GENERALIZED KÖTHE-TOEPLITZ DUALS

I.J. MADDOX

Department of Pure Mathematics Queen's University of Belfast
Belfast BT7 1NN
Northern Ireland

(Received November 9, 1979)

ABSTRACT. The α and β-duals spaces of generalized ℓ_{p} spaces are characterized, where $0<p \leq \infty$. The question of when the α and β dual spaces coincide is also considered.

KEY WORDS AND PHRASES. Generalized Köthe-Toeplitz dual spaces, Sequences of linear operators, Generalized l_{p} spaces.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 40C05, $40 J 05$.

1. INTRODUCTION.
X and Y denote complex Banach spaces with zero elements θ, and $||\cdot||$ denotes the norm in either X or Y. The continuous dual of X is written X. By $s(X)$ we mean the space of all X-valued sequences $X=\left(x_{k}\right)$, where $x_{k} \in X$ for $k \in N=\{1,2,3, \ldots\}$.

If $0<p<\infty$, we mean by $\ell_{p}(X)$ the space of all X-valued sequences $x=\left(x_{k}\right)$ such that $\Sigma\left|\mid x_{k} \|^{p}<\infty\right.$. Sums are over $k \in N$, unless otherwise indicated.

By $\ell_{\infty}(X)$ we denote the space of all $x=\left(x_{k}\right)$ such that sup $\left\|x_{k}\right\|<\infty$.

In case $X=C$, the space of complex numbers, we write ℓ_{p} instead of $\ell_{p}(C)$.

Let $A=\left(A_{k}\right)$ denote a sequence of linear, but not necessarily bounded, operators on X into Y. If E is any nonempty subset of $s(X)$ then the α-dual of E is defined to be

$$
E^{\alpha}=\left\{A: \Sigma| | A_{k} x_{k}| |<\infty, \text { for all } x \in E\right\}
$$

The β-dual of E is defined to be

$$
E^{\beta}=\left\{A: \Sigma A_{k} x_{k} \text { converges, for all } x \in E\right\}
$$

Since Y is complete, we have $E^{\alpha} \subset E^{\beta}$. The α and β duals of E may be regarded as generalized Köthe-Toeplitz duals, since in case $X=Y=C$, when the A_{k} may be identified with complex numbers a_{k}, the duals reduce to the classical spaces first considered by Köthe and Toeplitz [1].

$$
\text { Using the notation }(1 / p)+(1 / q)=1 \text {, where } 1 \leq p \leq \infty \text {, with the }
$$ convention that $q=\infty$ when $p=1$, and $q=1$ when $p=\infty$, it is well-known that

$$
\begin{equation*}
\ell_{p}^{\alpha}=\ell_{p}^{\beta}=\ell_{q} \tag{1.1}
\end{equation*}
$$

We shall see that, in general, $\ell_{p}^{\alpha}(X) \subset \ell_{p}^{\beta}(X)$, where the inclusion may be strict. However, when $0<p \leq 1$ the α and β duals coincide. Also, when $1<p \leq \infty$, the α and β duals coincide provided that Y is finite dimensional.
2. CHARACTERIZATION OF THE DUALS.

THEOREM 1. Let $0<p \leq 1$. Then $A \in \ell_{p}^{\beta}(X)$ if and only if there exists $m \in N$ such that A_{k} is bounded, for all $k \geq m$, and

$$
\begin{equation*}
H=\sup _{k \geq m}| | A_{k}| |<\infty . \tag{2.1}
\end{equation*}
$$

PROOF. Sufficiency. Let (2.1) hold and $\Sigma\left|\mid x_{k} \|^{P}<\infty\right.$. By a familiar inequality, see for example Maddox [2], page 22 ,

$$
\begin{aligned}
\left(\sum_{k=m}^{\infty}\left\|A_{k} x_{k}\right\|\right)^{p} & \leq \sum_{k=m}^{\infty}\left\|A_{k} x_{k}\right\|^{p} \\
& \leq \sum_{k=m}^{\infty}\left\|A_{k}\right\|^{p}\left\|_{k}\right\|^{p} \\
& \leq H^{p} \Sigma| | x_{k} \|^{p}
\end{aligned}
$$

Hence $\sum A_{k} x_{k}$ is absolutely convergent, and so convergent.
Necessity. Let $A \in \ell_{p}^{\beta}(X)$ and suppose, if possible, that no such m exists. Then there are natural numbers $k(1)<k(2)<\ldots$ and $z_{i} \in X,\left\|z_{i}\right\| \leq 1$, such that for $i \in N$,

$$
\begin{equation*}
\left\|A_{k(i)} z_{i}\right\|>i^{2 / p} \tag{2.2}
\end{equation*}
$$

Define $x_{k}=z_{i} / i^{2 / p}$ for $k=k(i)$ and $x_{k}=\theta$ otherwise. Then $x \in \ell_{p}(X)$ since $\Sigma\left|\mid x_{k} \|^{p} \leq \pi^{2} / 6\right.$, but $\left\|A_{k} x_{k}\right\|>1$ for infinitely many k, contrary to the fact that $\sum A_{k} x_{k}$ converges.

Now suppose, if possible, that $\sup _{k \geq m}| | A_{k} \|=\infty$. Then there are natural numbers $k(1)<k(2)<\ldots$ with $k(1) \geq m$ such that for $i \in N$,

$$
\begin{equation*}
\left\|A_{k(i)}\right\|>2 i^{2 / p} \tag{2.3}
\end{equation*}
$$

Choose $z_{i} \in X$ with $\left\|z_{i}\right\| \leq 1$ such that $2\left\|A_{k(i)} z_{i}\right\| \geq\left\|A_{k(i)}\right\|$, so by (2.3)
we see that (2.2) holds with the new $k(i)$ and z_{i}. We may define $x \in \ell_{p}(X)$ as above and obtain a contradiction. Hence (2.1) must hold, and the proof is complete.

If we examine the proof of Theorem 1 we see that in the sufficiency we had $\Sigma\left|\left|A_{k} x_{k}\right|\right|<\infty$, so that $A \in \ell_{p}^{\alpha}(X)$. Also, in the necessity, the constructions involved $x \in \ell_{p}(X)$ such that $\Sigma\left|\mid A_{k} x_{k} \|\right.$ was divergent. Hence we have:

THEOREM 2. If $0<p \leq 1$ then

$$
\ell_{p}^{\alpha}(X)=\ell_{p}^{\beta}(X)
$$

Next we consider the case $1<p<\infty$.

THEOREM 3. Let $1<p<\infty$. Then $A \in \ell_{p}^{\alpha}(X)$ if and only if there exists $m \in N$ such that A_{k} is bounded for all $k \geq m$, and

$$
\begin{equation*}
M=\sum_{k=m}^{\infty}| | A_{k} \|^{q}<\infty \tag{2.4}
\end{equation*}
$$

PROOF. Sufficiency. Let (2.4) hold and $x \in \ell_{p}(X)$. By H81der's inequality,

$$
\sum_{k=m}^{\infty}| | A_{k} x_{k} \| \leq M^{1 / q}\left(\Sigma| | x_{k} \|^{p}\right)^{1 / p}<\infty .
$$

Necessity. Since $\ell_{p}^{\alpha}(X) \subset \ell_{1}^{\alpha}(X)$ when $p>1$, the existence of the m in the theorem follows from Theorems 1 and 2.

Now for $k \geq m$ we may choose $z_{k} \in X$ with $\left\|z_{k}\right\| \leq 1$ such that $2\left|\left|A_{k} z_{k}\left\|\geq| | A_{k}\right\|\right.\right.$.

For all $\lambda \in \ell_{p}$ we have $\left(\lambda_{k} z_{k}\right) \in \ell_{p}(X)$, so

$$
\sum_{k=m}^{\infty}\left|\lambda_{k}\right|| | A_{k} z_{k}| |<\infty
$$

for all $\lambda \in \ell_{p}$. By (1.1) it follows that

$$
H=\sum_{k=m}^{\infty}| | A_{k} z_{k} \|^{q}<\infty
$$

whence $M \leq 2{ }^{q}$, so (2.4) holds, and the proof is complete.

THEOREM 4. Let $1<p<\infty$. Then $A \in \ell_{p}^{\beta}(X)$ if and only if there exists $m \in N$ such that A_{k} is bounded for all $k \geq m$, and

$$
\begin{equation*}
\sup \sum_{k=m}^{\infty}| | A_{k}^{\star} f \|^{q}<\infty \tag{2.5}
\end{equation*}
$$

where the supremum is over all $\mathrm{f} \in \mathrm{Y}^{*}$ with $\|\mathrm{f}\| \leq 1$.

PROOF. With the restriction that all the A_{k} are bounded, and with different notation, this result was proved by Thorp [3]. Only the existence of m in the necessity needs attention, and this follows from Theorems 1 and 2, and the fact that $\ell_{p}^{\beta}(X) \subset \ell_{1}^{\beta}(X)$.

Finally, we examine the case $p=\infty$. The proofs are left to the reader. We remark that with the restriction that all the A_{k} are bounded, the result concerning $\ell_{\infty}^{\beta}(X)$ was given by Maddox [4].

THEOREM 5. $A \in \ell_{\infty}^{\alpha}(X)$ if and only if there exists $m \in N$ such that A_{k} is bounded for all $k \geq m$, and

$$
\begin{equation*}
\sum_{k=m}^{\infty}| | A_{k}| |<\infty \tag{2.6}
\end{equation*}
$$

THEOREM 6. $A \in \ell_{\infty}^{\beta}(X)$ if and only if there exists $m \in N$ such that A_{k} is bounded for all $k \geq m$, and

$$
\begin{align*}
& \sup \left|\sum_{k=m}^{m+n} A_{k} x_{k}\right| \mid<\infty, \tag{2.7}\\
& \sup \left|\sum_{k=m}^{m+n} A_{k} x_{k}\right| \mid \rightarrow 0(m \rightarrow \infty), \tag{2.8}
\end{align*}
$$

where the suprema are over all $n \geq 0$ and all $x_{k} \in X$ with $\left\|x_{k}\right\| \leq 1$.

3. COINCIDENCE OF DUALS.

It was shown in Theorem 2 that, when $0<p \leq 1, \ell_{p}^{\alpha}(X)=\ell_{p}^{\beta}(X)$ for any Banach spaces X and Y .

We next shown that, when $1<p<\infty$, the inclusion $\ell_{p}^{\alpha}(X) \subset \ell_{p}^{\beta}(X)$ may be strict.

THEOREM 7. If $1<p<\infty$ then there are Banach spaces X and Y such that $\ell_{p}^{\alpha}(x) \subset \ell_{p}^{\beta}(x)$ with strict inclusion.

PROOF. Take $X=Y=\ell_{p}$ and write

$$
e_{k}=(0,0, \ldots, 1,0,0, \ldots)
$$

where 1 is in the k-place and there are zeros elsewhere. Define bounded linear operators A_{k} on ℓ_{p} into itself by

$$
A_{k} x=x_{k} e_{k}
$$

for each $x=\left(x_{k}\right) \in \ell_{p}$. Then $\left\|A_{k}\right\|=1$ for all $k \in N$, so A is not in $\ell_{p}^{\alpha}(X)$ by Theorem 3.

Let us now show that (2.5) holds. Take any $f \in \underset{p}{\ell}$ with $\|f\| \leq 1$. Then for $x \in \ell_{p}$ we have

$$
f(x)=\Sigma f_{i} x_{i}
$$

for some $\left(f_{i}\right)$ such that $\Sigma\left|f_{i}\right|^{q} \leq 1$. Hence, by definition of A_{k}^{*},

$$
\left(A_{k}^{\star} f\right)(x)=f\left(A_{k} x\right)=f_{k} x_{k}
$$

and so $\left|\left|A_{k}^{*} f\right|\right|=\left|f_{k}\right|$. Hence

$$
\Sigma\left|\left|A_{k}^{*} f\right|\right|^{q}=\Sigma\left|f_{k}\right|^{q} \leq 1
$$

so by Theorem 4 we have $A \in \ell_{p}^{\beta}(X)$.

Still with the case $1<p<\infty$ we have:

THEOREM 8. If $1<\mathrm{p}<\infty$ and Y is finite dimensional then for any X we have

$$
e_{p}^{\alpha}(X)=\ell_{p}^{\beta}(X)
$$

PROOF. We have to show that $A \in \ell_{p}^{\beta}(X)$ implies $A \in \ell_{p}^{\alpha}(X)$. Now if $A \in l_{p}^{\beta}(X)$ then by Theorem 4 there exists $m \in N$ such that A_{k} is bounded for all $k \geq m$. Suppose Y has finite dimension n and that $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is a Hamel base for Y. Then $y \in Y$ implies

$$
y=\sum_{i=1}^{n} \lambda_{i}(y) b_{i}
$$

where each $\lambda_{i} \in Y^{*}$. Take $z \in X$ and $k \geq M$. Then

$$
\begin{equation*}
A_{k} z=\sum_{i=1}^{n} \lambda_{i}\left(A_{k} z\right) b_{i} \tag{2.9}
\end{equation*}
$$

and $\lambda_{i} \cdot A_{k} \in X^{*}$. Since $\sum_{k=m}^{\infty} A_{k} X_{k}$ converges for all $x \in \ell_{p}(X)$ we have

$$
\sum_{k=m}^{\infty}\left(\lambda_{i} \circ A_{k}\right) x_{k}
$$

convergent for all $x \in \ell_{p}(X)$ and each i.

Choose $z_{k} \in X,\left\|z_{k}\right\| \leq 1$ such that $2\left|\left(\lambda_{i} \circ A_{k}\right) z_{k}\right| \geq\left|\left|\lambda_{i} \bullet A_{k}\right|\right|$. If $t \in \ell_{p}$ then $\left(t_{k} z_{k}\right) \in \ell_{p}(X)$ so that

$$
\sum_{k=m}^{\infty} t_{k}\left(\lambda_{i} \cdot A_{k}\right) z_{k}
$$

converges for all $t \in \ell_{p}$, whence for each i,

$$
\begin{equation*}
\sum_{k=m}^{\infty}\left\|\lambda_{i} \cdot A_{k}\right\|^{q}<\infty . \tag{2.10}
\end{equation*}
$$

By (2.9) and Hölder's inequality,

$$
\begin{equation*}
\left\|A_{k}\right\|^{q} \leq \sum_{i=1}^{n}\left\|\lambda_{i} \cdot A_{k}\right\|^{q} \cdot\left(\sum_{i=1}^{n}\left\|b_{i}\right\|^{p}\right)^{q / p} \tag{2.11}
\end{equation*}
$$

Denoting the final term in (2.11) by H,

$$
\begin{equation*}
\sum_{k=m}^{\infty}\left\|A_{k}\right\|^{q} \leq H \sum_{i=1}^{n} \sum_{k=m}^{\infty}\left\|\lambda_{i} \cdot A_{k}\right\|^{q} . \tag{2.12}
\end{equation*}
$$

It follows from (2.10) and (2.12) that (2.4) holds, so by Theorem 3 we have $A \in \ell_{p}^{\alpha}(X)$.

For certain values of p, and any X, the next result is the converse of Theorem 8.

THEOREM 9. If $2<\mathrm{p}<\infty$ and $\ell_{\mathrm{p}}^{\alpha}(\mathrm{X})=\ell_{\mathrm{p}}^{\beta}(\mathrm{X})$ then Y must be finite dimensional.

PROOF. Suppose, if possible, that Y is infinite dimensional. Since $\mathrm{q}<2$, if $\mathrm{c}_{\mathrm{k}}=\mathrm{k}^{-2 / q}$ then $\Sigma \mathrm{c}_{\mathrm{k}}<\infty$. By the Dvoretzky-Rogers theorem [5], there exists an unconditionally convergent series Σy_{k} in Y such that $\left\|y_{k}\right\|^{2}=c_{k}$ for $k \in N$. Hence

$$
\begin{equation*}
\Sigma\left|\mid y_{k} \|^{q}\right. \text { diverges. } \tag{2.13}
\end{equation*}
$$

Take $f \in X^{*}$ with $\|f\|=1$ and define rank one operators $A_{k}=y_{k} \otimes f$. Then $\left\|A_{k}\right\|=\left\|y_{k}\right\|$, so by (2.13) and Theorem 3, A is not in $\ell_{p}^{\alpha}(X)$.

Now if $x \in \ell_{p}(X)$ then

$$
\Sigma A_{k} x_{k}=\Sigma f\left(x_{k}\right) y_{k}
$$

But $\left(f\left(x_{k}\right)\right) \epsilon \ell_{\infty}$ and Σy_{k} is unconditionally convergent, so that $\Sigma f\left(x_{k}\right) y_{k}$ converges, whence $A \in \ell_{p}^{\beta}(X)$, which gives a contradiction.

We remark that it would appear that the argument of Theorem 9 cannot be used in the case $p=2$, since in a general Hilbert space Y the unconditional convergence of Σy_{k} implies that $\Sigma \mid\left\|y_{k}\right\|^{2}$.

However, we can deal with the case $p=2$ of Theorem 9 when Y is a Hilbert space:

THEOREM 10. Let Y be a Hilbert space and suppose $\ell_{2}^{\alpha}(X)=\ell_{2}^{\beta}(X)$. Then Y must be finite dimensional.

PROOF. Suppose, if possible, that Y is infinite dimensional. Choose an orthonormal sequence $\left(e_{k}\right)$ in Y and denote the inner product in Y by $\left(y_{1}, y_{2}\right)$. Take $g \in X^{*},||g||=1$ and define rank one operators $A_{k}=e_{k} \otimes g$, so that $\left|\left|A_{k}\right|\right|=1$. Now let $f \in Y *$ with $\|f\| \leq 1$. Then there exists $y \in Y$ such that

$$
f(z)=(z, y)
$$

for all $z \in Y$, with $\| y| |=||f|| \leq 1$. Then for $x \in X$,

$$
\left(A_{k}^{*} f\right)(x)=\left(g(x) e_{k}, y\right)=g(x)\left(e_{k}, y\right)
$$

Hence $\left|\left|A_{k}^{*} f\right|\right| \leq\left|\left(e_{k}, y\right)\right|$, so by Besse1's inequality,

$$
\Sigma\left|\mid A_{k}^{*} f\left\|^{2} \leq\right\| y \|^{2} \leq 1\right.
$$

Thus (2.5) holds with $q=2$, and so $A \in \ell_{2}^{\beta}(X)$. But $A \notin \ell_{2}^{\alpha}(X)$ since $\left|\left|A_{k}\right|\right|=1$ for all k. This contradiction implies our result.

The case $p=\infty$ is due essentially to Thorp [3], who shows that $\ell_{\infty}^{\alpha}(X)=\ell_{\infty}^{\beta}(X)$ if and only if Y is finite dimensional.

REFERENCES

1. Köthe, G. and Toeplitz, 0. Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J. reine angew. Math. 171 (1934), 193-226.
2. Maddox, I.J. Elements of Functional Analysis, Cambridge University Press, 1970.
3. Thorp, B.L.D. Sequential-evaluation convergence, J. London Math. Soc. 44 (1969), 201-209.
4. Maddox, I.J. Matrix maps of bounded sequences in a Banach space, Proc. American Math. Soc. 63 (1977), 82-86.
5. Dvoretzky, A. and Rogers, C.A. Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. (U.S.A.). 36 (1950) 192-197.
