GENERALIZED RANDOM PROCESSES AND CAUCHY'S PROBLEM FOR SOME PARTIAL DIFFERENTIAL SYSTEMS

MAHMOUD M. EL-BORAI

Faculty of Science
King Abdulaziz University
P.O. Box 1540 Jeddah

SAUDI ARABIA
(Received February 1, 1979 and in revised form October 22, 1979)

ABSTRACT. In this paper we consider a parabolic partial differential system of the form $D_{t} H_{t}=L(t, x, D) H_{t}$. The generalized stochastic solutions H_{t}, corresponding to the generalized stochastic initial conditions H_{o}, are given. Some properties concerning these generalized stochastic solutions are also obtained.

KEY WORDS AND PHRASES. Generalized Stochastic Solutions, Strongly Parabolic Systems.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES: $60 \mathrm{H} 15,35 \mathrm{R} 60$.

1. INTRODUCTION.

Consider the system

$$
\begin{equation*}
D_{t} u=L u \tag{1.1}
\end{equation*}
$$

where

$$
\begin{gathered}
D_{t}=\frac{\partial}{\partial t}, L=\sum_{|k| \leq 2 b} L_{k}(t, x) D^{k}, \\
D^{k}=(-i)^{k} D_{1}^{k_{1}} \ldots D_{n}^{k}, D_{r}=\frac{\partial}{\partial x_{r}}, r=1, \ldots n,
\end{gathered}
$$

$|k|=k_{1}+\ldots+k_{n}, t \in(0, T), T>0, x$ is an element of the n-dimensional Euclidean space E_{n}, and $\left(L_{k}(t, x),|k| \leq 2 b\right)$ is a family of square matrices of order N.

We assume that (1.1) is a strongly parabolic system on $G_{n+1}=\{(t, x)$: $\left.t \in[0, T], x \in E_{n}\right\}$ in the sense that for every complex vector $a=\left(a_{1}, \ldots, a_{N}\right)$, every $\rho \in E_{n}$, and every $(t, x) \in G_{n+1}$;

$$
\operatorname{Re}\left[\sum_{|k|=2 b} L_{k}(t, x) \sigma^{k} a, \bar{a}\right] \leq-\delta|\sigma|^{2 b}|\alpha|^{2}
$$

where

$$
\begin{gathered}
\sigma^{k}=\sigma_{1}^{k_{1}} \ldots \sigma_{n}^{k_{n}},|\sigma|^{2 b}=\left(\sigma_{1}^{2}+\ldots+\sigma_{n}^{2}\right)^{b}, \\
|a|^{2}=a_{1}^{2}+\ldots+a_{N}^{2} \text {, and } \delta \text { is a positive constant (see [1]). In the }
\end{gathered}
$$ above inequality and in the following, we denote the scalar product of two N-vector functions u and v by the bracket notation (u, v).

As usual, we denote by $c^{m}\left(E_{n}\right), 0 \leq m \leq \infty$, the set of all real-valued functions defined on E_{n}, which have continuous partial derivatives of order up to and including m (of order $<\infty$ if $m=\infty$). By $C_{o}^{m}\left(E_{n}, N\right.$) we denote the set of all vector functions $h=\left(h_{1}, \ldots, h_{N}\right)$ such that every h_{r} is in $C^{m}\left(E_{n}\right)$, with compact support, $r=1, \ldots, N$. We assume that the elements of the matrices $L_{k}(t, x),|k| \leq 2 b$, satisfy the following conditions:
(a) They are bounded on G_{n+1} and satisfy a Holder condition of order α with respect to $\mathrm{x},(0<\alpha \leq 1)$.
(b) For every $x \in E_{n}$, they are continuous functions in $t \in[0, T]$.
(c) For every t in $[0, T]$, they are $C^{\infty}\left(E_{n}\right)$ functions. Let $u=$ $\left(u_{1}, \ldots, u_{N}\right)$ satisfy the initial condition

$$
\begin{equation*}
u(x, o)=u_{o}(x) \tag{1.2}
\end{equation*}
$$

where $u_{o}=\left(u_{o 1}, \ldots, u_{o N}\right),\left[u_{o r} \in C\left(E_{n}\right)\right.$ are bounded on $\left.E_{n}, r=1, \ldots, N\right]$. We say that u is of the class $S\left(E_{n}\right)$ if for each $t \in(0, T), D_{t} u_{r} \in C\left(E_{n}\right)$ and $u_{r} \in C^{2 b}\left(E_{n}\right), r=1, \ldots, N$.

It has been proved [2] that, under conditions (a) and (b), there exists a fundamental matrix $Z(t, 0, x, y)$ of the system (1.1) such that

$$
\begin{equation*}
u(t, x)=\int_{E_{n}} z(t, 0, x, y) u_{0}(y) d y, d y=d y_{1} \ldots d y_{r} \tag{1.3}
\end{equation*}
$$

represents the unique solution of the Cauchy problem (1.1), (1.2) in the class $S\left(E_{n}\right)$.

Let ($\mathrm{V}_{\mathrm{r}}: \mathrm{r}=1, \ldots, \mathrm{~N}$) be a family of Gaussian random measures in the sense of Gelfand and Vilenkin [2]. Let g_{r} be a complex-valued function defined on E_{1}. We say that g_{r} is of the class K_{r} if the integral $\int_{E_{1}}\left|g_{r}(s)\right|^{2} \mathrm{dF}_{\mathrm{r}}(\mathrm{s})$ exists, where F_{r} is a positive measure such that

$$
E\left[V_{r}\left(B_{1}\right) \overline{v_{r}\left(B_{2}\right)}\right]=F_{r}\left(B_{1} \cap B_{2}\right)
$$

for any two Borel sets B_{1} and B_{2} on the real line $[r=1, \ldots, N$ and E (.) denotes the expectation of (.)].

Let H be an N-vector of generalized stochastic processes, which associates with every h in $C_{o}^{\infty}\left(E_{n}, N\right)$ an N-vector of random variables defined by

$$
\begin{align*}
& H(h)=\left(H_{1}(h), \ldots, H_{N}(h)\right), \\
& H_{r}(h)=\int_{E_{1}} g_{r o}(s) d v_{r}(s), \tag{1.4}
\end{align*}
$$

$$
g_{r o}(s)=\int_{E_{n}}\left(I_{r}(x, s), h(x)\right) d x
$$

where ($I_{r} ; r=1, \ldots, N$) is a family of N-vectors of continuous functions on E_{n+1}.

It is assumed also that all the components of I_{r} are bounded on E_{n}, independently of s . Clearly, g_{ro} is of the class K_{r}.

The theoretical development in section 2 exhibits the use of formula (1.3) in order to integrate (1.1) when the initial condition is an N-vector of generalized stochastic processes, which is defined by (1.4). Also, some essential properties are derived in section 3.
2. GENERALIZED STOCHASTIC SOLUTIONS.

An N-vector $w(t, x, s)$ of functions is said to be of the class $C\left(E_{n+1}, N\right)$ if, for each t in ($0, T$), the components of $w(t, x, s)$ represent continuous functions of (x, s) on E_{n+1} and they are bounded on E_{n}, independently of s. We say that the generalized stochastic vector H_{t} is of the class V if there exists a family $\left[S_{r}(t, x, s): S_{r} \in C\left(E_{n+1}, N\right), r=1, \ldots, N\right]$ such that, for each h in $C_{o}^{\infty}\left(E_{n}, N\right), H_{t}(h)$ can be represented in the form

$$
\begin{aligned}
& H_{t}(h)=\int_{E_{1}} g(t, s) d V(s), \\
& g=\left(g_{1}, \ldots, g_{N}\right), g_{r}(t, s)=\int_{E_{n}}\left(S_{r}(t, x, s), h(x)\right) d x, \\
& H_{t}(h)=\left(H_{1 t}(h), \ldots, H_{N t}(h)\right), H_{r t}(h)=\int_{E_{1}} g_{r}(t, s) d V_{r}(s) .
\end{aligned}
$$

It is clear that, for each t in $(0, T), g_{r} \in K_{r}$. The expectation of $\left|H_{r t}\right|^{2}$ is given by

$$
E\left|H_{r t}\right|^{2}=\int_{E_{1}}\left|g_{r}(t, s)\right|^{2} d F_{r}(s)
$$

If $D_{t} g_{r}(t, s)$ exists and belongs to K_{r} for each t in ($0, T$), then we define $\frac{d}{d t} H_{r t}(h)$ by

$$
\frac{d}{d t} H_{r t}(h)=\underset{t \rightarrow 0}{1 . i \cdot m} \int_{E_{1}} \frac{\Delta g_{r}(t, s)}{\Delta t} d V_{r}(s)=\int_{E_{1}} D_{t} g_{r}(t, s) d v_{r}(s)
$$

where $\Delta g_{r}(t, s)=g_{r}(t+\Delta t, s)-g_{r}(t, s)$ and l.i.m. denotes limit in the mean, i.e.

$$
\lim _{t \rightarrow 0} \int_{E_{1}}\left|\frac{\Delta g_{r}(t, s)}{\Delta t}-D_{t} g_{r}(t, s)\right|^{2} d F_{r}(s)=0
$$

Let $L^{*}=\sum_{|k| \leq 2 b}(-1)|k| D^{k} L_{k}^{*}$, where $\left(L_{k}^{*},|k| \leq 2 b\right)$ is the family of adjoint matrices to $\left(L_{k},|k| \leq 2 b\right)$. Since the coefficients of the operator L are $C^{\infty}\left(E_{n}\right)$ functions, it follows that, for every h in $C_{o}^{\infty}\left(E_{n}, N\right), L_{h}^{*}=h_{t}$ is also in $C_{0}^{\infty}\left(E_{n}, N\right)$. We call H_{t} a generalized stochastic solution of the system (1.1) if H_{t} and $\frac{\mathrm{dH}_{t}}{d t}$ are of the class V and

$$
\begin{equation*}
\frac{d H_{t}}{d t}(h)=H_{t}\left(h_{t}^{*}\right) \tag{2.1}
\end{equation*}
$$

for every h in $C_{0}^{\infty}\left(E_{n}, N\right)$ and t in ($0, T$). We assume that

$$
\begin{equation*}
H_{0}(h)=H(h) \tag{2.2}
\end{equation*}
$$

where H is defined by (1.4).
THEOREM 1: The Cauchy problem (2.1), (2.2) has a unique generalized stochastic solution H_{t} in the class V.

PROOF: Let $\left(S_{r}(t, x, s): r=1, \ldots, N\right)$ be a family of solutions of the system (1.1) with the initial conditions:

$$
S_{r}(0, x, s)=I_{r}(x, s), r=1, \ldots, N
$$

Using formula (1.3), one gets

$$
\begin{equation*}
S_{r}(t, x, s)=\int_{E_{n}} Z(t, 0, x, y) I_{r}(y, s) d y \tag{2.3}
\end{equation*}
$$

According to the properties of the fundamental matrix Z, we find $S_{r} \in C\left(E_{n+1}, N\right)$, r $=1, \ldots$, N. Set,

$$
H_{t}(h)=\int_{E_{1}} g(t, s) d V(s)
$$

and

$$
g_{r}(t, s)=\int_{E_{n}}\left(S_{r}(t, x, s), h(x)\right) d x \text { with } h \in C_{o}^{\infty}\left(E_{n}, N\right)
$$

where $S_{1}(t, x, s), \ldots, S_{N}(t, x, s)$ are defined by (2.3). Since $S_{r} \in C\left(E_{n+1}, N\right)$, it follows that H_{t} is of the class V. Using again the properties of Z, we get

$$
\begin{aligned}
D_{t} \int_{E_{n}}\left(S_{r}(t, x, s), h(x)\right) d x & =\int_{E_{n}}\left(D_{t} S_{r}(t, x, s), h(x)\right) d x \\
& =\int_{E_{n}}\left(S_{r}(t, x, s), h_{t}^{*}(x)\right) d x
\end{aligned}
$$

The last formula proves that $\mathrm{D}_{\mathrm{t}} \mathrm{g}_{\mathbf{r}^{\prime}} \in \mathrm{K}_{\mathbf{r}}$.
Now we already have

$$
\frac{d}{d t} H_{t}(h)=\int_{E_{1}} \int_{E_{n}}\left(S_{r}(t, x, s), h_{t}^{*}(x)\right) d x d V(s)=H_{t}\left(h_{t}^{*}\right),
$$

where $\frac{d}{d t} H_{t}$ is of the class V.
We also have

$$
H_{0}(h)=\int_{E_{1}} g(0, s) d V(s)
$$

where

$$
g_{r}(0, s)=\int_{E_{n}}\left(I_{r}(x, s), h(x)\right) d x
$$

Thus the existence of the generalized stochastic solution H_{t} with the initial condition $H_{0}=H$ is proved. To prove the uniqueness of H_{t}, it is sufficient to show that the only solution of (2.1) with the initial condition $H_{o}(h)=$ $H(h)=0$ is $H_{t}(h)=0$ for every h in $C_{0}^{\infty}\left(E_{n}, N\right)$ and t in $(0, T)$. If $H_{0}=0$, then $E\left|H_{r o}\right|^{2}=\int_{E_{1}}\left|g_{r o}(s)\right|^{2} \mathrm{dF}(s)=0$, and hence $g_{r o}(s)=0$ on E_{1}.

Therefore,

$$
g_{r o}(s)=\int_{E_{n}}\left(I_{r}(x, s), h(x)\right) d x=0
$$

which is true for any arbitrary h in $C_{o}^{\infty}\left(E_{n}, N\right)$, and hence $I_{r}(x, s)=0$ on E_{n+1}. Since $\frac{d}{d t} H_{t}(h)=H_{t}\left(h_{t}^{*}\right)$, it follows that

$$
E\left|\frac{d}{d t} H_{r t}(h)-H_{r t}\left(h_{t}^{*}\right)\right|^{2}=0 ;
$$

therefore,

$$
\int_{E_{n}}\left(D_{t} S_{r}(t, x, s)-L S_{r}(t, x, s), h(x)\right) d x=0
$$

which implies

$$
\begin{equation*}
D_{t} S_{r}(t, x, s)=L S_{r}(t, x, s) \tag{2.4}
\end{equation*}
$$

We also have

$$
\begin{equation*}
S_{r}(0, x, s)=0 \tag{2.5}
\end{equation*}
$$

The uniqueness of the problem (2.4), (2.5) gives

$$
\begin{equation*}
S_{r}(t, x, s)=0 \tag{2.6}
\end{equation*}
$$

$$
t_{\mid} \in(0, T),(x, s) \in E_{n+1}, \quad(r=1, \ldots, N)
$$

Using (2.6), one gets $H_{t}(h)=0$, for every h in $C_{o}^{\infty}\left(E_{n}, N\right)$ and t in ($0, T$).
This completes the proof.
3. A CONVERGENCE THEOREM.

Let $h_{m}=\left(h_{m_{1}}, \ldots, h_{m_{N}}\right), m=1,2, \ldots$ be a sequence in $C_{o}^{\infty}(G, N)$, where G is a bounded open domain of E_{n}. Suppose that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int\left(h_{m_{r}}(x)-w_{r}(x)\right)^{2} d x=0 \tag{3.1}
\end{equation*}
$$

where $w_{r} \in L_{2}(G), r=1, \ldots, N$ and $L_{2}(G)$ denotes the set of all Lebesgue measurable square integrable functions on G. It is assumed that $w_{r}(x)=0$ for $x \in G$ where $r=1, \ldots N$.

THEOREM 2: If $H_{t}\left(h_{m}\right)=\int g_{m}(t, s) d V(s)$,
then

$$
\underset{m \rightarrow \infty}{\text { l.i.m. }} \quad H_{t}\left(h_{m}\right)=\int \eta(t, s) d V(s)
$$

where $g_{m}(t, s)=\left(g_{m_{1}}(t, s), \ldots, g_{m_{N}}(t, s)\right)$,

$$
\begin{aligned}
& g_{m_{r}}(t, s)=\int\left(S_{r}(t, x, s), h_{m}(x)\right) d x, \eta=\left(\eta_{1}, \ldots, \eta_{N}\right), \\
& \eta_{r}(t, s)=\int\left(S_{r}(t, x, s), w(x)\right) d x, \text { and the family }\left(S_{r}, r=1, \ldots, N\right)
\end{aligned}
$$

is defined by (2.3).
PROOF: A straight forward application of the Cauchy - Schwarz inequality establishes that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{G}\left(S_{r}(t, x, s), h_{m}(x)\right) d x=\int_{G}\left(S_{r}(t, x, s), w(x)\right) d x \tag{3.2}
\end{equation*}
$$

According to the conditions imposed on the family ($\left.I_{r}(x, s), r=1, \ldots, N\right)$ and according to the properties of the fundamental matrix Z, we can find a constant A such that

$$
\begin{equation*}
\left|g_{m_{r}}(t, s)\right| \leq A \tag{3.3}
\end{equation*}
$$

for $a l l \mathrm{~m}, \mathrm{~s}, \mathrm{t} \mid \in(0, \mathrm{~T})$ and $\mathrm{r}=1, \ldots, \mathrm{~N}$. For any positive integers ℓ and m , we have

$$
\begin{equation*}
E\left|H_{r t}\left(h_{m}\right)-H_{r t}(h)\right|^{2}=\int\left|g_{m_{r}}(t, s)-g_{\ell_{r}}(t, s)\right|^{2} d F_{r}(s) . \tag{3.4}
\end{equation*}
$$

By a standard argument based on (3.2) and (3.3), the righthand side of (3.4) can be shown to go to zero. Thus, $H_{t}\left(h_{m}\right)$ is a Cauchy sequence. We deduce also that

$$
\lim _{m \rightarrow \infty} \int\left|g_{m_{r}}(t, s)-\eta_{r}(t, s)\right|^{2} d F_{r}(s)=0
$$

The last argument leads to the fact that there exists a stochastic process $R_{r}(t)$ such that $E|R(t)|^{2}<\infty$ and that

$$
\lim _{m \rightarrow \infty} E\left|H_{r t}\left(h_{m}\right)-R_{r}(t)\right|^{2}=0
$$

Following Doob [3], we find

$$
\begin{aligned}
& R_{r}(t)=\int \eta_{r}(t, s) d V_{r}(s), \\
& \eta_{r}(t, s)=\int\left(S_{r}(t, x, s), w(x)\right) d x .
\end{aligned}
$$

This completes the proof.

COROLLARY: For vector functions ($w=w_{1}, \ldots, w_{N}$) where $w_{r} \in L_{2}(Q)$ and $w_{r}(x)=0$ for $\left.x \notin G\right)$, there exists a sequence $\left(h_{m}\right)$ in $C_{o}^{\infty}\left(E_{n}, N\right)$ such that

$$
\underset{m \rightarrow \infty}{\text { 1.i.m. }} \quad H_{o}\left(h_{m}\right)=H_{o}(w)
$$

$$
\underset{m \rightarrow \infty}{\text { 1.i.m. }} \quad H_{t}\left(h_{m}\right)=H_{t}(w) .
$$

The proof can be deduced direct1y by using theorem 2. (Compare [4]).

REFERENCES

[1] C.D. Idelman, Parabolic Systems. P. 87, Moscow 1964, (Mir Publishers).
[2] N.Ya. Vilenkin, I.M. Gelfand, Generalized Functions, Vol. 4, 1964 (Translated).
[3] J.L. Doob, Stochastic Processes. New York 1953.
[4] M.M. El-Borai, On Stochastic Differential Equation in a Hilbert Space, Egyptian Statistical Journal Vo1. 17, No. 2, 1973.

