Internat. J. Math. & Math. Sci. Vol. 3 No. 3 (1980) 423-432

GENERALIZED KÖTHE-TOEPLITZ DUALS

I.J. MADDOX

Department of Pure Mathematics Queen's University of Belfast Belfast BT7 1NN Northern Ireland

(Received November 9, 1979)

<u>ABSTRACT</u>. The α and β -duals spaces of generalized ℓ_p spaces are characterized, where $0 . The question of when the <math>\alpha$ and β dual spaces coincide is also considered.

<u>KEY WORDS AND PHRASES</u>. Generalized Köthe-Toeplitz dual spaces, Sequences of **Linear** operators, Generalized 2_n spaces.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 40C05, 40J05.

1. INTRODUCTION.

X and Y denote complex Banach spaces with zero elements Θ , and ||.||denotes the norm in either X or Y. The continuous dual of X is written X*. By s(X) we mean the space of all X-valued sequences $x = (x_k)$, where $x_k \in X$ for $k \in N = \{1, 2, 3, ...\}$. If $0 , we mean by <math>\ell_p(X)$ the space of all X-valued sequences $x = (x_k)$ such that $\Sigma ||x_k||^p < \infty$. Sums are over $k \in N$, unless otherwise indicated.

By $\ell_{\infty}(X)$ we denote the space of all $x = (x_k)$ such that $\sup ||x_k|| < \infty$.

In case X = C, the space of complex numbers, we write ℓ_p instead of $\ell_p(C)$.

Let A = (A_k) denote a sequence of linear, but not necessarily bounded, operators on X into Y. If E is any nonempty subset of s(X) then the α -dual of E is defined to be

$$\mathbf{E}^{\alpha} = \{\mathbf{A} : \Sigma | |\mathbf{A}_{\mathbf{k}} \mathbf{x}_{\mathbf{k}}| | < \infty, \text{ for all } \mathbf{x} \in \mathbf{E} \}.$$

The β -dual of E is defined to be

$$E^{\beta} = \{A : \Sigma A_{k} x_{k} \text{ converges, for all } x \in E\}.$$

Since Y is complete, we have $E^{\alpha} \subset E^{\beta}$. The α and β duals of E may be regarded as generalized Köthe-Toeplitz duals, since in case X = Y = C, when the A_k may be identified with complex numbers a_k , the duals reduce to the classical spaces first considered by Köthe and Toeplitz [1].

Using the notation (1/p) + (1/q) = 1, where $1 \le p \le \infty$, with the convention that $q = \infty$ when p = 1, and q = 1 when $p = \infty$, it is well-known that

$$\ell_p^{\alpha} = \ell_p^{\beta} = \ell_q. \tag{1.1}$$

We shall see that, in general, $\ell_p^{\alpha}(X) \subset \ell_p^{\beta}(X)$, where the inclusion may be strict. However, when $0 the <math>\alpha$ and β duals coincide. Also, when $1 , the <math>\alpha$ and β duals coincide provided that Y is finite dimensional.

2. CHARACTERIZATION OF THE DUALS.

THEOREM 1. Let $0 . Then <math>A \in \ell_p^{\beta}(X)$ if and only if there exists $m \in N$ such that A_k is bounded, for all $k \ge m$, and

$$H = \sup_{k \ge m} ||A_k|| < \infty.$$
(2.1)

PROOF. <u>Sufficiency</u>. Let (2.1) hold and $\Sigma ||x_k||^p < \infty$. By a familiar inequality, see for example Maddox [2], page 22,

$$\begin{pmatrix} \tilde{\Sigma} \\ \mathbf{k}=\mathbf{m} \end{pmatrix} | \mathbf{A}_{\mathbf{k}} \mathbf{x}_{\mathbf{k}} | |)^{\mathbf{p}} \leq \frac{\tilde{\Sigma}}{\mathbf{k}=\mathbf{m}} | | \mathbf{A}_{\mathbf{k}} \mathbf{x}_{\mathbf{k}} | |^{\mathbf{p}}$$

$$\leq \frac{\tilde{\Sigma}}{\mathbf{k}=\mathbf{m}} | | \mathbf{A}_{\mathbf{k}} | |^{\mathbf{p}} | | \mathbf{x}_{\mathbf{k}} | |^{\mathbf{p}}$$

$$\leq H^{\mathbf{p}} \Sigma | | \mathbf{x}_{\mathbf{k}} | |^{\mathbf{p}}.$$

Hence $\sum_{k=1}^{k} x_{k}$ is absolutely convergent, and so convergent.

<u>Necessity</u>. Let A $\epsilon \, \ell_p^{\beta}(X)$ and suppose, if possible, that no such m exists. Then there are natural numbers k(1) < k(2) < ... and $z_i \in X$, $||z_i|| \leq 1$, such that for $i \in N$,

$$||A_{k(i)}z_{i}|| > i^{2/p}.$$
 (2.2)

Define $x_k = z_i/i^{2/p}$ for k = k(i) and $x_k = 0$ otherwise. Then $x \in \ell_p(X)$ since $\Sigma ||x_k||^p \le \pi^2/6$, but $||A_k x_k|| > 1$ for infinitely many k, contrary to the fact that $\Sigma A_k x_k$ converges.

Now suppose, if possible, that $\sup_{k \ge m} ||A_k|| = \infty$. Then there are natural numbers $k(1) < k(2) < \ldots$ with $k(1) \ge m$ such that for $i \in N$,

$$||A_{k(i)}|| > 2i^{2/p}.$$
 (2.3)

Choose $z_i \in X$ with $||z_i|| \le 1$ such that $2||A_{k(i)}z_i|| \ge ||A_{k(i)}||$, so by (2.3)

426 I. J. MADDOX we see that (2.2) holds with the new k(i) and z_i . We may define $x \in l_p(X)$ as above and obtain a contradiction. Hence (2.1) must hold, and the proof is complete.

If we examine the proof of Theorem 1 we see that in the sufficiency we had $\Sigma ||A_k x_k|| < \infty$, so that $A \in \ell_p^{\alpha}(X)$. Also, in the necessity, the constructions involved $x \in \ell_p(X)$ such that $\Sigma ||A_k x_k||$ was divergent. Hence we have:

THEOREM 2. If 0 then

$$\ell_p^{\alpha}(X) = \ell_p^{\beta}(X).$$

Next we consider the case 1 .

THEOREM 3. Let $1 . Then <math>A \in \ell_p^{\alpha}(X)$ if and only if there exists $m \in N$ such that A_k is bounded for all $k \ge m$, and

$$M = \sum_{k=m}^{\infty} ||A_{k}||^{q} < \infty.$$
(2.4)

PROOF. Sufficiency. Let (2.4) hold and $x \in l_p(X)$. By Hölder's inequality,

$$\sum_{k=m}^{\infty} ||\mathbf{A}_{k}\mathbf{x}_{k}|| \leq M^{1/q} (\Sigma ||\mathbf{x}_{k}||^{p})^{1/p} < \infty.$$

<u>Necessity</u>. Since $\ell_p^{\alpha}(X) \subset \ell_1^{\alpha}(X)$ when p > 1, the existence of the m in the theorem follows from Theorems 1 and 2.

Now for $k \ge m$ we may choose $z_k \in X$ with $||z_k|| \le 1$ such that $2||A_k z_k|| \ge ||A_k||$.

For all $\lambda \in \ell_p$ we have $(\lambda_k z_k) \in \ell_p(X)$, so

GENERALIZED KOTHE-TOEPLITZ DUALS

$$\sum_{k=m}^{\infty} |\lambda_{k}| ||\mathbf{A}_{k}\mathbf{z}_{k}|| < \infty$$

for all $\lambda \in l_p$. By (1.1) it follows that

$$H = \sum_{k=m}^{\infty} ||A_{k}z_{k}||^{q} < \infty,$$

whence $M \leq 2^{q}H$, so (2.4) holds, and the proof is complete.

THEOREM 4. Let $1 . Then <math>A \in \ell_p^{\beta}(X)$ if and only if there exists $m \in N$ such that A_k is bounded for all $k \ge m$, and

$$\sup_{\substack{\Sigma \\ k=m}} \sum_{k=m}^{\infty} ||\mathbf{A}_{k}^{*}\mathbf{f}||^{q} < \infty, \qquad (2.5)$$

where the supremum is over all $f \in Y^*$ with $||f|| \leq 1$.

PROOF. With the restriction that all the A_k are bounded, and with different notation, this result was proved by Thorp [3]. Only the existence of m in the necessity needs attention, and this follows from Theorems 1 and 2, and the fact that $\ell_p^{\beta}(X) < \ell_1^{\beta}(X)$.

Finally, we examine the case $p = \infty$. The proofs are left to the reader. We remark that with the restriction that all the A_k are bounded, the result concerning $\ell_{\infty}^{\beta}(X)$ was given by Maddox [4].

THEOREM 5. A $\epsilon \ l_{\infty}^{\alpha}(X)$ if and only if there exists $m \ \epsilon \ N$ such that A k is bounded for all $k \ge m$, and

$$\sum_{k=m}^{\tilde{\Sigma}} ||A_{k}|| < \infty .$$
(2.6)
$$k = m \qquad (2.6)$$
A $\in l_{m}^{\beta}(X) \text{ if and only if there exists } m \in N \text{ such that } A_{k}$

is bounded for all $k \ge m$, and

THEOREM 6.

I. J. MADDOX

$$\sup_{\substack{k=m}}^{m+n} \sum_{k=m}^{m+n} A_k x_k || < \infty, \qquad (2.7)$$

$$\sup_{\substack{k=m \\ k=m}}^{m+n} \sum_{k=k}^{m+n} A_k x_k || \to 0 \quad (m \to \infty), \quad (2.8)$$

where the suprema are over all $n \ge 0$ and all $x_k \in X$ with $||x_k|| \le 1$.

3. COINCIDENCE OF DUALS.

It was shown in Theorem 2 that, when $0 , <math display="inline">\iota_p^\alpha(X)$ = $\iota_p^\beta(X)$ for any Banach spaces X and Y.

We next shown that, when $1 , the inclusion <math display="inline">\iota_p^\alpha(X) \subset \iota_p^\beta(X)$ may be strict.

THEOREM 7. If $1 then there are Banach spaces X and Y such that <math>\ell_p^{\alpha}(X) \subset \ell_p^{\beta}(X)$ with strict inclusion.

PROOF. Take $X = Y = l_p$ and write

$$e_{L} = (0, 0, \dots, 1, 0, 0, \dots)$$

where 1 is in the k-place and there are zeros elsewhere. Define bounded linear operators A_k on ℓ_p into itself by

$$A_k x = x_k e_k$$

for each $x = (x_k) \in \ell_p$. Then $||A_k|| = 1$ for all $k \in N$, so A is not in $\ell_p^{\alpha}(X)$ by Theorem 3.

Let us now show that (2.5) holds. Take any f $\epsilon \, l_p^*$ with $||f|| \leq 1$. Then for x $\epsilon \, l_p$ we have

$$f(x) = \Sigma f_i x_i$$

for some (f_i) such that $\sum |f_i|^q \le 1$. Hence, by definition of A_k^* ,

$$(\mathbf{A}_{k}^{\star}\mathbf{f})(\mathbf{x}) = \mathbf{f}(\mathbf{A}_{k}\mathbf{x}) = \mathbf{f}_{k}\mathbf{x}_{k}$$

and so $||A_k^{\star}f|| = |f_k|$. Hence

$$\Sigma ||\mathbf{A}_{k}^{\star}\mathbf{f}||^{q} = \Sigma |\mathbf{f}_{k}|^{q} \leq 1,$$

so by Theorem 4 we have $A \in \ell_p^{\beta}(X)$.

Still with the case 1 we have:

THEOREM 8. If 1 and Y is finite dimensional then for any X we have

$$\ell_p^{\alpha}(X) = \ell_p^{\beta}(X).$$

PROOF. We have to show that $A \in \ell_p^{\beta}(X)$ implies $A \in \ell_p^{\alpha}(X)$. Now if $A \in \ell_p^{\beta}(X)$ then by Theorem 4 there exists $m \in N$ such that A_k is bounded for all $k \ge m$. Suppose Y has finite dimension n and that (b_1, b_2, \ldots, b_n) is a Hamel base for Y. Then $y \in Y$ implies

$$y = \sum_{i=1}^{n} \lambda_{i}(y)b_{i}$$

where each $\lambda_i \in Y^*$. Take $z \in X$ and $k \ge M$. Then

$$A_{k}z = \sum_{i=1}^{n} \lambda_{i}(A_{k}z)b_{i}$$
(2.9)

and $\lambda_i \bullet A_k \in X^*$. Since $\sum_{k=m}^{\infty} A_k x_k$ converges for all $x \in \ell_p(X)$ we have

$$\sum_{k=m}^{\tilde{\Sigma}} (\lambda_i \circ A_k) x_k$$

convergent for all $x \in \ell_p(X)$ and each i.

I. J. MADDOX

Choose $z_k \in X$, $||z_k|| \le 1$ such that $2|(\lambda_i \circ A_k)z_k| \ge ||\lambda_i \bullet A_k||$. If $t \in \ell_p$ then $(t_k z_k) \in \ell_p(X)$ so that

$$\sum_{k=m}^{\tilde{\Sigma}} t_k^{(\lambda_i} \cdot A_k^{(\lambda_i)} z_k^{(\lambda_i)}$$

converges for all t $\in l_p$, whence for each i,

$$\sum_{k=m}^{\tilde{\Sigma}} |\lambda_i \cdot A_k||^q < \infty.$$
(2.10)

By (2.9) and Hölder's inequality,

$$||\mathbf{A}_{\mathbf{k}}||^{\mathbf{q}} \leq \sum_{i=1}^{n} ||\lambda_{i} \cdot \mathbf{A}_{\mathbf{k}}||^{\mathbf{q}} \cdot (\sum_{i=1}^{n} ||\mathbf{b}_{i}||^{\mathbf{p}})^{\mathbf{q}/\mathbf{p}} \cdot (2.11)$$

Denoting the final term in (2.11) by H,

$$\sum_{k=m}^{\infty} ||\mathbf{A}_{k}||^{q} \leq \mathbf{H} \sum_{k=m}^{n} \sum_{i=1}^{\infty} ||\lambda_{i} \circ \mathbf{A}_{k}||^{q}.$$

$$(2.12)$$

It follows from (2.10) and (2.12) that (2.4) holds, so by Theorem 3 we have $A \in \ell_p^{\alpha}(X).$

For certain values of p, and any X, the next result is the converse of Theorem 8.

THEOREM 9. If $2 and <math>\ell_p^{\alpha}(X) = \ell_p^{\beta}(X)$ then Y must be finite dimensional.

PROOF. Suppose, if possible, that Y is infinite dimensional. Since q < 2, if $c_k = k^{-2/q}$ then $\Sigma c_k < \infty$. By the Dvoretzky-Rogers theorem [5], there exists an unconditionally convergent series Σy_k in Y such that $||y_k||^2 = c_k$ for $k \in \mathbb{N}$. Hence

$$\Sigma ||y_k||^q$$
 diverges. (2.13)

Take $f \in X^*$ with ||f|| = 1 and define rank one operators $A_k = y_k \otimes f$. Then $||A_k|| = ||y_k||$, so by (2.13) and Theorem 3, A is not in $\ell_p^{\alpha}(X)$.

Now if $x \in l_p(X)$ then

$$\sum_{k=k} x_{k} = \sum_{k=k} f(x_{k}) y_{k}$$

But $(f(x_k)) \in \ell_{\infty}$ and Σy_k is unconditionally convergent, so that $\Sigma f(x_k)y_k$ converges, whence $A \in \ell_p^{\beta}(X)$, which gives a contradiction.

We remark that it would appear that the argument of Theorem 9 cannot be used in the case p = 2, since in a general Hilbert space Y the unconditional convergence of Σy_k implies that $\Sigma ||y_k||^2$.

However, we can deal with the case p = 2 of Theorem 9 when Y is a Hilbert space:

THEOREM 10. Let Y be a Hilbert space and suppose $\ell_2^{\alpha}(X) = \ell_2^{\beta}(X)$. Then Y must be finite dimensional.

PROOF. Suppose, if possible, that Y is infinite dimensional. Choose an orthonormal sequence (e_k) in Y and denote the inner product in Y by (y_1, y_2) . Take $g \in X^*, ||g|| = 1$ and define rank one operators $A_k = e_k \otimes g$, so that $||A_k|| = 1$. Now let $f \in Y^*$ with $||f|| \le 1$. Then there exists $y \in Y$ such that

$$f(z) = (z,y)$$

for all $z \in Y$, with $||y|| = ||f|| \le 1$. Then for $x \in X$,

$$(A_{k}^{*}f)(x) = (g(x)e_{k}, y) = g(x)(e_{k}, y)$$

Hence $||A_k^{\dagger}f|| \leq |(e_k, y)|$, so by Bessel's inequality,

$$\Sigma ||\mathbf{A}_{\mathbf{k}}^{\star}\mathbf{f}||^{2} \leq ||\mathbf{y}||^{2} \leq 1.$$

Thus (2.5) holds with q = 2, and so $A \in \ell_2^{\beta}(X)$. But $A \notin \ell_2^{\alpha}(X)$ since $||A_k|| = 1$ for all k. This contradiction implies our result.

The case $p = \infty$ is due essentially to Thorp [3], who shows that $\ell_{\infty}^{\alpha}(X) = \ell_{\infty}^{\beta}(X)$ if and only if Y is finite dimensional.

REFERENCES

- Köthe, G. and Toeplitz, O. Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, <u>J. reine angew</u>. <u>Math.</u> <u>171</u> (1934), 193-226.
- Maddox, I.J. <u>Elements of Functional Analysis</u>, Cambridge University Press, 1970.
- Thorp, B.L.D. Sequential-evaluation convergence, <u>J. London Math</u>. <u>Soc</u>. <u>44</u> (1969), 201-209.
- Maddox, I.J. Matrix maps of bounded sequences in a Banach space, <u>Proc. American Math. Soc.</u> <u>63</u> (1977), 82-86.
- Dvoretzky, A. and Rogers, C.A. Absolute and unconditional convergence in normed linear spaces, <u>Proc. Nat. Acad. Sci. (U.S.A.)</u>. <u>36</u> (1950) 192-197.