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ABSTRACT. In this paper the following Cauchy problem, in a Hilbert space H, is

considered:

(I + XA)u" + A2u + [ + M(IA1/2ul 2)]Au f

u(0) u
O

u’(0) u
i

M and f are given functions, A an operator in H, satisfying convenient

hypothesis, X >_ 0 and is a real number.

For Uo in the domain of A and uI in the domain of A1/2, if > 0, and uI in H,

when 0, a theorem of existence and uniqueness of weak solution is proved.
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I. INTRODUCTION.

The physical origin of the problem here considered lies in the theory of

vibrations of an extensible beam of length , whose ends are held a fixed distance

apart, hinged or clamped, and is either stretched or compressed by an axial force,

taking into account the fact that, during vibration, the elements of a beam

perform not only a translatory motion, but also rotate; see Timoshenko [9].

A mathematical model for this problem is an initial-boundary value problem

for the non-linear hyperbolic equation

2 4 4u I u ]2 2uu u +------ [ + [ (s t) ds3 0 (I.I)
t

2 t22 4 o 2
where u(,t) is the deflection of point l at time t, a is a real constant, pro-

portional to the axial force acting on the beam when it is constrained to lle

along the axis, and is a nonnegative constant (y%= 0 means neglecting the

rotatory inertia, while % > 0 means considering it). The non-linearity of the

equation is due to considering the extensibility of the beam.

This model, when % 0, was treated by Dickey [2], Ball [I] and, in a Hilbert

space formulation, by Medelros [5]. For related problems, see Pohozaev [?],

Lions [4], Menzala [6] and Rivera [B].

In this paper, a theorem of existence and uniqueness of weak solution for a

Cauchy problem in a Hilbert space H, is proved for the equation

(I + kA)u" + A2u + [ + M(IA1/2uI2)] Au-- f, (1.2)

with suitable conditions on the operator A and the given functions M and f.

This paper is divided in three parts. In Part i, the theorem is taed and

existence of a weak solution is proved. In Part 2, its uniqueness is established.

Finally, an application is given, in Part 3, when H is L2(), a bounded open

set with regular boundary in Rn, and A is the Laplace operator A.
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2. EXISTENCE OF WEAK SOLUTION.

Let H be a real Hilbert space, with inner product ( and norm

Let A be a linear operator in H, with domain D(A) V dense in H. With the

graph norm of A, denoted II II, i.e.

for v V,

V is a real Hilbert space and its injection in H is continuous. We assume this

injection compact.

Suppose A self-adjoint and positive, i.e., there is a constant k > 0 such that

(Av,v) > klvl 2
for v in V. (2.1)

Let V’ be the dual of V and <,> denote the pairing between V’ and V. Identl-

fylng H and H’, it follows that V c H c V’. Injections being continuous and

dense, it is known that, for h in H and v in V, <h,v> (h,v).

Define A2: V + V’ by

< A2u, v > (Au,Av), for u, v in V.

It follows that A2 is a bounded linear operator from V into V’.

Let a(u,v) denote the bilinear form in D(A1/2) associated to A, i.e.,

(2.2)

a(u,v) (Au, A1/2v), for u, v in D(A)

a(u) means a(u,u).

Given X > 0, consider in W D((IA) 1/2) the graph norm of (IA)1/2, denoted

IX, i-e.,

for w in W

Note that W H, if I 0, and W D(A), if > 0; hence V is dense in W.

Let be a real number, M a real CI function, with M’(s)>0, for s > 0.

Assume the existence of positive constants mo and mI such that M(s) >mo + mls’
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for s > 0. Notice that, should M be the identity function, replacement of + s

by ( mo + (m + s), with arbitrary m > 0, ensures the fulfilment of the

above condition on M.

The theorem can now be stated.

THEOREM. Given f in L2(0,T;H) u in V, uI in W there is a unique function
O

u u(t), 0 < t < T, such that:

a) u L (0,T;V)

b) u’. L(0,T;W)

c) u is a weak solution of

(I + kA)u" + A2u + [a + M([A u
1/2 2

i.e., for every v in V, u satisfies in D’ (0,T):

)U Au f, (2.3a)

d [ (u’ (t),v) + %a(u’ (t) v) + (Au(t),Av) +dt

+ [a + M(a(u(t)))] a(u(t),v) (f(t),v) (2.3b)

d) The following initial conditions hold:

u(0) Uo u’(0) uI (2.4ab)

Before proving the theorem, some remarks are pertinent.

Equation (2.3a) makes sense, because (a) and (b) above imply that u, Au,
Au, u’, (kA) u’ belong to L (0,T;H).

Initial condition (2.4a) makes sense, because it is known,(see Lions

that if u and u’ are in L (O,T;H), then

u belongs to C(O,T;H), (2.5)

Now, initial condition (2.4b) must be understood.

Remember u’ L(O,T;W) implies that (l+kA)u’ L(O,T;V’), because

<(I + A)u’,v> (u’,v) + %a(u’ v) for v in V
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From (2.3a), it follows that (I + kA)u" L2(O,T;V’). The fact that both

(I + A)u’ and (I + A)u" belong to L2(O,T;V ’) ensures that

(I + A)u’ C(O,T;V ’) (2.6)

Therefore (I + A)u’ (0) is defined. Given uI in W, set (I + kA)u’ (0)

(I + %A)ul, in V’. It follows that u’ (0) uI, because, it will be proved below,

(I + A)w 0, for w in W, implies w 0. (2.7)

Indeed, V being dense in W, there is a sequence (vj)j N

to w in W, i.e., as j + ,
in V that converges

lw-v l 2 lw-v l + Xa(w- vj) --+ 0

and

0 <(I + kA)w,vj> (w,vj) + %a(w,vj)
tends to

(w,w) + %a (w) lw’12
Hence w 0.

Proof of Existence:

It will follow Galerkin method. Suppose, for simplicity, v separable.

Let, then, (wj) be a sequence in V such that, for each m, the set
jN

wI, ,Wm is linearly independent and the finite linear combinations of wI, w2,

are dense in V. Let Vm denote the finite subspace of V, spanned by Wl,... ,Wm.

(i) Approximate Solutions
m

Search for u (t) gjm(t)w in V such that for all v in V
m

j =i
j m m’

((I + %A)u(t),v) + (AUm(t),Av) + [a+M(a(Um(t))](Aum(t),v)=(f(t),v) (2.8)

u (0)= u u’(O)= (2 9)
m om m Ulm’
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where Uom converges to Uo in V and Ulm to uI in W.

This system of ordinary differential equations with initial conditions has

a solution u (t), defined for 0 < t < t < T. It is convenient to emphasize
m m

that the matrix ((l+lA)wj,wl), i,j--i ,m, is invertible, for otherwise the

homogeneous system of linear equations

m
[ ((+ A)wj,w+/-)x. 0 i-- , m,

j=l

would have a non-trivial solution al,...,sm, hence

m

j--I X

m m
((I + %A) 7. mjwj, miwi 0,

j--I I i

a contradiction to the linear independence of w.,...,w
m

(ii) A Priori Estimates

For v 2u(t), (2.8) becomes:

dt + a d a(Um(t)) +

+ M(a(Um(t))) t a(Um(t)) 2(f(t)’um’(t)) (2.10)

Set [(o) M(s)ds
o

We integrate (2.10) from 0 to t < t and obtain:
m

Ju(t) 2 + Xa(u(t)) + JAum(t) 2 + (a(um(t)))

<Km + JaJa(Um(t)) + Ju(s) 12 d, (2.
o

where K j2 ITm Ulm + la(Ulm) + JAUom 12 + M(a(Uom)) + Jf(s) J2ds"
o

By choice, Uom and Ulm converge respectively to Uo in V and to u
I in W

(remember that Juzml2 j2 + Xa(Ulm))Ulm
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Therefore, there is a constant C > 0, independent of m and greater than K
o m

such that (2.11) still holds, with K replaced by C
m o

Now, M(s) _> mo + s implies M() _> mo + (2.12)

mI 2For a(Um(t)) from (2.11), (2.12) and lels < __Isl + o
2mI 2

one obtains

lu’(t) 2 + %a(u(t)) + IAUm(t) 2 + moa(Um(t)) < C + lu(s) 12ds (2.13)
m

o

where C C +
o 2m

1
a constant independent of m.

In particular,

lu’(t) 12m
< C + lug(s) 12ds.

o

Hence, applying Gronwall inequality

lu’(t) 12 < C e
T

m

It follows from (2.13) and (2.14) that

(2.14)

lU’m(t) 12 + la(u(t)) + IAUm(t) 12 + moa(Um(t)) < K, (2.15)

where K C(I + TeT), for all t in [0,t and all m.
m

In particular, as klUm(t) 2 _< a(Um(t)), it follows that urn(t) remains

bounded hence it can be extended to [0,T-I. Therefore, (2.15) holds, in fact,

for all m and t in [0,T].

(iii) Passase to the Limit

It follows that there is a sub-sequence of (urn), still dentoed (urn), for

which, as m / ,, the following is true, in the weak star convergence of L (0,T;H):

u -- u, (2.16)
m

a(u -+ a(u), (2.17)
m
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Au --+ Au,
m

(2.18)

U --- U
m

(2.19)

%a(ul) -+ la(u’), (2.20)

M(a (um) )AUm --’+ (2.21)

It must still be proved that, in fact

M(a(u))Au (2.22)

(2.22) will be shown to follow from the Lemma below, whose proof, here

reproduced, was given by J.L. Lions [ 3] and [4].

LEMMA. The mapping v --+ M(a(v))Av from V into H is monotonic.

PROOF. The function () M(s)ds is non-decreasing (because M’ ()
O

M(O) > 0) and convex (because "() M’ () > 0).

Take

(v) (a(v)), for v in V

It is easy to see that has a Gateau derivative,

’ (v) 2M(a(v))Av, for v in V,

and that # is convex, i.e., for 0 < p < i,

#(pv + (l-o)w) < O#(v) + (l-o)#(w), for v, w in V.

This inequality can be written in the form.

(w + ,(v-w)) (w) -< (v) (w)

Passing to the limit, as p + 0 it follows that

(’ (w). v-w) -< (v) (w)

and, interchanging the roles of v and w,

(’ (v). w-v) < (w) (v)

Adding the two inequalities above, one obtains:

(’(w) ’(v). w-v) >_ 0.
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This proves the Lemma.

It can now be shon that (2.22) holds.

Indeed, because of the Lemma, for all v in L2(0,T;V), it is true that

ITcMcaCum))Aum MCaCv))Av), u
m

v)dt 0
o

Because (um) is bounded in L=(0,T;V) and (u) in L=(0,T;H) and the in-

Jection of V in H is compact, (um) can, further, be supposed to converge to u

strongly in L2(O,T;H). Hence, as m / (R):

T( M(a(v))Av, u- v)dt > 0
o

Set u v pw, p > O, divide the inequality by p and let p / 0, to obtain:

T(@_ M(a(u))Au, w)dt > 0
o

This holds for all w in L (0,T;V), hence M(a(u))Au.

In the following, let k be fixed, k < m; take v in V
k

and let m / .
(2.19) and (2.20) imply that, in D’(0,T)

(u(t) V) -+ d-(u’ (t),v)
dt

(2.23)

(2.24)

Passing to the limit in (2.8), then (2.23) and (2.24), with (2.17), (2.18),

(2.21) and (2.22) ensure that

_d [(u,(t) v) + la(u’(t) v)] + (Au(t) Av) +
dt

+ [a + M(a(u(t)))] a(u(t),v) (f(t),v), (2.25)

holds in D’ (0,T), for all v-in Vk. By density, (2.25) holds in ’ (0,T), for

all v in V.
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Therefore, u is, indeed, a weak solution of (2.3a).

It must still be shown, in order to complete the proof of existence, that

u satisfies (2.4ab).

(iv) Initial Conditions

(2.19) means that, for v in V and 0 in C’ (0,T) such that 0(0) i and

0(T) 0, as m

(u’(t) v)O(t)dt -+ (u’(t),v)(t)dt
m

o o
(2.26)

Because of (2.5) and (2.16), integrating (2.26) by parts, it follows that

(Uom, V) -+ (u(0),v), for v in V. (2.27)

But u -- u in V; hence (2.27) yields
om o

(Uo,V) (u(0),v), for v in V, i.e., u satisfies (2.4a).

To show that u satisfies (2.4b), consider equations (2.3b) and (2.8) for

v w., j --1,2 It follows, using (2.17)-(2.18), (2.21) and (2.22), that,
3

as m/o

__d (u(t) w.) + Xa(u(t),wj)] (2.28)
dt 3

converges to t (u’ (t),wj) + Xa(u’ (t),wj) weak star in L=(0,T).

(2.28) means that for v in V, 0 in CI(0,T) such that 0(0)=i, O(T) 0,

IT t [(u(t)’wj) + Xa(u’(t) )] 0(t)dt
m wj

o-- [(u’(t),wj) + Xa(u’(t),Wo)] 0(t)dt.
o 3

(2.29)

Because of (2.6), (2.19) and (2.20), integrating (2.29) by parts, it follows

that
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(Ulm,Wj) + %a(Ulm,Wj) --+ (u’ (0),wj) + %a(u’ (0),wj), (2.30)

But Ulm--+ uI in W, hence the left-hand side of (2.30) converges also

to (ul,wj + a (ul,wj). Therefore

(u’(O),wj) + %a(u’(O),wj) (Ul,Wj) + %a(ul,wj) (2.31)

As (2.31) holds for j 1,2,..., it follows that, in fact, for all v in V:

In other words

(u’ (0),v) + la(u’ (0),v) (Ul,V) + la(ul,v).

(I + lA)u’(0) (I + lA)uI in V’

But this implies,[see [6]) u’(0) Ul, i e. u satisfies (2 45)

3. UNIQUENESS

Let u and 5 be two solutions of (2.3a) with the same initial conditions

(2.4ab). Thus w u satisfies

(I + kA)w" + A2w + Aw + M(a(u))w +[M(a(u)) M(a(5))] A5 0, (3.z)

w(0) 0, w’(0) 0. (3.2ab)

The standard energy method cannot be used to prove uniqueness, because,

while the left-hand side of (3.1) belongs to L2(0,T;V’), u’ belongs to L(0,T;W)

and not to L(0,T;V). A modification has to be made; this procedure can be

f.ound in Lions [3].

Consider:
s

-ftw()d for t < s

z(t) (3.3)

0 for t > s

and wl(t) w()d, (3.4)
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Then

z(O) w(s) (3.6)

z(s) o (3.7)

and z’(t) w(t) (3.8)

As w L(R)(0,T;V), it is clear [see (3.3) and (3.8).] that z and z’ are in

LI(0,T;V). Hence, it follows from (3.1) that

< (I + lA)w"(t), z(t)-> dt + (Aw(t), Az(t))dt +
O O

Is Is+ a (Aw(t),z(t))dt + M(a(u(t)))(Aw(t),z(t))dt +
o o

s
+ [M(a(u(t))) M(a((t)))](AS(t),z(t))dt 0.

o

Bu,[ (3.8)]

(3.9)

< (l+IA)w"(t) ,z (t) > t((l+IA)w’(t),z(t))- ((I+IA)w’(t),z’(t))

((Z+A)w’ (t),z()) y ((Z+XA)w(t),w(=))

Therefore, using (3 2ab) and (3 7) it follows that (remember ’[w[ 2

+ ka (w))

s
i 2< ( + )w"(t),z() > d -o

(3.0)

No,[, (3. )]

(Aw(t) Az(t)) (Az’(t) Az(t)) l __d ]Az(t)2 dt

Thus, [see (3.6) and (3.7)]

Az(=))d= 1/2lAw(s)[2
o

(3.n)
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As lwll >-lwl, (3.9), (3.10) and (3.11)yield

I() 12 + IA (s)12 -< 21=I l(w(t), Az())Idt
O

+ 2 M(a(u(t)))l(w(t) Az(t))Idt
O

+ 2 IM(a(u(t))) M(a((t))) l((t), Az(t))Idt
O

(3.12)

C
I

As u, uEL (0,T;V) and, for s > 0, M > 0 is a function, with

there is a constant C > 0 such that

2 M(a(u(t)))](w(t) Az(t))[dt < 2C [w(t) IAz(t)[dt
O

O O

(3.13)

And

2 IM(a(u(t)) M(a((t))) l(5(t), Az(t))
O

-< 2C
O

s
]a(u(t)) a((t))] [(t)[ IAz(t)[dt

O

< 2C
2 Iso ](A(u(t) + (t)), w(t))] ]Az(t) ldt

O

< 2C
3 Iso [w(t) [Az (t)

O

Notice that, [see (3.5) ]

2[w(t) ]Az(t)[ < 2[Iw(t)]2 + iAwl(t [2

(3.14)

Hence, it follows from (3.15) that

] + IAwl(s) 12 (3.15)

O O

2 + iAWl(t)12 ]dr + a(3.16)

Hence (3.13) and (3.15) give
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s
2 M(a(u(t)})l(w(t), Az(t)}

o

<_ 2c E lw(t)12
o

o
+ IAw(t)12]d + Co IAw()12

Now (3.14) and (3.15) give

s
2 IMCaCuCt))) MCaCCt)))l ICe,t), AzCt))

o

(3.17)

-< c [ lw(t)12o
o

+ IAWl(t)i 2
]dt + C3o s IAw (s) 12

It now follows from (3.12), with (3.16) (3.17) that

(3.8)

lw(s) 12 + ( cs)lAw()12 -< 2C E lw(t)12
o

+ IAwl(t) (3.19)

where C I=l + C + C3.
o o

Take s such that for 0 -< s
1

o So’ <- i- CS < I. Hence (3.19) yields

for0Sss:
o

lw() 12 I 2 Is+ IAw()l < 2O E lw(t) 2 + IAWl(t) 123dt.

A fortiori, for 0

lw()l 2 + IAl(,)l 2 _< 4c [lwCt) 2 + lw(t) 123dt.
o

Applying Gronwall inequality, it then follows that

w(s) 0, for 0 < s < s
o

Similarly, it is proved that w(s) 0, for s < s < s + , with 0. It
o o

then follows that, in fact, w(s) 0, for 0 < s < T.

The proof of uniqueness is complete.
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4. APPLICATION

For a bounded open set in Rn, with regular boundary, consider

H L2() V HI() H2(D)
o

Let A be the Laplace and V the gradient operators in R
n

respectively. Take

A A, hence A* V. Hypothesis on A are satisfied. Notice that, in this

case, the condition (Av,v) > klvl 2, for v in V, is the Friedrichs Poincar

inequality; the compactness of the injection of V in H is the Rellich theorem.

It is clear that

W L2(), if I 0

W HI(), if I > 0

Now (,) and are respectively the inner product and the norm in L2().
Given

u HI() H
2 ()o o

u
I

L2(), if I O; uI t HI(), if I > 0,

L
2

f L2(0,T; ()),

the theorem proved above ensures existence and uniqueness of weak solution for

the non-linear hyperbolic equation

(I l&)u + A
2 2)u- [e M(IVu Au f,

satisfying u(0) Uo, u’ (0) uI.
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