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ABSTRACT. 1In this paper we consider a parabolic partial differential system of
the form Dt Ht = L(t,x,D) Ht’ The generalized stochastic solutions Ht’ cor-
responding to the generalized stochastic initial conditions Ho’ are given.

Some properties concerning these generalized stochastic soluti‘ons are also
obtained.
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1. INTRODUCTION.
Consider the system

Du=Lu (1.1)
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where
k
D, = %, L= X L (t,x) D° ,
k| < 2b
k k
k _ k 1 n _ 23 _
D = (-1) D1 ...Dn s Dr 5;; s T 1, ... n,

Ik] = kl + ... + kn, t € (0,T), T>0, x is an element of the n-dimensional

Euclidean space En’ and (Lk(t,x), |k| < 2b) is a family of square matrices
of order N.
We assume that (1.1) is a strongly parabolic system on Gn+1 = {(t,x):
t €e(0,T], x&En} in the sense that for every complex vector a = (al,..., aN),

every g€ En, and every (t,x) € Gn+

1 5

Re [ L Lk(t,x)ok a, al s -8 |0|2b |a|2

|k| = 2b

where
k
k 1 n 2b 2 2. b
o =0 wee o, folT = (o i+ )
2 2 2 A
|a| =a + ...+ ag » and 8§ is a positive constant (see [1]). 1In the

above inequality and in-the following, we denote the scalar product of two
N-vector functions u and v by the bracket notation (u,v).

As usual, we denote by e (En), 0 <m < =, the set of all real-valued
functions defined on En’ which have continuous partial derivatives of order
up to and including m (of order < » if m = =), By Cz (En, N) we denote the
set of all vector functions h = (hl, ey hN) such that every hr is in Cm(En),
with compact support, r = 1, ... , N. We assume that the elements of the
matrices Lk(t,x), |k| < 2b, satisfy the following conditions:

(a) They are bounded on Gn+ and satisfy a Holder condition of order o

1
with respect to x, (0 < a < 1).

(b) For every x¢€ En’ they are continuous functions in t ¢ [0, TJ.
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(c) For every t in [0, T], they are CQ(En) functions. Let u =

(ul, cees uN) satisfy the initial condition
u(x, o) = uO(X), (1.2)
= r =

where u (uol, e s uoN)’ Cu . € C(En) are bounded on En’ r=1, ... , Nl.
We say that u is of the class S(En) if for each t € (0,T), Dtur &C(En) and

2b
urEC (En), r=1, ... , N.

It has been proved [ 2] that, under conditions (a) and (b), there exists a

fundamental matrix Z(t,0,x,y) of the system (1.1) such that

u(t,x) = J z(t,0,%,y) u (y) dy, dy = dy, ... dy_ (1.3)
E
n
represents the unique solution of the Cauchy problem (1.1), (1.2) in the class
S(En).
Let (Vr t:r=1, ... , N) be a family of Gaussian random measures in the

sense of Gelfand and Vilenkin [2]. Let g, be a complex-valued function

defined on El' We say that g, is of the class Kr if the integral

J lg (s)|2 dFr(s) exists, where Fr is a positive measure such that
r
B
ELV _(B)) V_(B,)] =F (B, N B
for any two Borel sets B1 and 32 on the real line{r =1, ..., Nand E (.)
denotes the expectation of (.)].

Let H be an N-vector of generalized stochastic processes, which associates

with every h in C: (En, N) an N-vector of random variables defined by

H(h)

H @, ...y B M),

J g, (s) d V (), (1.4)

E

H_(h)
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8.,(8) = I (I_(x,8), h(x)) dx,

E

n
where (Ir; r=1, ..., N) is a family of N-vectors of continuous functions
on En+1’
It is assumed also that all the components of Ir are bounded on En, in-
dependently of s. Clearly, &ro is of the class Kr'

The theoretical development in section 2 exhibits the use of formula (1.3)

in order to integrate (1.1) when the initial condition is an N-vector of general-
ized stochastic processes, which is defined by (1.4). Also, some essential

properties are derived in section 3.

2. GENERALIZED STOCHASTIC SOLUTIONS.

An N-vector w(t,X,s) of functions is said to be of the class C(En+1, N) if,
for each t in (0,T), the components of w(t,x,s) represent continuous functions
of (x,s) on En+1

the generalized stochastic vector Ht is of the class V if there exists a

and they are bounded on En’ independently of s. We say that

family [Sr(t,x,s) : Sﬂ @ C(E N), r =1, ..., N] such that, for each h in

n+l’
C: (En’ N), Ht(h) can be represented in the form

Ht(h) = J g(t,s) dv(s),

By

g = (31’-0':gN)’ gr(t,s) = J (Sr(t’xys)y h(x))dxa

E
n

B(B) = (Hy (0),eees By (1)), B (B) = J g, (£,9)dV (s).
E
1

It is clear that, for each t in (0,T), gr|€ Kr' The expectation of |Hrt|2 is

given by
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E IHrt|2 = J Igr(t,s)lz d F_(s).

B

If Dtgr(t,s) exists and belongs to I(r for each t in (0,T), then we define

d
It Hrt(h) by

d Vr(s) = f D, g .(t,8) d V (s) ,

E

J Agr(t > S)
E 1

where Agr(t,s) = gr(t + At,s) - gr(t,s) and 1l.i.m. denotes limit in the mean,

i.e.
g _(t,s) 2
lim J I—A_t——— -Dtgr(t,s)| dF _(s) = 0.
t->o E
1
* *
Let 1" = ‘Zl (-1)|k|1>k L., where (L, |k| < 2b) is the family of
k| < 2b

adjoint matrices to (Lk, |k| < 2b). Since the coefficients of the operator

@ *
L are C (En) functions, it follows that, for every h in C: (En’ N), L h = ht

1s also in C: (En,N). We call Ht a generalized stochastic solution of the

dH

system (1.1) if Ht and EEE are of the class V and

dHt (h)

*
d_t— = Ht(ht) (2.1)

for every h in C: (En,N) and t in (0,T). We assume that

Ho(h) = H(h) (2.2)
where H is defined by (1.4).
THEOREM 1: The Cauchy problem (2.1), (2.2) has a unique generalized
stochastic solution Ht in the class V.
PROOF: Let (Sr(t,x,s) t:r=1, ... , N) be a family of solutions of the

system (1.1) with the initial conditions:
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Sr(O,x,s) = Ir(x,s), r=1, ..., N.

Using formula (1.3), one gets

Sr(t,x,s) = I Z(t,0,x,y) Ir(y,s) dy. (2.3)

E
n

According to the properties of the fundamental matrix Z, we find Sr|€ C(E

n+l’ N,

r=1, ..., N. Set,

H (h) = I g(t,s) dv (s)
El
and

gr(t,S) = J (s (t,x,s), h(x))dx with h; € C: (E ., M,

E
n

where Sl(t,x,s), ey SN(t,x,s) are defined by (2.3). Since Sr:e C(En+1, N),

it follows that Ht is of the class V. Using again the properties of Z, we get

Dt I (Sr(t,x,s), h(x))dx [ (DtSr(t,x,s), h(x))dx
E E
n

n
*
J (Sr(t,x,S), ht(x)) dx.
E
n

The last formula proves that Dt grle Kr'

Now we already have

o (h) = J J (5,(t,%,8), by (1)) dx dV(s) = K, (hp),
E. E

1 n

d
where I Ht is of the class V.

We also have

H (h) = J g(0,s) dv(s) ,

By
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where
g, (0,8) = J (I.(x,8), h(x)) dx.
E
n
Thus the existence of the generalized stochastic solution Ht with the initial
condition Ho = H is proved. To prove the uniqueness of Ht’ it is sufficient
to show that the only solution of (2.1) with the initial condition Ho(h) =

H(h) = 0 is Ht(h) = 0 for every h in C: (En,N) and t in (0,T). 1If Ho =0,

2 _ 2 _
then E |Hrol = J |gr°(s)| dF(s) = 0, and hence gro(s) =0onE,.

1
Ep
Therefore,
gro(S) = J (I.(x,8), h(x)) dx = O,
E
n
]
which is true for any arbitraryh in Co (En’ N), and hence Ir(x,s) = 0 on En+1'
Since =S H_(h) = H_(h'), it follows th
nce - H = ¢ t), t follows that
d * 12 i
E Idt B -H, (ht)l 03

therefore,
I (DtSr(t,x,s) - L Sr(t,x,s), h(x)) dx = 0,
E
n

which implies

DtSr(t,x,s) =1L Sr(t,x,s). (2.4)

We also have

Sr(O,x,s) = 0. (2.5)

The uniqueness of the problem (2.4), (2.5) gives

Sr(t,x,s) = 0, (2.6)
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t; € (0,T), (x,s8) € En+ , (r=1,..., N).

1
Using (2.6), one gets Ht(h) = 0, for every h in C: (En’N) and t in (O,T).
This completes the proof.

3. A CONVERGENCE THEOREM.

Leth =(h , ... ,h ), m=1, 2, .. be a sequence in c (G, N), where
m o, o
G is a bounded open domain of En’ Suppose that

limJ (h (%) - w (x)? dx = 0, (3.1)
m>o° mr r

where v € L2(G), r=1, ... , N and L2 (G) denotes the set of all Lebesgue
measurable square integrable functions on G. It is assumed that wr(x) =0
for x€G where r =1, ... N.

THEOREM 2: If H (h ) = J g (t,s) dV(s),

then

1.i.m. Ht(hm) = J n(t,s) dv(s),

m > o«

where gm(t,s) = (gm (ty8), v.., gmN(t,s)),
1

gmr(t’S) = J (Sr(t,xys)a hm(x)) dx, n = (nl"-'9 nN)’

nr(t,s) = J (sr(t,x,s), w(x))dx, and the family (Sr’ r=1, ..., N)
is defined by (2.3).

PROOF: A straight forward application of the Cauchy - Schwarz inequality

establishes that

lim J (s (t,%,8), h (x)) dx = j (s (t,x,8), w(x))dx (3.2)
me o G
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According to the conditions imposed on the family (Ir(x,s), r=1, ..., N)

and according to the properties of the fundamental matrix Z, we can find a

constant A such that

le, (t.s)] <4, (3.3)
r

for allm, s, t| €(0,T) and r = 1, ..., N. For any positive integers £ and m,

we have
2 2
E |Hrt(hm) - H_ (h ) ° = J |gmr(t,s)— gzr(t,s)l dF _(s). (3.4)

By a standard argument based on (3.2) and (3.3), the righthand side of (3.4) can
be shown to go to zero. Thus, Ht(hm) is a Cauchy sequence. We deduce also

that

lim {gm (t,s) - nr(t,s)l2 dF _(s) = 0.
me T r

The last argument leads to the fact that there exists a stochastic process
R _(t) such that E IR (t)|2 <  and that

lim E [H_ (h) -R.()]2 =0

oo rt " m T *
Following Doob [ 3], we find

Rr(t) = J n (t,s) dVr(S),

n (t,s) = [ (s (t,x,8), w(x))dx.
This completes the proof.
COROLLARY: For vector functions (w = Wi e, wN) where wf'e‘LZ(Q) and
wr(x) = 0 for x¢G), there exists a sequence (hm) in C: (En’ N) such that

1.i.m. Ho(hm) = Ho(w),
m > ©
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l.i.m. Ht(hm)=Ht(w).
m > o

The proof can be deduced directly by using theorem 2. (Compare [ 4]).
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