. Analagous results follow for lattices of sets. Generalizing some of the techniques yield decomposiitons for elements in a topological group. KEY WORDS AND PHRASES. Lebesgue decomposition, projection operator, stronglybounded, topological group.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 22A10, $28 A 10,28 A 45$.

1. INTRODUCTION.

In 1963 R. B. Darst [2] established a result giving the Lebesgue decomposition
of s-bounded elements in a normed Abelian group with respect to an algebra of projection operators. Consequently, one can establish the decomposition of sbounded additive functions defined on an algebra of sets [4]. The set of corresponding restrictions of additive set functions defined on a lattice of sets corresponds to a lattice of projection operators [5]. The analagous result on lattices is established by using the same techniques [3]. More recently, Traynor has obtained decompositions of set functions with values in a topological group $[6],[7]$. The purpose here is to present a Lebesgue decomposition theorem for elements in a topological group by the use of projection operators. It is beLieved that this result would aid in obtaining decompositions of operators on non-locally convex lattices.
2. PRELIMINARIES.

Let G be an Abelian topological group under addition, and let T be an algebra of projection operators $[1]$ on G. For $t_{1}, t_{2} \varepsilon T$ define $t_{1} \leqslant t_{2}$ to mean $t_{1} t_{2}=t_{1}$ and define $t_{1}-t_{2}$ to mean $t_{1} t_{2}^{\prime}$. This relation induces a partial ordering on T, which in turn has a lattice structure if we set $t_{1} \wedge t_{2}=\sup \left\{t \varepsilon T: t \leq t_{1}, t \leq t_{2}\right\}$ and $t_{1} \vee t_{2}=\inf \left\{t \varepsilon T: t_{1} \leq t, t_{2} \leq t\right\}$ providing the sup and inf exist. But, we have $t_{1} \vee t_{2}=t_{1}+t_{2}-t_{1} t_{2}=$ $\left(t_{1}^{\prime} t_{2}^{\prime}\right)^{\prime}$ and $t_{1} \wedge t_{2}=t_{1} t_{2}$, so T is a Boolean algebra of operators. Let \mathcal{M} be the set of all symmetric neighborhoods about $0 \varepsilon G$. For each $U \varepsilon \mu$ and each positive integer n, define $n U=\{x+y: x \in(n-1) U$ and $y \varepsilon U\}$, where $O U=\{0\} \subset G$, whence $1 U=U$. Then a subset $H \subset G$ is bounded if given $U \in M$ there exists an integer n such that $H \subset n U$. It would make sense to even say $H \subset(m / n) U$ for this would mean $n H \subset m U$. We define an element $f \varepsilon G$ to be sbounded (strongly bounded) if, for every sequence $\left\{t_{i}\right\} \subset T$ of pairwise disjoint elements, $t_{i}(f) \rightarrow 0$. For each positive real number x, T_{x} shall denote a nonempty subset of T with the properties

1) $t_{x} \varepsilon T_{x}$ and $t \varepsilon T$ implies $t t_{x} \varepsilon T_{x}$, and
2) $t_{x} \varepsilon T_{x}$ and $t_{y} \varepsilon T_{y}$ implies $t_{x} \vee t_{y} \varepsilon T_{x+y}$.

Several lemmas can now be stated, and their proofs follow as in $[1]$ and [2].
LEMMA 1. Let $t_{1}, t_{2} \varepsilon T$. Suppose $t_{2}(g) \varepsilon U$ implies $t_{1}(g) \varepsilon U$ for arbitrary $g \varepsilon G$ and $U \varepsilon l l$. Then $t_{1} \leq t_{2}$.

LEMMA 2. If $\left\{t_{i}\right\}$ is a monotone sequence of elements of T, and if $f \varepsilon G$ is s-bounded, then $\left\{t_{i}(f)\right\}$ is Cauchy in G.

Given $U \in M$ we write $U_{0}=U$ and for each $n>0$ we write U_{n} to represent some element of M where $U_{n}+U_{n} \subset U_{n-1}$, whence $2^{n} U_{n} \subset U$. This is possible since addition is continuous in G.

DEFINITION. Thas Property A if given $g \varepsilon G$ and $U \varepsilon M$ then there exists $a \mathrm{~V} \varepsilon \mathcal{M}_{\text {such }}$ that if $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{T}$ and $\left(\mathrm{a}^{\prime} \mathrm{b}\right)(\mathrm{g}) \& U$ then $a(g) \varepsilon V$ and $\left(a+a^{\prime} b\right)(g) \& V$.

Note that Property A is a condition yielding information about the growth of elements from G; a condition on the manner in which projections affect the relative location of elements in symmetric neighborhoods. We also look at a smaller class of neighborhoods by selecting an arbitrary bounded set \hat{U} from and forming the sets $n \hat{U}$ with $n=1,2, \cdots$. Choosing $\hat{U}_{1}, \hat{U}_{2}, \cdots$ we then form $s=\left\{\cdots, \hat{U}_{2}, \hat{U}_{1}, \hat{U}, 2 \hat{U}, \cdots\right\}$ and set $\hat{\mu}$ equal to the set

$$
\left\{\sum_{i=1}^{n} s_{i}: s_{i} \varepsilon s, s_{i} \neq s_{j} \text { if } i \neq j\right\}
$$

It follows that $\hat{\mu}$ possesses the following property inherited from μ : if $U \in \hat{\mu}$ then there exists $U_{1} \varepsilon \hat{\mu}$ such that $U_{1}+U_{1} \subset U$. This yields the result, LIAMA 3. If T has Property A with respect to $\hat{\mu}$, and if $t_{1}, t_{2} \varepsilon T$ with $t_{1} \leqslant t_{2}$, then $t_{2}(g) \varepsilon U$ implies $t_{1}(g) \varepsilon U$ for arbitrary $g \varepsilon G$ and $U \varepsilon \hat{M}$. From now on we shall assume T has Property a with respect to $\hat{\mu}$.
igama 4. Let $f \in G$ be s-bounded, $\left\{t_{k}\right\} \subset T$ and $U \varepsilon, \hat{l}$. Then there exists a positive integer n sach that if $j \geq i>n$ then

$$
\left(_{i} \leq V_{k \leq j} t_{k}-V_{k \leq n}^{t_{k}}\right)(f) \varepsilon U_{0}
$$

For $g \in G$ and $n \in N$ let $S(n, g)=\left\{U \in \hat{M}: t(g) \varepsilon U\right.$ for all $\left.t \in T_{1 / n}\right\}$. Lemma 3 guarantees that no $S(n, g)$ is empty.

LEMMA 5. If $t(g) \neq 0$ for some $t \varepsilon T_{1 / n}$, then there exists a $W \varepsilon S(n, g)$ such that $W_{1}+W_{2}+\ldots+W_{n} \notin S(n, g)$ for all choices of $W_{i} \varepsilon \hat{\mu}$.

PROOF. Let $U \in S(n, g)$ and construct a sequence $\left\{A_{k}\right\} \subset \hat{M}$ as follows. Set $A_{1}=U_{1}+U_{2}+\ldots+U_{n}$ for arbitrary U_{i}, and set $A_{k+1}=\left(A_{k}\right)_{1}+\left(A_{k}\right)_{2}+\cdots+$ $\left(A_{k}\right)_{n}$ for arbitrary $\left(A_{K}\right)_{i}$. Now $A_{1} \subset\left[\left(2^{n}-1\right) / 2^{n}\right] U$, and then $A_{2} \subset\left[\left(2^{n}-1\right) / 2^{n}\right]^{2} U$. In general $A_{k} \subset\left[\left(2^{n}-1\right) / 2^{n}\right]^{k} U$. But the coefficient $\left[\left(2^{n}-1\right) / 2^{n}\right]^{k}$ can be made as small as we like (consequently given $i>0$ there exists $k>0$ such that $\left.A_{k} \subset U_{i}\right)$, so if the lemma is not true then given $U \varepsilon S(n, g)$ there would exist $U_{1}, U_{2}, \cdots, U_{n}$ such that $U_{1}+\cdots+U_{n} \varepsilon S(n, g)$. Setting $A_{1}=U_{1}+\cdots+U_{n}$ we apply the hypothesis again and get $\left(A_{1}\right)_{1}+\cdots+\left(A_{1}\right)_{n} \varepsilon S(n, g)$. Continuing this procedure yields sets A_{k} which contain $\left\{t(g): t \varepsilon T_{1 / n}\right\}$, and which continue to get smaller. This is impossible since $t(g) \neq 0$ for some t.

Let us denote this set W by $W(n, g)$. This lemma implies that out of all the neighborhoods containing. $\left\{t(g): t \varepsilon T_{1 / n}\right\}, W(n, g)$ is one of the "smallest." Since $\left\{t(g): t \in T_{1 /(n+1)}\right\}$ is contained in $\left\{t(g): t \varepsilon T_{1 / n}\right\}$ we can choose our $W(n, g)$ to be nested, $W(n, g) \supset W(n+1, g)$. Assuming this sequence of neighborhoods converges, we are led to defining the following function.

DEFINITION. Let $Y: G \rightarrow \hat{M}$ by $Y(g)=\lim W(n, g)$.
This function is the counterpart to the function y in [2]. Our last lemma is the following.

LEMMA 6. Let G be complete and $f \varepsilon G$ be s-bounded. Let $W(n, f)$ be an associated sequence of neighborhoods as above that contain $\left\{t(f): t \varepsilon T_{1 / n}\right\}$. Then given $M>0$ there exists a decreasing sequence $\left\{a_{i}\right\} \downarrow$ in T such that

1) if $x>0$ then there exists an integer i such that $a_{i} \varepsilon T_{x}$, and
2) $\lim a_{i}(f) \& W_{1}+W_{2}+\cdots+W_{M}$ where $W=\lim W(n, f)$, and for all W_{i}. PROOF. To just sketch the essentials of the lerma, we let $t_{i} \in T_{1 / 2} i+1$ such that $t_{i}(f) \& W_{1}+W_{2}+\cdots+W_{M+2}$ for all $W_{i}, i=1,2, \cdots, M+2$. This is possible by the choice of $W(n, f)$. By Lemma 4 there exists a positive integer n_{1} such that $j \geq i>n_{1}$ implies $\left(\underset{i}{V} \underset{k}{V} t_{k}-\underset{k \leq n_{1}}{V} t_{k}\right)(f) \varepsilon W_{M+3^{\circ}}$ Applying Lemma 4 again to the sequence $t_{n_{1}+1}, t_{n_{1}+2}, \cdots, t_{n_{2}}, \cdots$ produces a positive integer n_{2} such that $\left(\underset{i \leq k \leq j}{V} t_{k}-n_{1}<\underset{k}{V} n_{2} t_{k}\right)(f) \varepsilon W_{M+4}$ for $j \geq i>n_{2}$. Continuing this process we get an increasing sequence $\left\{n_{j}\right\} \uparrow$ of positive integers such that $\left(\underset{q}{ } \leqslant \underset{k}{V} \leqslant p t_{k}-n_{j-1}<k \leqslant n_{j} t_{k}\right)(f) \varepsilon W_{M+j+2}$ whenever $p \geqslant q>n_{j}$. If $u_{j}=n_{j}<\underset{i}{V} n_{j+1} t_{i}$ then $u_{j} \varepsilon T_{1 / 2} n_{j+1}$ and $k>j$ implies $\left(\underset{j}{ } \stackrel{v}{p} \leqslant k^{u_{p}}-u_{j}\right)(f) \varepsilon W_{M+j+3^{\circ}}$ Setting $a_{k}=\hat{j} \leqslant k u_{j}$ produces the desired decreasing sequence.

We now can state and prove our main decomposition result.
THEOREM. Let G be an Abelian topological group, and let T be an algebra of projection operators on G. Assume T_{x}, M and \hat{U} are as before with G being complete, and with T possessing Property A with respect to $\hat{\ell}$. If $f \varepsilon G$ is sbounded then there exists unique elements $h, s \varepsilon G$ such that

1) $f=h+s$,
2) given $U \varepsilon \hat{\ell l}$ there exists a positive real number x such that if $t \varepsilon T_{x}$ then $t(h) \varepsilon U$,
3) given $U \varepsilon \hat{M}$ and $\varepsilon>0$ there exists $t \varepsilon T_{\varepsilon}$ such that $t^{\prime}(s) \varepsilon U$.

PROOF. First, as counterparts to the classical Lebesgue decomposition theorem, the element h is to represent the continuous portion of f, while s represents the singular portion. Again, to just sketch some of the essentials of the proof, we bypass the uniqueness and, turning our attention to existence
note that if $h=f$ satisfies condition (2) then there is nothing to prove. Denoting $Y(f)$ by $W(f)$, we assume $W(f)$ contains points other than $0 \varepsilon G$. Then, from Lemma 6, there exists a sequence $\left.\left\{a_{1}\right\}\right\}$ in T such that $\lim a_{1 i}(f) \in W_{1}(f)+W_{2}(f)$ for all $W_{i}(f)$. Let $s_{1}=\lim a_{1 i}(f) \varepsilon G$ and $f_{1}=f-s_{1}=\lim a_{1 i}{ }^{\prime}(f)$. If $Y\left(f_{1}\right)=\{0\}$, then f_{1} satisfies (2) and the proof is completed because $a_{11}(f) \rightarrow s_{1}$ implies $a_{1 i}{ }^{\prime}\left(s_{1}\right) \rightarrow 0$, and thus f_{1} is also s-bounded. So given $U \varepsilon \hat{\mu}$ and $\varepsilon>0$ there exists $t \varepsilon T_{\varepsilon}$ such that $t^{\prime}(s) \varepsilon U$, namely $t=a_{1}$ for large i. If f_{1} does not satisfy (2), applying Lemma 6 to f_{1} produces another sequence $\left\{a_{2 i}\right\}$ in T such that $\lim a_{2 i}\left(f_{1}\right) \& W_{1}\left(f_{1}\right)+W_{2}\left(f_{1}\right)$. Let $s_{2}=\lim a_{2 i}\left(f_{1}\right)$ and $f_{2}=f_{1}-s_{2}=$ $\lim a_{2 i}^{\prime}\left(f_{1}\right)$. Then f_{2} is s-bounded and $f=f_{2}+\left(s_{1}+s_{2}\right)$. To show $s_{1}+s_{2}$ satisfies condition (3) we let $U \varepsilon \hat{H}$ and $\varepsilon>0$. We have $a_{1 i}{ }^{\prime}\left(s_{1}\right) \rightarrow 0$ and $a_{2 i}^{\prime}\left(s_{2}\right) \rightarrow 0$. So there exists a positive integer N such that $a_{1 i}{ }^{\prime}\left(s_{1}\right) \varepsilon U_{1}$ and $a_{2 i}{ }^{\prime}\left(s_{2}\right) \varepsilon U_{1}$ for all i greater than $N_{\text {. Then }}\left(a_{1 i} \vee a_{2 i}\right)^{\prime}\left(s_{1}+s_{2}\right)=$ $\left(a_{1 i}{ }^{\prime} \wedge a_{2 i}{ }^{\prime}\right)\left(s_{1}\right)+\left(a_{1 i}{ }^{\prime} \wedge a_{2 i}{ }^{\prime}\right)\left(s_{2}\right) \varepsilon U$. Condition (3) is satisfied by letting $t=a_{1 i} \vee a_{2 i}$ for large $i_{\text {. So if }} Y\left(f_{2}\right)=\{0\}$ then let $h=f_{2}$ and $s=s_{1}+s_{2}$ and the proof is completed. If not, continue the process. If for some positive integer $k, Y\left(f_{k}\right)=\{0\}$, we are through. Otherwise we obtain a sequence $\left\{\left(s_{k}, f_{k}\right)\right\}$ of pairs of elements of G and a sequence $\left\{\left\{_{k_{k i}}\right\}_{i=1}^{\infty}\right\}$ of non-increasing sequences of elements of T such that for each positive integer k we have

1) there exists a sequence $\left\{x_{k i}\right\}_{i=1}^{\infty}$ of positive reals where $x_{k i} \rightarrow 0$ and $a_{k i} \in T_{x_{k i}}$,
2) $s_{k}=\lim _{i} a_{k i}\left(f_{k-1}\right)$ with $f_{0}=f$,
3) $f_{k}=f_{k-1}-s_{k}=\underset{i}{\lim } a_{k i}{ }^{\prime}\left(f_{k-1}\right)$,
4) $s_{k} \in W_{1}\left(f_{k-1}\right)+W_{2}\left(f_{k-1}\right)$ for all $W_{i}\left(f_{k-1}\right)$,
5) $f=f_{k}+\sum_{i=1}^{k} s_{i}$.

In the end we will have our decomposition $f=h+s$ with $s=\sum_{i=1}^{\infty} s_{i}$ and $h=f-s$. Toward this goal, although the steps shall be omitted, the next step is to show $\lim s_{k}=0$ by showing that s_{k} eventually belongs to an arbitrarily selected $U \varepsilon / \hat{l}$. And then it must be established that $\lim _{n} \sum_{i=1}^{n} s_{i}$ exists. Assuming this, we then let $s=\lim _{n} \sum_{i=1}^{n} s_{i}$ and $h=f-s$. We shall show that satisfies condition (3) of the theorem. We have $\mathbf{s}_{\mathbf{k}}=\lim _{i} a_{k i}\left(f_{k-1}\right)$. Let $U \varepsilon \hat{N}$. Then $a_{k i}{ }^{\prime}\left(s_{k}\right) \rightarrow 0$, so ${ }^{2}{ }_{k i}{ }^{\prime}\left(s_{k}\right) \varepsilon U_{k+1}$ for all i greater than some positive integer M_{k}. Since $s=$ $\lim \sum s_{i}$ then there exists a positive integer N such that $\sum_{i}^{\infty} s_{i} \varepsilon U_{1}$, and then

$$
\begin{aligned}
& {\left[k \leq N a_{k i}^{v}\right]^{\prime}(s)=\left[\sum_{k \leq N}^{v} a_{k i}\right]_{j=1}^{N} \sum_{j, 1}^{N} s_{j}+\sum_{k \leq N}^{v} a_{k i} \prod_{j>N}^{i=N+1} \sum_{j}^{1} s_{j}} \\
& =\sum_{j=1}^{N} k \hat{n} N_{k i}^{\prime}\left(s_{j}\right)+\left[\sum_{k}^{\vee} N a_{k i}\right]_{j>N}^{\prime} s_{j} \\
& \varepsilon U_{2}+\cdots+U_{N+1}+U_{1} \text { for large } i=\max \left\{H_{1}, \cdots, M_{N}\right\} \\
& \varepsilon \quad U \text {. }
\end{aligned}
$$

So, let $t=V_{k \leq N} a_{k i}$ where $i=\max \left\{M_{1}, \cdots, M_{N}\right\}$ and condition (3) is satisfied. Now $h=f-s=\lim f_{n}$ and $Y\left(f_{n}\right) \rightarrow\{0\}$. Then $Y(h)=\{0\}$ and the decomposition is finished.

These results are part of the author's dissertation from Colorado State University.

REFERENCES

1. R.B.Darst. A Decomposition for complete normed abelian groups with applications to spaces of additive set functions, Trans. Amer, liath, Soc., 103 (1962) 549-558.
2. R.B.Darst. The Lebesgue decomposition, Duke Miath. Journal 30 (1963) 553-556.
3. R.B.Darst. The Lebesgue decomposition for lattices of projection operators, Advances in Math I(1975) 30-33.
4. T. Dence. A Lebesgue decomposition for vector valued additive set functions, Pacific Journal of Yath., 57 (1975) 91-98.
5. T. Dence. A Lebesgue decomposition with respect to a lattice of projection operators, Canad. Journal of Riath., 29(1977) 295-298.
6. T. Traynor. Decomposition of group-valued additive set functions, Ann. Inst. Fourier (grenoble) 22 (1972) fasc. 3, 131-1 LO.
7. T. Traynor. The Lebesgue decomosition for group-valued set functions, Trans Amer. liath. Soc., 220 (1976) 307-319.
