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ABSTRACT. Our aim is to establish the Lebesgue decomposition for strongly-bounded
elements in a topological group. In 1963 Richard Darst established a result giving
the Lebesgue decomposition of strongly-bounded elements in a normed Abelian group
with respect to an algebra of projection operators. Consequently, one can establish
the decomposition of strongly-bounded additive functions defined on an algebra of
sets. Analagous results follow for lattices of sets. Generalizing some of the
techniques yield decomposiitons for elements in a topological group.
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1. INTRODUCTION.

In 1963 R. B. Darst [ 2] established a result giving the Lebesgue decomposition
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of s-bounded elements in a normed Abelian group with respect to an algebra of
projection operators, Consequently, one can establish the decomposition of s-
bounded additive functions defined on an algebra of sets [h], The set of cor-
responding restrictions of additive set functions defined on a lattice of sets
corresponds to a lattice of projection operators [5] The analagous result on
lattices is established by using the same techniques [3], More recently, Traynor
has obtained decompositions of set functions with values in a topological group
{6}, ':7] The purpose here is to present a Lebesgue decomposition theorem for
elements in a topological group by the use of projection operators, It is be=-
lieved that this result would aid in obtaining decompositions of operators on
non-=locally convex lattices,

2, PRELIMINARIES,

Let G be an Abelian. topological group under addition, and let T be an
algebra of projection operators [1] on G, For t,, t, ¢ T define t, € t, to
mean t,t, = t; and define +t, -~ t, tomean t,t,'. This relation induces a
partial ordering on T, which in turn has a lattice structure if we set
ty Aty =sup{teTit € by, £ €4} and b\ b, = dnf {t & Tity € 1, 8, ¢ t]
providing the sup and inf exist, But, we have ty v t2 = t1 + t2 - t1t2 =
(t't,")" and ty AN t, = $1t,, so T is a Boolean algebra of operators, let MU
be the set of all symmetric neighborhoods about O € G, For each U &/l and
each positive integer n, define nU = {x +y: x€e(n-1)Uand y ¢ U}, where
00 = {0} C G, whence 1U = U, Then a subset H C G is bounded if given U & U
there exists an integer n such that H c nU, It would make sense to even say
H c (m/n)U for this would mean nH c mU, We define an element f ¢ G to be s-
bounded (strongly bounded) if, for every sequence {t;} C T of pairwise disjoint
elements, ty(f) 90, For each positive real number x, T, shall denote a non-

empty subset of T with the properties
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1) ty ¢ Txand t e T implies +tt, € T,, and

2) ty e T, and ty © Ty implies t, Vv ty € Tx+y'

Several lemmas can now be stated, and their proofs follow as in ',:1] and [2],

LEMMA 1, Let ty5 tp € T. Suppose ty(g) € U implies t1(g) ¢ U for arbi-
trary g ¢ G and U e J{, Then ty € t,.

LEMMA 2, If {ti} is a monotone sequence of elements of T, and if f ¢ G
is s-boundsd, then {t,(£)} is Cauchy in G,

Given U e ,L( we write Uo = U and for each n > O we write Un to represent
some element of /u where U, + U, CU,_,, whence 2nU C U, This is possible
since addition is continuous in G,

DEFINITION, T has Property A if given g ¢ G and U & A{ then there exists
a V ¢ U such that if a, b ¢ T and (a'b)(g) £ U then a(g) ¢ V and (a + a'b)(g) £ V.

Note that Property A is a condition yielding information about the growth
of elements from G; a condition on the manner in which projections affect the
relative location of elements in symmetric neighborhoods, We also look at a
smaller class of neighborhoods by selecting an arbitrary bounded set ﬁ from
and forming the sets nU with n = 1,2,ee+, Choosing U;, Uy, +++ we then form

A ~

Y
S = {..., Uy, U 12 Us 28, -"} and set/ueqnal to the set

%isiz siss,siﬂsjiri”}.

It tollows that Upossesses the following property inherited from /u ifr
U & AL then there exists Uy e ,L{ such that U, + U; C U, This yields the result,
LEMMA 3, If T has Property A with respect to M, and if t¢, t2 e T with
tq € tp, then ty(g) € U implies t1(g) € U for arbitrary g ¢ G and U 8/(2.
From now on we shall assume T has Property A with respect to /C{.
LEMMA ), Let f £ G be s-bounded, {tk} C Tand U e,(:(. Then there exists

a positive integer n such that if j ® 1 >n then
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e = v (0 e,

v
1€k¢€j k€n

For g ¢ G and n ¢ N let S(n,g) = {U e Jl: t(g) ¢ U for all t eTVn},

Lemma 3 guarantees that no S(n,g) is empty,

LEMMA 5, If t(g) # O for some t e Ty /ns then there exists : W ¢ S(n,g)
such that W, + W, + «co + W, ¢ S(n,g) for all choices of Wi e M.

PROOF, Let U & S(n,g) and construct a sequence {A} c ,C(u follows, Set
Ay = Uy + Uy + .cc + U for arbitrary Us, and set A, = (&) + (A )y + «o- +
(&), for arbitrary (A);. Now A, c [(2%1)/2°]u, and then A, < [(2%1)/2"]%,
In general A C [(2“'-1)/2"]k U. But the coeffictent [(2%1)/2]* can be made
as small as we like (consequently given i > O there exists k > O such that
Ac Ui)’ 80 if the lemma is not true then given U ¢ S(n,g) there would exist
Uys Up, °**5 Uy such that Uy + +o+ + U e S(n,g). Setting A, = U, + «v + U
we apply the hypothesis again and get (4;)q + - + (A1 )n e S(n,g). Continuing
this procedure yields sets Ak which contain {t(g): te T1 /n}’ and which continue
to get smaller, This is impossible sinee t(g) # O for some t,

Let us denote this set W by W(n,g), This lemma implies that out of all the
neighborhoods containing. {t(g): ¢ ¢ T, .}, W(n,g) is one of the "smallest,"
Since {t(g): t e Ty /(a+1 )} is contained in {t(g): te T1/n} we can choose our
W(n,g) to be nested, W(n,g) > W(n+1,g)., Assuming this sequence of neighborhoods
converges, we are led to defining the following function,

DEFINITION, Let !:G-),C( by Y(g) = lim W(n,g).

This function is the counterpart to the function y in f_ 2], Our last lemma is
the following,

IEMMA 6, let G be complete and f ¢ G be s-bounded, Let W(n,f) be an
associated sequence of neighborhoods as above that contain {t(£): t ¢ T, /n}‘

Then given M > O there exists a decreasing sequence {aj}\f in T such that

1) if x > O then there exists an integer i such that a; ¢ T,, and
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2) 1im a,(f) £ Wy + Wy + coo + W, where W = lim W(n,f), and for all W,

PROOF, To just sketch the essentials of the lemma, we let t:l. € ’1'1 /21+1
such that ti(f) A Wy + Wy + cee uwz for all Wy, 1= 1,2,°°*,M+2, This is
possible by the choice of W(n,f), By Lemma L there exists a positive integer n,

such that j *1i>n, implies ( v ¢ = B )(£E) e Wyy3e APPlying

i¢k<j
Lemma lj again to the sequence t

ké

1 ,,1+2: cecy t‘nz’ +++ produces a positive

integer n, such that ( \/ - J(£f) eW  for j2i>n
2 i.‘ké,jtk n1<k4ntk M+l

Continuing this process we get an increasing sequence {n J}“ of positive integers

2.

such that ( V4 - 4 E) € whenever p 2 q >n_,
qék*ptk “;j1<k‘ntk R J

If “j = \/é ti then uj eT1/2nj+1 and k > J implies
nj <i nj+1

(. vékup-u)(f)eWM+j+3, Setting a =

j produces the desired
J <p

J " k
decreasing sequence,

We now can state and prove our main decomposition result,

THEOREM, Let G be an Abelian topological group, and let T be an algebra of
projection operators on G, Assume T ,(/( and l:( are as before with G being
complete, and with T possessing Property A with respect to /u If f ¢ Gis s-
bounded then there exists unique elements h, s ¢ G such that

1) f=h+s,

A
2) given U ¢ ,U there exists a positive real number x such that if t ¢ Tx
then t(h) ¢ U,

3) given U e AL and & > O there exists ¢ e T_ such that t'(s) ¢ U,

PROOF, First, as counterparts to the classical Lebesgue decomposition
theorem, the element h is to represent the continuous portion of f, while s
represents the singular portion, Again, to just sketch some of the essentials

of the proof, we bypass the uniqueness and, turning our attention to existence
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note that if h = f satisfies condition (2) then there is nothing to prove, De-

noting Y(f) by W(f), we assume W(f) contains points other than O ¢ G, Then, from

Lemma 6, there exists a sequence {aﬁ}\ in T such that lim a;,(f) £ W, (£) + Wz(f)

for all W,(f), Let sy = lim aj4(f) ¢ G and £; = £ = s; = Lim a,,'(£), If

Y(f‘l) = {O}, then f; satisfies (2) and the proof is completed because a”_(f) s,
rS

implies a1i'(s1) - 0, and thus f; is also s-bounded, So given U e and e >0

there exists t ¢ T, such that t'(s) € U, namely t = ay for large i, If f, does

not satisfy (2), applying Lemma 6 to f; produces another sequence {aﬁ}\ in T

such that 1lim 321(1‘1) £ W1(f1) + W2(f1), Let s, = 1im a2i(f1) and f, = £, - 5, =

1linm azi'(f1). Then f, is s-bounded and f = f, + (s1 + s2), To show 5, * s,

2
~
satisfies condition (3) we let U ¢ /u. and ¢ > O, We have a1i'(s1)—) 0 and
azi'(sz) = 0, So there exists a positive integer N such that a,,'(s;) e U; and
' 1 -

a5y (32) e U, for all i greater than N, Then (auv 321) (s1 + 32)

(2,
t = a, Vay for large i, So if ¥(f,) = {0} then let h = £, and s =5y + s,

"Aay')sy) + (25" Aay')(s,) e U, Condition (3) is satisfied by letting

and the proof is completed, If not, continue the process, If for some positive
integer k, Y(fk) = {O}, we are through, Otherwise we obtain a sequence {(sk,fk)}
of pairs of elements of G and a sequence {{aki}i:‘l} of non-increasing sequences
of elements of T such that for each positive integer k we have
1) there exists a sequence {xki}i; of positive reals where x . =¥0
and a4 ¢ Txki’

Ln a(f,4) with £, =1,

2) s
3) fk = fk_1 - Sk = l%m aki'(fk'1)’

L) s, £W(£,4) + Wy(f, 4) for all W(f, ,),
k

5) f=f£ + Zsi.
i=1
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In the end we will have our decomposition f = h + s with 8 = Zsiand h=f-g,
i=1
Toward this goal, although the steps shall be omitted, the next step is to show

1im s = O by showing that 8y eventually be&ongs to an arbitrarily selected U e/J\

And then it must be established that lim exists, Assuming this, we then
n

let s = lim S‘si and h = f - g, We shall show that s satisfies condition (3)
n —d

11
n
of the theoren, Ve have s = 1in &y (£, ;). let U e ). Thena '(s)0, s

a,'(s) e U4y for all i greater than some positive integer M, Since s =
lim Zsi then there exists a positive integer N such that Zsi € U,, and then
i=N+1
[

aki~J.:(s)= Ik"Naki! > [_ksuaki' Zsj

ivN

N

N

T

n "(s. DoV vty
Zk=}laki(83) ’ i_ksnaki.' /.55
3= RS
> 4+ osoo + UN+1 4».[_]1
e U,

e U for large i = max{l-’lvu-,nn\}

So, let t = = XX iti -
, le . YN a, where i max{li , MN} and condition (3) is satis

fied, Now h=f -s=1inf and ¥(f)-{0% Then ¥(n) = {0} and the
decomposition is finished,

These results are part of the author's dissertation from Colorado State

University,
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