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ABSTRACT. The well-known summability methods of Euler and Borel are studied as
mappings from 2t into Zl. In this £-£ setting, the following Tauberian results

are proved: if x is a sequence that is mapped into Iil by the Euler-Knopp method Er

/n < =,

[x

with r > 0 ( or the Borel matrix method) and x satisfies I _ -x ..
n=0'"n n+l

0
then x itself is in Zl.
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1. INTRODUCTION.

In [2, p. 121], G. H. Hardy described a Tauberian theorem as one which
asserts that a particular summability method cannot sum a divergent series that
oscillates too slowly. In this paper we shall state the results in sequence-to-
sequence form, so a typical order-type Tauberian theorem for a method A would have
the form, "if x is a sequence such that Ax is convergent and Axk=xk- X1 =o(dk),

" Our present task is not to give more theorems in

then x itself is convergent.
the setting of ordinary convergence, but rather, we shall develop analogous
results for methods that map £ into Jl. Such a transformation is called an £4-4
method, and we shall henceforth write £ for 11. In [5] Knopp and Lorentz proved
that the matrix A determines an £-£ method if and only if sup 2:;0|ank| < @,

In order to prove Tauberian theorems in an 4-£4 setting, it is necessary to
formulate an £#-4 analogue of the above Tauberian condition Axk = O(dk)‘ Since

this condition means that Ax/d is in cg» &n 2-4 analogue would be "Ax/d is in £,"

which we shall write in series form as E:=0|Axk|/dk < =,

2. EULER-KNOPP_AND BOREL 4-4 METHODS.

The Euler-Knopp means [6, pp. 56-60] are given by the matrix
Gfa - o™, if ks,
Er[n,k] =
o, if k > n.
In [1, Theorem 4] it is shown that Er determines an £-4 method if and only if
0<r<1. Moreover, for such r, E;lfl] # 4.
The customary form of Borel exponential summability is the sequence-to-

function transformation ([2, p. 182], [6, p. 54]) given by

if lim {e't2:=oxktk/k!} = L, then x is Borel summable to L.

t-®

In order to consider this method in an 4-£ setting, we must modify it into a
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sequence-to-sequence transformation. This can be achieved by letting t tend to «
through integer values and considering the resulting sequence Bx. Then B is the

Borel matrix method [6, p. 567, which is given by the matrix

-n_k
bnk =e n /k!.

By a direct application of the Knopp-Lorentz Theorem [5], one can show that B is
an £-4 matrix. We shall not use this direct approach, however, because the
assertion will follow from our first theorem, which is an inclusion theorem

between B and Er'

THEOREM 1. If r > 0 and x is a sequence such that Erx is in £, then Bx is

in 4.

PROOF. We use the familiar technique of showing that BE;1 is an 4-4 matrix.
Since Bx = (BE;I)Erx, this will ensure that Bx is in 4 whenever Erx is in 4.
Since E;l = El/r’ we replace 1/r by s and show that BEs is an £4-4 matrix for all
positive s. The n,k-th term of BEs is given by

-n_j
> e™d g . ikk
BE[n,k]) = 3, =57 ()@ - &) s

e-nnksk ® nj-k

( -k
KT Zyek T T ®)

k -ns
ns) e

k! .

Summing the k-th column of BES, we get

z:=0 |BEs[n,k]| = %T znzo(ns)ke-ns

0(k1—! J.o (ts)e E2ar)

0(1/s).
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2 [ ® )
Hence, sup, T o |BEs n,k]| < ®, so BE, is an 4-4 matrix.
Combining Theorem 1 with the knowledge that Er is an £4-4 matrix, we get the

following result as an immediate corollary.
THEOREM 2. The Borel matrix B determines an 4-£ method.

In addition to the inclusion relation given in Theorem 1, we can show that
the £-4 method B is strictly stronger than all Er methods by the following

example.

EXAMPLE. Suppose r > 0 and %, = (-s)k, where s 2 -1 + 2/r; then Bx is in 4
but E x is not in 4. For,
k
_ = -nn_, k _ -n-sn_ -n(stl)
(Bx)n—zk=0e k!(s) =e e = e s
and

G = O -0 ) = a - r - )"

By solving -1 <1 - r'- rs < 1, we see that Erx is in 4 if and only if

-1<s<-1+2/r.

3.  TAUBERIAN THEOREMS.
We are now ready to prove the principal results which show that B and Er can

not map a sequence from ~4 into £ if the sequence oscillates too slowly.
THEOREM 3. If x is a sequence such that Bx is in 4 and

4 2 N3

(*) I |Bx |vr <=,

then x is in 4.

PROOF. It suffices to show that Bx - x is in 4; that is,
@® @
2n=0lr’k=0 b X - xn| < ®, Since z;:=0 b =1 for each n, this sum can be written

as 2:=0|2:=0 bnk(xk - xn)‘, and so it suffices to show that A=z:=OE:=obnk‘xk-xn‘<°°.
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We can write A = C + D, where

¢= Z:‘::=0“:::=0 bnk‘xk - xnl

and
_ @ (-]
D= Z:n=02"k=n+1 bnk|xk - xn‘ :
Then
® n-1
€= ToTk=0 Prac r=k x|
_ @ & r
=00 |A:':r|“"-‘n=r+12k=0 bk
=0 ler‘Cr’ say.
Also,

e 2 k-1
D= 2n=Oz‘l'k=n-l-1 bnkzl:‘=n lel"
r—O |Ax | -Ozk=r+1 nk
-]
Zr=0 |Axr|Dr’ say-
By the Lemma following, Cr = O(J;) and Dr = OQ/;), so
@
C+DSHEZ o |bx |k <=,
which proves the theorem.

LEMMA. If bnk = e-nnk/k! and r is a positive integer, then

® r
@) 2n=r+12k=0 bnk = 06/),
and
. r @ _
(i1 Zn=0%=r+1 Pnk ~ 0GK).

PROOF. Let p = [4/r], and write the sum in (i) as

@ 'P b @ r b _
Zo=r+1%k=0 Pnk * n=r+12'k=r-p+1 nk - Fx T Gp» say.

If s < n, then (cf. [2, p. 202))

735
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s nk n® s , 8 8-
okl =Tttt )
n® s 8,2
S;-!-(1+;+(;) + +-0)
n® n
=§Tn-s)'
InFrwehaves=r-pand
r+1 -
= <
IS

so
1 ® -n_r-p <
Fo< G+ 1) 557 Bpepsy © P <.k +1.
In G_ we have
T

r <.r = chn
z:k=1:-p+1 bnk s yr mérx bnk Jre r!?

S0

Hence, (i) is proved.

Next write the sum in (ii) as

r+p-1 r _
Te0Ther Prk * 2f1=02k=r+p bk = He + I, say.

(Assume that Hr =0 if p=1.) Then

AL

H<@-135_, e max
T n=0 kor

1 -n_r+l
W -1 Gy T &

IA

A

By
'

-

If s 2 n, then

k s
® n__n_ n o, _n_n_ . ...
skl st tar vz T )
n® n n 2
< . ARLE ese
_s!(1+s+1 (s+1) + )
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Taking s = r + p, we have

e-nnr+p( r+p+1 )

r+p+1-n

1
P
L= &m0 0

r +p + 1) 1 r
P+ 1 (c+p)! Zn=0

<.k + 1.

e - nnr+p

A

¢

This completes the proof of the Lemma.

By combining Theorem 3 with Theorem 1, we get an £4-4 Tauberian theorem for
the Euler-Knopp means.

THEOREM 4. If r > 0 and x is a sequence satisfying (*) such that Erx is in
4, then x is in 4.

Next we give an application of these Tauberian theorems.

EXAMPLE. The following sequence is not mapped into £ by B -- or, a fortiori,
by Er’ with r > 0. Define x by

2 2
Xy = /6 and ij = 1/(j+1)".

Then x satisfies (%), but x is not in £ because if k=1,

2
. k1, T k-2
X T X "L BT F T G T
-2

2;1+1m ~ 1/k.
Hence, by Theorem 3, Bx is not in £.

It is possible -~ but much more tedious -- to construct a real number
sequence x such that ij = i(j+1)“2 and x changes sign infinitely many times, yet

X is not in 4. For such an x, Theorem 3 implies that Bx cannot be in £.
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