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ABSTRACT. A general method for the solution of plane isotroplc elasticity crack

problems inside a finite medium of arbitrary shape or an infinite medium wth

holes of arbitrary shape is presented. This method is based on the complex

potential approach of plane elasticity problems due to Kolosov and Muskhellshvill

[i] and makes no assumption on the way of loading of the cracks and of the other

boundaries of the medium.

The whole problem is reduced to a complex singular integral equation along

the cracks and the other boundaries and the values of the stress intensity factors

at the crack tips may be evaluated directly and accurately from the numerical

solution of this equation. An application of the method to a circular medium wth

a straight crack is also made.
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i. INTRODUCTION.

An efficient method for solving plane elasticity crack problems and estimat-

ing the stress intensity factors at crack tips is the method which reduces the

problem to a Cauchy type singular integral equation (called in the sequel simply

a singular integral equation) either by considering a curvilinear crack composed

of a series of edge dislocations, or by using the complex potential technique of

Kolosov and Muskhelishvili l] The first approach was developed in papers by

Goldstein, Salganik and Savova [ 2-4]. These researchers reduced the problem of a

curvilinear crack in an infinite medium to a system of two real Cauchy type sing-

ular integral equations along the crack by assuming that both its edges were load-

ed in the same way. The second approach was used by Lin’kov [ 5], who used the

complex potentials (z) and (z) of Kolosov and Muskhelishvili [I] and assumed

that the total force exerted on the curvilinear crack was vanished.

Panasyuk, Savrk and Datsyshin, in a series of papers the results of which

were reviewed in [6], used the more practical complex potentials (z) and (z) of

Kolosov and Muskhelishvili [I], but restricted their investigations to straight

cracks, which are the most easy to solve. Finally, the present authors, using also

the complex potentials (z) and (z), solved several general plane elasticity crack

problems in infinite media [7I0] by relaxing any assumptions on the shape and

loading mode of the cracks.

In this paper the previous methods were extended to cases of finite elastic

media where the outer boundary or inside boundaries due to holes and other voids

may interact with the cracks. The problem will be reduced to a complex singular

integral equation along all boundaries of the plane elastic medium under

consideration (the cracks included). For the numerical solution of this equation

the numerical techniques developed by the authors in references [14] and [15] can
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be successfully used as already made in these references, as well as in references

[I0], [II]. Finally, an application will be made to the simple problem of a

circular medium with a straight crack under constant pressure.

2. AN INFINITE MEDIUM WITH HOLES AND CRACKS

We consider an infinite isotroplc elastic medium under generalized plane

stress or plane strain conditions containing a system of arbitrary-shaped cracks

LIj, as well as a system of holes L2j (Fig.l). The material of the elastic medium

is characterized by the elastic modulus E and the Polsson ratio . The Polsson

ratio 9 is replaced by the constant [I] defined by ,=(3-)/(I+) for generalized

plane stress conditions and by =3-49 for plane strain conditions.

The loading of the medium is the most general consisting of loading the two

faces of the cracks and the holes and of loading the plate at infinity. The loading

on the cracks and’ the holes is characterized by its normal and Shear components,

Sn(t) and t(t), respectively (Fig. l), where t=x+iy denotes a generic point of the

holes and the cracks in a Cartesian coordinate system 0xy. The loading distributions

along the two faces (+) and (-) of the same crack may be different. Moreover, the

positive directions along each crack (defining also the (+) and (-) edges of this

crack) are defined arbitrarily, whereas the positive directions along the

boundaries of the holes are considered counter clockwise. As regards the loading at

infinity, it is assumed that we know the values of the principal stresses N
1
and

N2, the angle formed between the direction of N
1
and the Ox-axls, as well as the

value e of rotation at infinity. Since the value of e does not influence the

stress field, it may be assumed having an arbitrary value, being equal to zero.

Then the well-known constants F and F’ of Muskhelishvili [i], to which the complex
\

potentials (z) and (z) (z=x+iy) tend at infinity, will be given by [I]

1 21m(z) r (NI+N2)+i e== p E/[2(I+)]
Z-

(la)
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Zo2 +

Fig. I. An infinite plane medium with a set of holes and cracks.

I
im(z) F’ (Ni-N2)exp(-2iu)

where is the shear modulus of the elastic material.

(lb)

The peculiarity of the problem under consideration, compared to other crack

problems is the existence of holes of arbitrary shape inside the infinite medium

which may be at any distance from the cracks.

Thus, the case solved in this paper is of great practical interest since not

only the influence of the external boundary may be evaluated, but also the

influence of voids and small discontinuities of the material close to the crack

may be taken into account in defining the fracture mode of the substance. To

maintain the general character of the formulation of the problem in terms of the

complex potentials #(z) and (z), we consider the holes L2j as filled with

inclusions of the same shape as the holes and consisting of the same material as
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the elastic medium. Along the boundaries L2j of these inclusions we assume no

loading existing. Thus the boundaries L2j of the holes can be considered as cracks

loaded in a known way.

Now, following the developments of references [7-11], we determine the complex

potentials (z) and (z) in terms of Cauchy type integrals

1 I(z)
L z-z

(2a)

1 z(z)I (z (z)
2-- L (z-z)2

P(z) i L
dz+r’ (2b)

where L denotes both the cracks LIj and the boundaries L2j of the holes. In these

equations the density (t) is an unknown function of the points t of L, whereas the

function q(t) is defined by

(3a)

(3b)

along the cracks LIj and the boundaries L2j of the holes respectively, because of

the loading of the ’inclusions’ already assumed. It can further be seen on the

basis of the PlemelJ formulae [I] that the boundary conditions along L are

+ + ] -+ +
2Re-(t) + ’-(t)++(t) On(t)-lo(t)

dt L

dt dt/ds

dt dt/ds
(4)

where s is a variable denoting the arc-length. These conditions are satisfied if

the density (t) in equations (2) satisfies the complex singular integral

equation

z-t i L (z-t)2
p(t)-

-2Rer- ddr’+---I f q()-] tEL,
i L

,-t

where the new function p(t) is given by

(5)

(6a)
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2p (t)ffi On (t)+iot (t) (6b)

along the cracks LIj and the hole boundaries L2] respectively.

Moreover, the conditions of slngle-valuedness of displacements around the

cracks LIj or the holes L2j can be written as

2 f q(T)dT j 1 2()dT +I
LI

’’’’’ml (7a)

(T )dT#ffi --L2j L2j
q(z)dz j 1,2,...,m2 (7b)

where m and m
2

are the to numbers of cracks and holes respectively. Equations

(7a) are analogous to those obtained in references [7-10] for cracks in an

infinite isotropic elastic’medium without holes. Equations (7b) coincide with the

condition of single-valuedness of displacements for a finite medium or an infinite

medium with a hole considered in reference [II].

The forms of equations (7a) and (7b) have no difference. In fact, under the

present formulation the holes have been interpreted as contour-shaped cracks.

Equations (7) supplement the singular integral equation (5) and have to be taken

into account independently to obtain the correct results for the unknown density

function (t).

Although equations (5) and (7) are adequate to obtain a physically acceptable

solution for the crack problem under consideration, yet they are not adequate for

the single-valued determination of the unknown function (t). This phenomenon is

due to the presence of the holes, not the cracks, and was investigated in

reference [II].

Briefly speaking, although we are sure, because of equation (4), about the

vanishing of the total force and moment applied to each one of these inclusions,

we have no guarantee that the complex potential (z) is completely determined

inside these inclusions, which psysically are completely separated from the
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elastic medium surrounding them. In fact, for finite media, a complex constant

can be added to (z) without any change in the stress field; only a rotation of

the finite medium takes place.

In order to get rid of this arbitrariness we impose the further conditions

Im(z0j) Dj j 1,2 m
2

(8)

where z03 are points inside the inclusions S2j and D.j are arbitrary constants.

These conditions define in a unique manner the imaginary constants just mentioned.

Furthermore, because of equation (2a), valid in the whole elastic plane, equations

(8) take the form

JL-Z0j
where E. are also arbitrary constants.

Moreover, since the arbitrariness in the values of (t) is restricted only

(9)

along the hole boundaries L2j not along the cracks L

(9) by

lj’
we can replace equations

Im[-i f (’r’d’r] 0 j 2 m
2

(10,

L2j-z0j J

These conditions seem simpler to treat than conditions (9). However, neglecting

these conditions does not lead to any erroneous results; Just the values of (t)

along the contours L2j during the numerical solution of equations (5) and (7) are

not convergent. On the contrary, the values of (t) along the cracks LIj are

completely convergent.

Finally, it is convenient to incorporate conditions (7b) and (I0) into the

singular integral equation (5). This is because we thus impose the fulfilment of

the boundary conditions at anyone of the collocation points used along the

contours L2j during the numerical solution of the system of equations (5) and (7),

by replacing the corresponding linear equation by the equation resulting from

equation (7b) or (I0) for the same contour L2j.
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By taking into account the fact that equations (4) or (5) give no resultant

force or moment on the inclusions S2j we introduce additional terms in equation

(5) and neglect in the sequel equations (7b) and (I0). Thus we have

Re[ (T)dT d.l Re[-)(T)dT]+6 2Re I]LT’t ] IL’ (t)[ Clj
-t=i (v_t) 2

(t-z0]

where

dT +
t_z0j

x+-Tql(T)]d p(t)-2Rer

L2j dt

[r’ + I q()-] t E L
L -t

(11)

6(t) I for t E L2j J 1,2,...,m2 5(t) 0 for t ELIj
j 1,2,...,m1 (12)

and Clj and C2j are arbitrary constants, the first of which has a non-zero real

part.

The values of these constants are assigned before the numerical solution of

equation (II) together with conditions (Ta) and, because of conditions (Tb) and

(I0), they have theoretically no influence on the values of (t) determined from

the numerical solution of equations (11) and (7a).

We can also consider that Clj-=0 and ignore the corresponding term in equation

(II). Then this equation w-ill have an infinite number of solutions, but all of

them will be correct in the sense that they will satisfy all boundary and physic&l

conditions of the problem and will give the correct values of the stress

intensity factors at the crack tips.

However it is not permissible to neglect the term multiplied by C2j in

equation (II). This term substitutes the conditions of single-valuedness of

displacements (7b) around the holes L2j and should be taken into account.
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3. A FINITE MEDIUM WITH A SYSTEM OF CRACKS

The results of the previous section can also be directly generalized to the

problem of a finite medium S with a system of cracks Lj (J--l,2,...,m) as shown in

Fig.2. The external boundary of the medium S is denoted by L
0

and the boundary

X ,Zo

Fig. 2. A finite plane medium with a set of cracks.

conditions along Lj and L
0

are assumed to be the same as those considered in the

previous section. In this case we assume the infinite medium S outside L
0

to be

also occupied by the same isotropic elastic material as the medium S. Furthermore,

we assume the loading distribution

p(t) o (t)+io (t) (13)n t

to act along L
0

on both media S and S This is contrary to what was made for the

fictitious inclusions filling the holes in the previous section, which have been

assumed unloaded, but it is preferable, since, in this way, we have

q(t) 0 (14)

along L
0

and equation (II) is simplified along this contour taking the form
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Re Tite e (T-t) 2

+6(t) i Re ( )dT (T)dT
(t_z0)2 LoT-Z0

+
t-z

0 L0

p(t) at I I q(t)- t E e (15)
d- i L -t

where L
0

denotes the contour surrounding the elastic medium, z
0

is a point inside

the elastic medi (not belonging to L
0

or the cracks L.)j L denotes all the

boundaries of the medium (the cracks included), that is L=LoULI2U.. .ULm and the

function 6(t) is defined as

6(t) for t E L
0

6(t) 0 for t L N L
0 (16)

Moreover, the function p(t) is defined by equation (6a) along the cracks L. and by

equation (13) along the contour L0. Also the function q(t) is defined by equation

(3a) along the cracks and vanishes, in accordance with equation (14), along L0.

The conditions (7a) of slngle-valuedness of displacements along the cracks

have also to be satisfied when solving equation (15) independently of this

equation, that is

q(T)dT j 1,2,...,mp(T)dT - e.
(17)

The complex potentials (z) and (z) remain given by equations (2) without

the presence of the constants r and r’, which have no meaning in the case of a

finite isotropic elastic medium.

It is now necessarY to show that equation (15) ensures the single-valuedness

of the unknown density function (t) along L0, that is

(T)dT 0 (18)
L
0

which is equivalent to the condition of single-valuedness of displacements along
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the fictitious crack L
0

formed between the teal medium S and the fictitious medium

,
S as well as the single-valuedness of the complex potential O(z), expressed here

as

Ref (T)dT 0

LoT-Z0
(19)

Equation (19) is sufficient, so that no arbitrary purely imaginary constant can be

added to the complex potential #(z) rendering it multlvalued, since such a

constant would change the value of the integral in equation (19) because of the

formula [I]

2xi L0-z0dT C

if L
0

is a contour surrounding a finite slmply-connected medium S and z06S as

happens in this case.

(20)

It is worthwhile mentioning that we may ignore both conditions (18) and (19)

together with the term multiplied by 6(t) in equation (15). Then, this equation

supplemented by conditions (17) will have not a unique solution, but this is not

of much importance since any approximate solution obtained by solving this

modified form of equation (15) will satisfy this equation that is the boundary

conditions of our problem. This means that if, for example, we consider the

approximate values for the stress intensity factors at the crack tips obtained by

solving approximately equation (15), they will converge to their correct values.

Yet, there are two reasons for which one wants that equation (15) should

have a unique solution: The first is that is customary in plane elasticity

problems to make use of singular integral equations possessing a unique solution:

and not an infinity of solutions as it would be the case, if the term multiplied

by 6(t) were ignored. However, a strict proof of the uniqueness of solution of

equation (15) together with conditions (17) is beyond the aims of this paper and

not at all straightforward.
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The second reason for which the complete form of equation (15) has to be

used is that, in this way, the numerical results for (t) along L0 will be

convergent to specific values along L
0

and not to floating ones. This is sometimes

useful in order to estimate the efficiency of the numerical technique used.

We will show now that the term multiplied by 6(t) in equation (15) forces the

satisfaction of conditions (18) and (19). If the medium S contained no cracks,

this statement would be evident in view of the developments of reference [II]. But

in the present case this is not evident especially in the cases when there exist

resultant forces and moments exerted on the cracks L. The results of reference

[II] have to be appropriately generalized. Thus, by taking into account the

boundary conditions (4), as well as equations (14) and (16), we can wite the

singular integral equation (15) as

d-- dtL’(t-z0) 2Re JLT-Z0

C2 I ()dT] p(t) t E L0t-Zo L
0

(21)

We will show that both conditions (18) and (19) will be satisfied when equation

(15), together with conditions (17), is solved, or, equivalently, that any

solution of equation (21) satisfies the boundary condition

(t)+(t) + [t’(t)+(t)] p(t) t E L0 (22)
dt

In equations (21) and (22) and in the sequel the symbols (t), ’ (t) and (t)

denote the boundary values of the functions (z), ’ (z) and (z) as z lles inside

S and approaches the. point t of L0.

If we denote by (X,Y) the resultant force exerted along the whole system of

cracks Lc (LcfLIUL2U’’’ULm)’ then, because of equation (3a), we have

2f q(T)dT iP P X+iY
JL

c

(23)
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Moreover, since the medium S is assumed in equilibrium, the resultant force

exerted along L
0

should be opposite to (X,Y). Then, because of equation (13), we

find

p(T)d -iP
L
0

By taking also into account that

(24)

)dz [ [+((z z) -()]d,
L
0 L

c

(25a)

(’r)d’r IL
0

L
c

(25b)

as well as equation (2) yielding, by application of the first formula of Plemelj

[1]

+(t)--(t) (t) (26a)

P+(t)-P-(t) d--t[2q(t)-(t)] d[(t)]
dt

and equations (17) and (23), we can find that

(26b)

(z)dz P
i
+ILo

(27a)

+/-.(T )dz
Lo

(27b)

By multiplying both sides of equation (22) by , integrating along L
0

and taking

into account equations (24) and (27), as well as the fact that

) 0d [-(
Lo

(28)

we derive that both sides of the resulting equation are identically equal to iP.

This means that, if the same procedure is used for equation (21), then, because of

equation (20) too, we must have

(z)dz 0C2
LO

(29)
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or since C2#0 by assumption, condition (18) is satisfied.

In another wording, the addition of the term multiplied by the constant C
2

to the boundary condition (22) to obtain the boundary condition (21), assures the

satisfaction of the boundary condition (22).

Furthermore, if we denote by (Mx,My) the resultant moment of the forces

exerted on the system of cracks L then the opposite moment should result which
c

is exerted on the boundary L
0 by the loading applied along this boundary since the

medium S was assumed in the state of equilibrium. In this case, it is easy to see

that

Re| p()dT -M M M +iM (30)
x y

Lo
Furthermore, by taking into account equation (26b), it is possible to show that

[ (z)dz -M (31)Re
L
c

and, further, to prove that the term multiplied by the constant CI in equation

(2 I) should vanish.

Hence, the addition of this term to the boundary condition (22) does not

prevent this condition from being satisfied. In this way, the proof that equation

(15), equivalent to (21), assures the fulfilment of both conditions (18) and (19)

and the satisfaction of the boundary condition (22) along L
0

has been completed.

4. THE NUMERIC.AL TECKNIQU.E

The numerical solution of the singular integral equations derived in this

paper can be achieved by reducing such an equation to a system of linear equations.

This can be achieved by approximating the integrals through the use of appropriate

numerical integration rules and applying the resulting equation at appropriately

selected collocation points.

To illustrate this technique, we consider the simple problem of a finite

isotropic elastic medium S surrounded by a smooth contour L
0

and containing a
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simple smooth crack L In this case we assume that we know the parametric

equations at L
0

z
0 z0+iY0 x0(s0)+iy0(so z0(s o (32)

and at L
c

z Xc+iYc xc(s )+iyc(s zc(sc)C C C
(33)

where s
O

and Sc are real variables varying along L
0

and Lc respectively. Without

loss of generality we can assume that so and Sc vary in the intervals [0,2] and

[-i,i] respectively. In the opposite case this can easily be achieved through

linear variable tranformation of the from

s" as+b (34)

where a and b are appropriate constants.

Moreover, we assume to know the normal and shear loading components along L
0

and L
c

P0(t) On(S0)+iot(s0) t L
0

(35)

Pc(t) On(Sc)+iot(sc T E Lc (36)

assuming, for simplicity, that the same loading distribution Pc(t) is exerted

along both edges (+) and (-) of the crack L Finally, the constant z
0

in equation
c

(15) is assumed to have an appropriate value z0=c such that the point z
0

lies

inside S, but not on the crack L Similarly, the constants C and C
2

in this
c

equation are assumed having concrete values.

For numerical integrations along the contour L
0
we can use the well-known

trapezoidal rule with. no abscissae. By defining the abscissae T0i and the

collocation points t0k along L0 by

T0i z0(0i) 0i 2i/n0+00 i 1,2 no (37)

t0k z0(s0k) S0k (2k-1)/n0+O0 k 1,2 ,no (38)
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where 0 is an arbitrary constant, we have

nO

h0(T,t0k)dT . A0ih0(T’0i,t0k)
i=l

the weghts A01 determined by

(39)

A0i 2z6(o0i)/n0 i 1,2 ,no (4O)

the numerical integration rule (39) is valid both for regular and Cauchy-type

integrals provided that the points t0k are determined by equation (38).

Moreover, for the numerical integrations along the crack L we can use the
c

Lobatto-Chebyshev numerical integration rule 12] with n abscissae. By defining
c

the abscissae and the collocation points t
Cl ck along Lc by

T z (Oci) o cos[=(i-l)/n-i] i 1,2, n
ci c ci c c

(41)

tck Zc(Sck) Sck cos[(k-0.5)/(nc-l)] k 1,2 nc-I (42)

we have

n

(l-s2)-1/2h ( tck)dY [ A h (c t
L c c

i=l
ci c i’ ck

c

(43)

the weights A determined by
c1

A I z’(Oci)/ I)
ci i c (nc-

2,3 ’nc-I %i 1/2 i l,n
c

(44)

In this way, there exist (n0+nc) complex unknowns in equations (15) and (17),

the values of (t) on L
0

and X(t)=(t). (l-S2c)1/2 on Lc at the abscissae used 0i
and ci along L

0
and Lc respectively, or, equivalently, 2(n0+nc) real unknowns

in these equations.

Furthermore, we obtain no complex linear equations by applying equation (15)

at the collocation points t0k along L
0

and (nc-l) complex linear equations by
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applying the same equation at the collocation points tck along Lc.
One more linear equation is obtained from the condition of slngle-valuedness

of displacements (17). In this way, we have finally (n0+nc) complex linear

equations, or 2(n0+nc) real linear equations with an equal number of unknowns.

By solving this system of equations we obtain the approximate values of the

unknown function (t) at the abscissae T01 along L0, as well as the values of

X(t)=(t).(l-s2)1/2
at the abscissae T along L

C C1 C

We can also mention that it is very advantageous to use complex arlthmetlc

in the computer for the evaluation of all required quantities and especially the

matrix of coefficients of the system of linear equations to be solved. Moreover,

it is evident that the factor dt/dt in equation (15) can easily be computed at a

collocation point t0k of L
0

or tck of Lc as

[dt/dt]t=t0k-- z’(s0k)/Z’(S0k [dt/d-]t=tck
z’(s0k)/Z’(Sck) (45)

Finally, the complex stress intensity factors KA and at the tips of the

crack L corresponding to s =-I and s --+I, can easily be computed if one takes
C C C

into account the formula

K 2.21/2exp --I1m[ (z-c)1/2(z)
z /z-+c

(46)

where c is the value of the complex variable z=x+iy corresponding to the crack

tip under consideration and % the angle between the Ox-axis and the tangent to
C

the crack at the crack tip z=c in the direction of extension of the crack. Then

we can find that

K
A KIA-IKIIA ilz(-1) 11/2x(z (-1)) (47a)

C

KIB-IKIIB -ilz(+1) 11/2X(Zc(+l)) (47b)
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Since the Lobatto-Chebyshev numerical integration rule for the numerical

integrations along the crack L
0

contains among the abscissae used, equations (41),

the end-points o =+i of the integration interval, the evaluation of the stress
c

intensity factors at the crack tips, by using equations (47), is straight-forward.

Moreover, we can mention that it is also possible to treat the cases of

cracks of complicated shape like branched cracks or cruciform cracks by applying

techniques presented in reference [14] and references [13] and [15] respectively.

Similarly, it is possible to apply the present technique to the case of edge

cracks, as made in reference [16] for the case of a crack terminating at the

boundary of a half-plane. In this case, no condition of single-valuedness of

displacements has to be taken into accoun along the cracks. Furthermore, in the

case when a crack tip approaches another crack tip or a boundary of the elastic

medium, the modification of the Lobatto-Chebyshev method proposed in reference

[17] can be successfully used. Also in the case of semi-infinite straight or

curvilinear cracks, the Lobatto-Chebyshev method of numerical integration along

the cracks should be replaced by the methods proposed in references [18] and [19].

Several more numerical techniques for the solution of singular integral equations,

which may be applied to the solution of the singular integral derived in this

paper, are reviewed in reference [20].

5. AN APPLICATION

As an application we consider the problem of a circular plane isotropic

elastic medium with a straight crack along one of its diameters assumed for

simplicity to coincide with the Ox-axis, as shown in Fig.3. The crack is assumed

to be loaded by a pressure of constant intensity o, whereas the circumference of

the circular medium is assumed unloaded. The radius of the circular medium is

denoted by R, the length of the crack by 2a and the distance of the middle-point

M of the crack from the centre 0 of the circle by d.
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x-a Lc x=b

i

Fig. 3. A circular disc with a crack along one of its diameters.

Then, in accordance with the notation of the previous section we will have

Zo(S) Rexp(is) Zc(S) asd Po(S) 0 Pl(S) o (48)

The singular integral equation (15), together with the condition of single-

valuedness of displacements (17), was solved by using the numerical technique

proposed in the previous section. In Table I we present the dimensionless values of

oa1/2)the stress intensity factors KA/(oa) and /( at the crack tips A and B

(Fig.3), for the case when a/d=2.4 and d/R=0.2, for several values of the numbers

no and nc of the abscissae used. These results were obtained for CI=C2=I and

z0=c=0.5i. The influence of these constants on the values of the stress intensity

factors K
A and is not great. Moreover, from the results of Table I we see that,

as the numbers no and nc of abscissae used increase, the values of the numerical

results obtained converge. Finally, the values for KA/(a1/2) and KB/(oa1/2) presented

Table I were seen to be in accordance with expected values of these factors

presented in reference [21] for the same geometry and loading conditions (Table 3.3.1).
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6. CONCLUSIONS

By using the method of complex potentials of Kolosov and Muskhellshvill it

was seen that every plane elasticity crack problem inside a finite or infinite

medium with or without holes can easily be reduced to a complex Cauchy-type

singular integral equation along both the cracks and the boundaries of the medium.

These singular integral equations can be effectively solved by reducing them to

systems of linear equations. In his way, it is possible to determine numerically

the values of the stress intensity factors at crack tips for almost any geometry

of the crack and the whole elastic medium and under arbitrary loading conditions

on the cracks and the boundaries of the medium.

Even the case when the loading distributions are not the same on both edges

of the cracks and there exists a resultant force, as well as a resultant moment

on each crack can be treated.

As regards the accuracy of the numerical results obtained, this can be made

as good as we want at the expense of computer time and the use of appropriate

numerical integration rules.
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TABLE I

Dimensionless values of the stress intensity factors KA/(oa1/2) and KB/(oa1/2) at the

tips of the crack of Fi. 3 (for a/d=2, g and d/R=0.2) obtained by using the

numerical technique of this paper (with C1=C2=1 and Zo=C=O. 5i) for several values

of no and nc.

no n
c KZ/(ca1/2) KB/(ca1/2)

i0 5 I. 3269 I. 3800

15 ,5 I. 3495 1.4321

20 S 1.3542 1.4490

25 5 1.3552 1.4529

I0 I0 1.3265 1.3798

15 I0 1.3497 1.4322

20 i0 1.3544 1.4492


