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ABSTRACT. Relative complements and differences are investigated for several con-
vergence structure lattices, especially the lattices of Kent convergence structures
and the lattice of pretopologies. Convergence space properties preserved by
relative complementation are studied.Mappings of some convergence structure
lattices into related lattices of lattice homomorphisms are considered.
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1. INTRODUCTION.

The author classified the relative complements and differences for the
lattice of Kent convergence structures on a nonempty set in [8]. This paper in-
vestigates further the convergence space properties preserved by these complements

and their relationships to some of the standard lattice operations such as products
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and quotients.

The definitions used are essentially those of [3], [4] and [11] with a con-
vergence structure on X considered as a map q: X -+ B(F(X)) (the power set of the
set of filters on X). U(X) and x are the set of ultrafilters on X and the prin-
cipal ultrafilter generated by {x}. For a convergence space (X,q), let Aq, ¢q and
wq be the topofogical, pretopological, and completely regular topoLogical modifi-
cations of q. The q-Limit set of a filter F is ad q(F) = {x| F € q(x)} and the
closure cl(A) of a subset A is {x | F € q(x) for some filter F with A € F}.

An element z of lattice L is the pseudo-complement of x nelative Zo y (xxy)
if z is the greatest element with xAz<y and the pseudo-difference of y and x (y-x)
if z is the least element with y<xvz. If L is a complete lattice with 0 and 1
the least and greatest elements, then the pseudo-compfement of x is x* = x*0 and
the pseudo-difference of x is -x = 1-x (a change of notation from [8]).

2. RELATIVE COMPLEMENTS.

The relative pseudo-complement and pseudo-difference of two convergence
structures in C(X) were described in [8] as:

qrr(x) = {F|F=%or G nxcF for some G ¢ r(x) \q(x)}

q-r(x) = {F|F + G = B(X) or is in q(x) for all G ¢ r(x)}

For q and r limitierungs of Fischer [3] or pseudo-topologies the same de-
scriptions hold for relative pseudo-complements and pseudo-differences in the
lattices of limitierungs or pseudotopologies. In P(X), the lattices of pretopol-
ogies on X, pseudo-differences do not exist from [9]. Relative pseudo-complements
also fail to exist in P(X) even though, from [9], P(X) is pseudo-complemented.

EXAMPLE 2.1: On an infinite set X, let A be an infinite subset with infinite
complement and x € X. If q(r) is the finest pretopology on X such that an ultra-

filter F q(r)-converges to x if and only if F = x or F is free and contains A(X-A)

then gq*r does not exist in P(X).
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Many properties of convergence structures are preserved by relative pseudo-
complementation. If r is a limitierung (resp. pseudotopology, pretopology, topol-
ogy), then from [8], qxr is the same type of structure for any convergence struc-
ture q.

PROPOSITION 2.2: For any convergence structures q and r on X:

(1) gqxr is T1 (Hausdorff) if r is T1 (Hausdorff).

(ii) qxr is T3 if r is T3.

(iii) qxr is compact if and only if r is compact and for any ultrafilter
F, aerS) ¢ adq(G) for some G c F.
(iv) qxr is T-regular [5] if r is T-regular.
(v) qxr is first countable (P!—countable, [2]) if r is first countable
(‘\' -countable).
(vi) qxr is second countable if r is second countable and qxr has at
most countably many discrete points.
In addition, for any pretopology q on X:
(vii) qxr is a completely regular topology if r is a completely regular
topology.
(viii) q#*r is w-regular [6] if r is w-regular.

(ix) q*r is C-embedded [6] if r is C-embedded.

PROOF: The proof of (i) is in [8].

(i1) If F € q#r(x) with G ¢ F for some G ¢ r(x) \ q(x) then cer e r(x)\ q(x)

since r is regular so cer cel Gc °1q*rF and clq*rF gqxr-converges

qxr -~

to x. If q#r(x) = {x} then q*xr is T

socl _x =x.
1 QT

(iii) is obvious.
(iv) Suppose F € q#r(x) and G c F for some G ¢ r(x) \ q(x). Then CIArG €

r(x) \ q(x) so cl)‘rG c el F since q#Ar < A(qir).

q*ArG < CIA(q*r)G £ CI).(q*r)
If q*r(x) = {x}, A(q*r) (x) = {x} so q*r is T-regular.
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(v) If F € q*r(x) with G c F and G € r(x) \ q(x), then H € r(x) \ q(x) for
some H with filterbase of cardinality less than j¥ for any cardinal V.

(vi) Let B be a countable basis for (X,r). Then B' = B u {x | qar(x) = {x}}
is a countable basis for (X,q*r).

(vii) Since qxr is topological from [8], suppose A is gqxr-closed and x ¢ A.
Then if x ¢ clr(A), any real valued continuous function on (X,r) which
separates x and A is also q*r-continuous. If x € clr(A), then qxr is
discrete at x so x and A can be separated by a q*r-continuous, real-
valued function.

(viii) If F € q*xr(x) and G € r(x) \ q(x) with ClwrG e r(x) \ q(x) then from
(vii), if wr is the completely regular modification of r, cler <

cl F and if qxr is discrete at x, so is

q*er S CIw(q*r)G < CIu)(q*r)
w(q*r) and the conclusion follows.
(ix) From [81, q«r is pseudo-topological if r is pseudo-topological. If r
is Hausdorff and w-regular, then qxr has the same properties from (i)
and (viii) so by [6], qxr is C-embedded if r is C-embedded.
COROLLARY 2.3: (i) If r° is the finest first countable structure coarser
than r, then (q*r)0 = q*ro for every convergence structure q.
(ii) 1If Rr, the finest regular structure coarser than r [7], is Tl’ then
qxRr < R(g*r).
PROOF: Since r° < r, q*ro < q*r and q*r0 being first countable implies q*ro
< (q*r)o. Conversely, if F ¢ q*ro(x) then G c F for some G ¢ r(x) \ q(x) with
countable filterbase. Then G ¢ q*xr(x) so F ¢ (q*r)o(x).

As q%Rr is T, from (ii) of Proposition 2.2 and qxRr < gq#r, then q*Rr < R(q#r).

3
The converses of the statements in Proposition 2.2 fail to be true since if

q £ 1, qkr is discrete. In (ii) of Proposition 2.2, one cannot substitute regular

for T3.
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EXAMPLE 2.4: (i) Let X = {x,y} and q be the finest convergence structure
on X for which the principal filter ny generated by {x,y} converges to

x. Then O is regular but not T, and q* is not regular.

1
(ii) Let r be a convergence structure on an infinite set X for which Rr # r

and Rr is Tl’ such as a non-regular T, -convergence structure which is

2
finer than some TZ’ regular topology. Then 1 = R(rxr) # riRr.

The following description of the convergent ultrafilters of the pseudo-dif-
ference q-r of two convergence structures is given in [8]:

LEMMA 2.5: An ultrafilter F q-r converges to x if and only if F gq-converges
to x or does not r-converge to X.

Because q-r can have so many convergent ultrafilters, most convergence space
properties are not preserved. This can also be observed from the result of [9]
that the image of the map q -~ 1-q is the lattice of pseudotopologies. For ex-
ample, one can readily show that q-r is not pretopological if q £ r, r is T1 and
q is not discrete and 1l-q is not regular if q is T1 and not discrete. A few
properties can be easily seen to be preserved.

PROPOSITION 2.6: For any convergence structures q and r on X,

(1) g-r is T

if and only if q is T, and the pretopological modification ¢r

1

of r is indiscrete.

1

(ii) gq-r is Hausdorff if and only if 1-q < r.
(iii) q-r is compact if q is compact.
(iv) q-r is compact if and only if no ultrafilter F (1-r)Agq-converges to
every point.
For complements of product convergence structures there exist relationships
to the complements in the original spaces. If Kx&qa) | @ € T} is a family of
nondegenerate convergence spaces with products (HXa,an), let ana denote the

convergence structure defined on nxa by: F qua-converges to x = (xa) if and
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only if the projection pY(F) qY-converges to xY for some y € T. ana will be
called the weak product convergence structure. In the subsequent four proposi-
tions, p or P, will denote the appropriate projection or quotient map.

PROPOSITION 2.7: If q, and r  are convergence structures on Xa for o € T

with |F| > 1, then in C(IK):
<
(1) (Mg )*(Mr ) < M(q r ).
(ii) F converges to x = (xa) with respect to (an)*(ﬂra) if and only if
F *r_-converges to x_ for some y € T.
pY( ) q *r g Y Y
(iii) (an)*(Hra) = Hw(qa*ra)°
(iv) H(qa*ra) = (an)*(Hra) if and only if each T, is indiscrete.
* *

W) (Mg )* =1 g *.

PROOF: (i) 1If F H(qa*ra)-converges to x = (xa) then each pa(F) g, *r -con-
verges to x, so for each a there exists a filter GOl on XOl with Ga =
pa(F) =x or Ga c pa(F) and Ga € ra(xa)\ qa(xa). Then HGa is Hra—con—
vergent to x and HGa € (Hra)(x) \(an)(x) or HGa = x and F (an)*(ﬂra)—
converges to x since HGa < Hpa(F) c F.

(ii) Suppose F (an)*(nra)—converges to x = (xa). Then F = x or G c F for
some G (nr ) (x (I x). In the latter case G r (x (x )

€ a) )N qa)( ) s PY( ) € Y( Y) \qY Y
for some y so pY(F) € qy*ry(xY). The converse is similar.

(iii) follows immediately from (ii) and the definition of a weak product.

A

(iv) 1f |r| > 1 and Iiq M q then for F any filter on X and x € X , let
a” Wa Y Y Yy oY
G =1G where G =x for some x € X if a # yand G =F . Then G
a a o a a Y Y
(qua)-converges to x = (xa) so must an—converge to x and FY = py(G)
-conver t d is indi te. Th if <
qY verges to xY an qY is indiscrete us i an*ra ana*ra’
each q *T, is indiscrete and it follows that each T, is indiscrete

(since {X } e r (x )\q (x) for each x € X ).
a aa oo a a

(v) 1is a direct consequence of (iv) since q* = q*0.
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PROPOSITION 2.8: 1If q, and r, are convergence structures on Xa for a ¢ T,
then in C(Hxa):
1 -— < -

(1) (ng )-(r ) = M(q -r )

(ii) —(Hru) and Hw(—ra) agree on convergent ultrafilters.

PROOF: (i) 1If x = (xa) and pa(F) q,"r, converges to X, for all o, let G ¢
(Hru)(x). Then pa(G) € Qfxa) for all a, so pa(F)+pa(G) € qa(xa) or
pa(F)+pa(G) = B(Xa)' In either case, pa(F)+pa(G) c pa(F+G) and F4G «
[(an)-(ﬂra)](x).

(ii) Let F be an ultrafilter in [-(HEQ](X). Then pa(F) ¢ ra(xa) for some a
so pa(F) € (-ra)(xa) and F Hw(—ra)—converges to x. The reverse in-
equality is similar.

From Lemma 2.5, one can show that equality does not hold in Proposition

2.8(i) even for q topological.

The product operation can also be viewed as a lattice operation on C(X).

PROPOSITION 2.9: The map I: H[C(Xu)] > C(ﬂXa) defined by H[(Xa,qa)(ae r)]
(HXa,an) is a complete join homomorphism.

If (X,q) is a convergence space with ~ an equivalence relation on X, let X/~
be the quotient space with quotient structure q, A = {x | x ¢ A} for A ¢ X and,
for F a filter on X, F = {KI A e F}. Let f: C(X) - C(X/~) be the map f(q) = q.
The subsequent propositions are readily established.

PROPOSITION 2.10: f is a complete meet homomorphism.

PROPOSITION 2.11: For q and r in C(X), in C(X/~):

(i) qxr < qxr

(ii) r* = (;)* if and only if for each x and F in r(x), there does not

exist A ¢ FwithAny # ¢ for all y in X.
(iii) -q.< (-q) with equality if and only if for each x, F # x in q(x) and

AcF, A¢ x.
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(iv) 1If q and r are pretopologies, ‘q*r = g*r if y~x and Nr(y) = Nq(x) im-
plies Nr(y) = Nq(x).
For A a nonempty subset of X and F a filter on X with A ¢ F, let FA be the

filter on A where FA ={AnB|Be F}andf C(X) > C(A) be fA(q)(x) = {FAl

A’
Ae Fand F e q(x)}, i.e., fA(q) is the subspace structure on A.
PROPOSITION 2.12: (i) fA is a complete lattice epimorphism.
(ii) For any q and r in C(X), fA(q*r) = fA(q)*fA(r) and fA(q-r)==fA(q)—fA(r).
As one would expect, Proposition 2.12 establishes that the restriction of

the relative complements to a subspace are the complements of the restrictions.

3. LATTICE OPERATORS INDUCED BY RELATIVE COMPLEMENTS.

The relative pseudo-complement and pseudo-difference induce four obvious

self-maps of C(X) for each convergence structure q:

(i) £%(q): £*(q)(r) = qsr
(11) £,(q): £,(q)(r) = rxq
(iii) £ (@): £ (qQ)(xr) = q-r

(iv) f (@): £ (@(r) = r=q
Of these maps, (i) and (iv) were considered in [8]. Only (i) and (iv) will be
considered here since (ii) and (iii) have similar lattice properties if consid-
ered as maps of C(X) into its dual.

If I is a cardinal, a subset A of a lattice L is prime with nespect to T-
joins 4in L if for any subset {XYI y € T} with VxY € A, some X, € A. A conver-
gence structure q of C(X) is jodn paime if each q(x) \ {x} is prime with respect
to finite joins in {r(x)\ {i}l r € C(X)}. As an extension of a result in [8] one
has:

PROPOSITION 3.1: For any convergence structure q on X:

(i) £7(q) is a complete meet homomorphism.

(ii) £*(q) is a T'-join homomorphism if and only if q(x) \ {x} is prime with
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respect to I'-joins in F(X) for any cardinal T.
(iii) £*(q) is bijective if and only if q is discrete.

PROOF: (i) is a result of [8] while the proof of (ii) parallels the result
of [8] for finite joins. (iii) is a property of complete lattices.

PROPOSITION 3.2: (i) f_(q) is a complete join homomorphism.

(ii) £_(q) is complete with respect to I'-meets for a cardinal T if and only
if each q(x) is complete with respect to I'-meets in C(X) for each x.
(iii) £ _(q) is bijective if and only if q is indiscrete.

PROOF: (i) is from [8] while the proof of (ii) is similar to Theorem 4.2 of
[8]. (iii) is dual to Proposition 3.1(iii).

From Proposition 3.2 one can observe that f (q) is a complete lattice homo-
morphism if and only if q is a pretopology. If T and Qare infinite cardinals with
T < Q, by choosing the cardinal of X large enough so that if y € X and q(x) is
discrete for y # x and q(y) is closed with respect to I'-meets but not Q-meets,
then f (q) is a T-homomorphism that is not an -homomorphism.

Using the given four lattice operators, one can construct maps of certain
sublattices of C(X) into the duals of their lattices of homomorphisms (with co-
ordinatewise order). For example, if L(X) is the lattice of limitierungs on X
and P(X) the lattice of pretopologies, one can define f:: L(X) » LL by ﬁf(q)(r)=
q*r and £;: P(X) » PP similarly, where LL(PP) is the dual of the lattice of homo-
morphisms of L(X) and qxr is the relative pseudo-complement in C(X). The succeed-
ing two propositions follow directly from the definitions and properties of

pseudo-complements and differences.

*

PROPOSITION 3.3: (i) fL

is a lattice embedding and a complete join homo-
morphism.

(ii) fP* is a complete lattice embedding.

If CC(X,V) denotes the join semilattice of join-homomorphisms of C(X) then
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the map f : C(X) ~» CC(X,V) is f_(q)(r) = r-q.
PROPOSITION 3.4: (i) f_ is a complete meet homomorphism of C(X) into the
dual of CC(X,V).
(ii) f_ is an embedding.

In a partially ordered set (L,<), let x<<y if and only if for every up-di-
rected set D, y<sup D implies x<d for some d in D. Then from Scott [10], a com-
plete Lattice L 44 continuous if x = sup{y € L | y<<x} for all x in L. The in-
duced topology is that topology for which U ¢ L is open if U is a terminal set
and if S ¢ L is directed, sup S exists and is in U, then S n U # ¢. Since a
compactly generated lattice is continuous, we have from [8] that C(X), L(X) and
P(X) are continuous with C(X) and L(X) having continuous duals. Since also from
[10J, a function between complete lattices is continuous in the induced topologies
if and only if it is join-preserving, one has immediately from Propositions 3.1
and 3.2:

PROPOSITION 3.5: For any convergence structure q on X:

(i) £*(q) is continuous if and only if each q(x) \ {x} is prime with respect

to joins in F(X).

(i1) f_(q) is continuous.

PROPOSITION 3.6: f;: and f; are continuous in the induced topologies.

Since join-prime elements q determine when f*(q) is a homomorphism, one may
note that if q(x) is join-prime, there exists at most one ultrafilter F not q-
convergent to x. Also, the join-prime elements of C(X) form ameet-sublattice of
C(X) but not a join-sublattice.

A number of special types of convergence structure lattices are continuous
lattices by virtue of being retracts of C(X) in the induced topologies and Propo-

sition 2.10 of [10/. Some examples are the lattices of T, -structures, pseudo-

1

topologies, locally bounded structures and locally compact structures which can



LATTICE OF CONVERGENCE STRUCTURES 443

be shown to be continuous by virtue of the standard modification maps.

In [ 8!, Theorem 5.1, the incorrect statement is made that the map ¢ of pre-

topological modification is a join homomorphism. If q is the cofinite topology

and r is the finest convergence structure for which each principal ultrafilter

converges to each point, then ¢(qvr) # ¢qvér. Therefore ¢ cannot be used to show

P(X) is a continuous lattice.
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