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ABSTRACT. The well-known summability methods of Euler and Borel are studied as

mappings from 11 into 1I. In this l- setting, the following Tauberian results

are proved: if x is a sequence that is mapped into i by the Euler-Knopp method E
r

with r > 0 or the Borel matrix method) and x satisfies En=01xn Xn+lln < (R),

then x itself is in i.
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I. INTRODUCTION.

In [2, p. 121], G. H. Hardy described a Tauberian theorem as one which

asserts that a particular summability method cannot sum a divergent series that

oscillates too slowly. In this paper we shall state the results in sequence-to-

sequence form, so a typical order-type Tauberian theorem for a method A would have

the form, "if x is a sequence such that Ax is convergent and AXk=Xk -Xk+I o(),
then x itself is convergent." Our present task is not to give more theorems in

the setting of ordinary convergence, but rather, we shall develop analogous

results for methods that map I into I. Such a transformation is called an -method, and we shall henceforth write for I. In [5] Knopp and Lorent- proved

that the matrix A determines an - method if and only if suPk n=01ankl <-.

In order to prove Tauberian theorems in an ,-, setting, it is necessary to

formulate an - analogue of the above Tauberian condition Ax
k O(dk). Since

this condition means that Ax/d is in c0, an - analogue would be "Ax/d is in ,"

which we shall write in series form as =01AXkl/dk < .
2. JLER-KNOPP AND BOREL - METHODS.

The Euler-Knopp means [6, pp. 56-60] are given by the matrix

n k n-k
(k)r (I- r) if k--< n,

0, if k > n.

In [I, Theorem 4] it is shown that Er determines an - method if and only if

0 < r _< I. Moreover, for such r, E$1[] # .
The customary form of Borel exponential summability is the sequence-to-

function transformation ([2, p. 182], [6, p. 54]) given by

[e-=oXktk/k!] L, then x is Borel summable to L.if lim
t-m

In order to consider this method in an - setting, we must modify it into a
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sequence-to-sequence transformation. This can be achieved by letting t tend to

through integer values and considering the resulting sequence Bx. Then B is the

Borel matrix method [6, p. 56], which is given by the matrix

b e
-n k
n /k!.

By a direct application of the Knopp-Lorentz Theorem [5], one can show that B is

an - matrix. We shall not use this direct approach, however, because the

assertion will follow from our first theorem, which is an inclusion theorem

between B and Er

THEOREM i. If r > 0 and x is a sequence such that ErX is in , then Bx is

PROOF. We use the familiar technique of showing that BEt
I

is an - matrix.

Since Bx (BEI)Erx, this will ensure that Bx is in whenever ErX is in .
is an - matrlx for allSince EI

El/r, we replace I/r by s and show that BEs

positive s. The n,k-th term of BE is given by
s

e-nnJ Jk j-k kBEs[n’k] J=k j!
( )(I s s

-n k k n-ke n s
k! Y:’J=k (J-k)! (I s)j-k

(ns)ke-ns
k!

Summing the k-th column of BEs, we get

1 k -ns
n=0 IBEs[n,k]l n=0(ms) e

o(Is).
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Hence, SUPk n=0 IBEs[n,k]l < oo, so BEs is an - matrix.

Combining Theorem 1 with the knowledge that E is an - matrix, we get the
r

following result as an immediate corollary.

THDREM 2. The Borel matrix B determines an - method.

In addition to the inclusion relation given in Theorem I, we can show that

the - method B is strictly stronger than all Er methods by the following

exampI e.

EXAMPLE. Suppose r > 0 and x
k (-s)k, where s k -I + 2/r; then Bx is in

but E x is not in . For,r
k

(Bx) -n .( k -n -sn -n(s+l)
n ’k=0 e -s) e e e

and

n )n-k )k(ErX)n =0 (k1(I r (-rs (I r rs)n

By solving -I < 1 r’- rs < I, we see that E x is in if and only ifr

-I < s < -I + 2/r.

We are now ready to prove the principal results which show that B and E can
r

not map a sequence from into if the sequence oscillates too slowly.

THDREM 3. If x is a sequence such that Bx is in and

then x is in .
PROOF. It suffices to show that Bx x is in ; that is,

Zn__01r__0 nkX- Xnl < ". Since k=0 bnk I for each n, this sum can be witten

as Znf01k=0 bnk(Xk Xn) l, and so it suffices to show that A=.nffi0k=0bnklXk-Xn".
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We can write A C + D, where

and

Then

Also,

C n=Ok=0 bnklXk xnl

D .n=0k=n+l bnklXk Xn l"

n-I
b .n-Ic _< ==0 k =k lrl

r
r=0 lxrln=r+l=0 bnk

.r=0 IAXrlCr, say.

b
k-iD _< T.n=0k=n+I nk=n IAXrl

=0 AXrln=0<=r+l bnk

:o II, say.

By me L following, C
r 0() and 0), so

ich proves e theory.

L. If bnk e-nnk/k and r is a positive integer, then

r(1) Zn=r+l=O bnk 0 (),
and

(il) n=0k=r+l bnk 0).

PROOF. Let p [], and write the sum in (i) as

r-p r + or, say.nfr+l"k=0 bnk + nfr+l=r-p+l bnk Fr
If s < n, then (cf. [2, p. 202])
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k s
o s ss- 

1 +-+----+ "-’)
=0 k! n n n

s 2_<[n(i + s__+(nS_)n + "’’)

n n
(n-rs>

In F we have s r p and
r

n =r+l<+ Imax n-r+p p + I-
rr+l

so

I -n r-p
Fr

< J + I) (r-p)’. n=r+I e n _< + I.

In G we have
r

-n n=r <r max bnk =4 e
-p+l bnk

lm
r

so

r ’n=r+l e n <--4.

Hence, (i) is proved.

Next write the sum in (ii) as_
_r+p-I n r H + I say.n=0k=r+l bnk + =0=r+p bnk r r’

(Assume that Hr
0 if p I.) Then

k
< (p I) =0 e maX ---[Hr k>r

1 n -n r+l_< - i) =0 e n

If s n, then

k s
n n n n n

k=s W. ( + s- + s+t s+2 + )

s
n n n 2
<( ++ (s-y) +’")
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s
n s+l
7.,(s + -Taking s r + p, we have

I < I r n r+p .r + p + I
r- (r+p)! n=0 e- n (r + p + I n

< (r + p.+ I I r n r+p
p +’I ) (r+p).’ n=0 e- n

_<+I.

This completes the proof of the L.

By combining Theorem 3 with Theorem I, we get an - Tauberian theorem for

the Euler-Knopp means.

THEOREM 4. If r > 0 and x is a sequence satisfying (*) such that E x is in
r

then x is in .
Next we give an application of these Tauberian theorems.

EXAMPLE. The following sequence is not mapped into by B or, afortiori,

by Er, with r > 0. Define x by

2
x0 n /6 and Ax. i/(j+l)2.

Then x satisfies (*), but x is not in because if k I,

-I
Axj mk =x0- --0 =-- =

-2
mk+l m I/k.

Hence, by Theorem 3, Bx is not in .
It is possible but much more tedious to construct a real number

-2sequence x such that Ax. +(j+l) and x changes sign infinitely many times, yet

x is not in . For such an x, Theorem 3 implies that Bx cannot be in .
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