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ABSTRACT. Epstein and Horn ([6]) proved that a Post algebra is always a

P-algebra and in a P-algebra, prime ideals lie in disjoint maximal chains.

In this paper it is shown that a P.igebra L is a Post algebra of order n -> 2,

if the prime ideals of L lie in disjoint maximal chains each with n-i elements.

The main tool used in this paper is that every bounded distributive lattice

is isomorphic with the lattice of all global sections of a sheaf of bounded

distributive lattices over a Boolean space. Also some properties of P-algebras

are characterized in terms of the stalks.
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i. INTRODUCTION.

Epstein ([S]) proved that in a Post algebra of order n > 2prlme ideals

lle in disjoint maximal chains each with n i elements. He has also proved

that if L is a finite distributive lattice and prime ideals of L lle in dis-

joint maximal chains each with n-I elements, then L is a Post algebra of order

n. Epstein and Horn ([6]) have shown that a Post algebra is always a P-

algebra and in a P-algebra prime ideals lie in disjoint maximal chains. It is

the main theme of this paper that a P-algebra L is a Post algebra of order

n >- 2, if the prime ideals of L lle in disjoint maximal chains each with n-i

elements.

The main tool used in this paper is the fact that every bounded distributive

lattice is isomorphic with the lattice of all global sections of a sheaf of

bounded distributive lattices over a Boolean space ([iS] and [9]). It is

well known that a P-algebre is always a (double) Heyting algebra, a (double)

L-algebra, a pseudocomplemented lattice, a Stone lattice and a normal lattice.

We characterize these properties of P-algeBras in detail in terms of the stalks

of the corresponding sheaf. We give another characterization of Post algebras

by regular chain bases.

Throughout this paper, by L we mean a (momtrivial) bounded distributive

lattice (L, V/k, 0, I) and B B(L) the Boolean algebra of complemented

elements of L. For any a B, we denote the complement of a by a’. For any

x,yL, we denote the largest zL such that xAz < y (if it exists) by

x -+ y and the largest element aB such that xa < y (if it exists) by

x y. If, for every x,yE L, x / y (xy) exists, then we say that L is a

Heyting algebra (respectively B algebra). Dually, we define x / y

and x y respectively. If in a Heyting algebra (B-algebra), (x / y) V (y / x)

i (x y) V (y---x) i) for every x,yL, then we ay that L is an L-algebra
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(respectively BL-algebra). For any x t L, if x - 0 exists, then we say
,

that x has the pseudocomplement and we usually write x for x -- O. If x

exists for each x L, then we say that L is pseuodcomplemented. The dual of

L is denoted by Ld If both L and Ld are Heyting algebras (B-algebras,

L-algebras, BL-algebras), then we say that L is a double Heytlng algebra

(respectively double B-algebra, double L-algebra, double BL-algebra). L is

said to be a P-algebra if L is a BL-algebra. Epstein and Horn proved that

L is a P-algebra if and only if L is a double L-algebra ([6], theorem 3.4).

For the elementary properties of these types of lattices, we refer to ([2])

and ([6]).

By a sheaf of bounded distributive lattices we mean a triple (,,X)

satisfying the following:

i) and X are topological spaces

ii) X is a local homeomorphism

-I
iii) Each (p), p E X is a bounded distributive lattice;

iv) the maps (x,y) xvy and (x,y) > x^y from V= {(x,y) E

x / w(x) w(y)} into are continuous and

v) the maps p > O(p) and i p l(p) from X--+ Q are continuous,

-i
where O(p) and l(p) are the smallest and largest elements of w (p)

respectively.

We call the sheaf space X the base space and the proection map. We write

-i the stalk at p. By a (global) section offor (p), p %X and call
P

the sheaf (,,X) we mean a continuous map X --+ such that o i.
For any sections and z we write I(,)[ for the closed set {pE xlo(p) + z(p)}

and we call [(o,0)[ the support of o and Ite [0 for (,0) For the

preliminary results on sheaf theory, we refer to the pioneering work of

Hofmann ([ 8 ] ).
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By Spec L, we mean the (Stone) space Y of all prime ideals of L with

the hull-kernel topology; i.e. the topology for which {Y IxE L} is a
x

base, where for any xE L, Y {P Spec L/x P}. Throughout this paper X
x

denotes Spec B which is a Boolean space, ie., a compact, Hausdorff and totally

disconnected space. Since a X is a Boolean isomorphism of B onto the
a

Boolean algebra of all clopen subsets of X, we identify a and X and write

simply a for X For any p X be the quotient lattice L/e where
a p p

e is the congruence on L given by
P

(x,y) 6 p> xa ya for some a 6B-p,

and letbe the disjoint union of all p, p X. For each x E L, define

x X / by (p) (x), the congruence class of containing x. Topologize
P P

with the largest topology such that each x, x E L, is continuous. Define

if E The following theorem is the main tool used+ X by (s) p p
in this paper and is due to Subrahmanyam ([15]) (see also [9]).

THEOREM I.i (,,X) described above is a sheaf of bounded distributive

lattices in which each stalk has exactly two complemented elements, viz.,

0(p) and l(p).

1.2 For any a B, p X, a(p) l(p) if p a and (p) 0(p)

if p a.

1.3 For any x,y L and a B, /a /a if and only if xa ya.

1.4 x x is an isomorphism of L onto the lattice (x, ) of all

global sections of the sheaf ,,X). We identify x with x and write simply

x for x.

1.5 For any prime ideal P of L, there exists a unique p X such

that {x(p)/x P} is a prime ideal of On the other hand if Q is a prime
p

ideal of p E X, then {xL/x(p) 6 Q} is a prime ideal of L. This
P
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correspondence exhibits the set of all prime ideals of L as the disjoint union

of the sets of prime ideals of the stalks. Moreover, if P and Q are prime

ideals of distinct stalks p and q, then P and Q are incomparable, when they

are regarded as prime ideals of L.

Throughout this paper, by a stalk D’ p E X, we mean the stalks of the

sheaf (,,X) described above at p.

2. PSEUDOCOMPLEMENTED LATTICES.

It is well known that a bounded distributive lattice is a Heyting algebra

if and only if it is relatively pseudocomplemented; i.e., each interval Ix,y],

x < y E L is pseudocomplemented ([i]). Also the class of all distributive

pseudocomplemented lattices and the class of all Heyting algebras are

equationally definable see [i] and [I]), when we regard the pseudocomple-

mentation and (x,y) (x + y) as unary and binary operations respectively in

L. Thanks to the referee for suggesting a simpler proof of the following.

THEOREM 2.1. L is pseudocomplemtnetd if and only if each stalk YD’ p’E X
,

is pseudocomplemented and the pseudocomplementation x x is continuous

and in this case, the pseudocomplement of x(p) in is precisely x (p) for

all x E L.

PROOF. Suppose L i pseudocomplemented. Then it is easily seen that for

all x and p, (x(p))p exists and is equal to x (p). Then it is easy to

show that the map x > x is continuous. For the converse, if x E L, the

hypothesis implies that the map f x / O defined by f(p) (x(p))* is a global

section of Therefore, f y for some y and it is clear that y x

If L is a Heyting algebra, then each 8 a E B, is compatable with the
a

binary operation (x,y) (x + y). For, if a B and (x,y) and (xl,YI) 8

then (x / xI) y A a (x - Xl) xa -< Xl#,a Yla _< Yl’ so that (x / xI) a <

(y / yl)A a. Similarly, we have (y / yl a -< (x / xI) a and hence
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(x / xI, y / yl 8a. Hence the following theorem and its proof are analogous

to the above.

THEOREM 2.2. L is a Heytin algebra if and only if each stalk p X
P

is a Heytlng algebra, and the operation (s,t) (s / t) ofV into is
continuous and in this case x(p)-+ y(p) , p X, is equal to (x y)(p)

for I x,y L.

3. NORMAL LATTICES.

DEFINITION 3.1. (Cornish [4]). L is said to be normal if any two

distinct minimal prime ideals of L are comaximal and L is said to be

relatively normal if each interval [x,y], x y L is normal.
,

For any x,y t L, let (x,y)
L be the ideal {zt L/ x^z < y} of L. For any

,
x t L, we write (x)L for (x,0)L. Cornish ([4]) proved that L is normal if and

, ,
only if (x Y)L (X)L V(Y)L for all x,y L, and that L is relatively normal

, ,
if and only if (x y,z)L (x,z)L V(y,z)

L for all x,y,z L where V stands

for the join operation in the lattice of all ideals of L.

THEOREM 3.2. (Speed [IS]). A pseudocomplemented distributive lattice is

normal if and only if it is a Stone lattice.

THEOREM 3.3. (Balbes and Horn [I]): A Heyting algebra is relatively

normal if and only if it is an L-algebra.

THEOREM 3.4. L is normal if and only if each stalk JD, p %X, is normal.

PROOF. Suppose L is normal and p X. Let u,v so that u x(p)
P, ,

,
t L. Since, (xy^t)(p) x(p)N y(p) t(p) 0(p) there(p) (u V)p , ,

exists a B-p such that xhyA t a 0, so that t % (xyAa)
L (xAa)

L V
,

(ya)L and hence t tlV t
2

for some tI (x a)
L

and t
2

(ya)
L

Now

(U)p is normal.t(p) tl(p) Vt2(p), tl(p) * and t2(p) (V)p Hence p
Conversely, suppose each stalk p X is normal. Let x,y L and

P
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, ,
z (x hY)L For each p X, since z(p) (x(p) h y(p))p (x(p))p V CY(P))p,
there exists a B-p, t and s L, such that a hZ a h(tV S), t hX ha

Shy ha 0. By the compactness of X, it follows that there exists aI, a2,...,
n

a B and tl, t2,.., tn, Sl,..., s L such that V a
i

i, alh z a
i

hn n

n
(t

i
V si), tih x ha

i
0 Sih y hai. Now, Put t V (tih ai) and

i=l
n n n

s V (Sih ai) then, z V (z hai) V (a
i
h(t

i
v Si)) t V S and

i=l i=l iffil
n n , , ,

t hX V (t
i
ha

i
hX) 0 V (Sih aih y) S by. Hence (,by)

L (X)
L

V(y)
L

i=l

and the otherslde inclusion is obvious. Hence L is normal.

The proof of the following theorem is analogus to that of the above.

THEOREM 3.5. L is relatively normal if and only if each stalk p, p X,

is relatively normal.

DEFINITION 3.6 (Speed [12]). L is said to be a distributive * lattice
,

and denoted by L A if, for each x L, there exists y L such that

** ,
(x) L {uL / u A v 0 for every v (x) L} (Y)L,

Speed ([12] proved that L if and only if, for each x L, there
,

exists y L, such that x h y 0 and x v y fs dense; i.e., (x A Y)L {0}.
, ,

A for each p XTHEOREM 3.7. L A if and only if (1)
P

and (ii) {pX x(p) is dense in } is open for each x L.
P,

PROOF. Suppose L A and x L. There exists y L such that x h y 0

and x v y is dense in L. Let p X. Clearly, x(p) h y(p) 0(p). Also, if

z L, such that ((x(p) v y(p)) h z(p) 0(p), then x v y) h z h a 0 for

some a B-p and hence z h a 0, so that z(p) 0(p). Hence x(p) V y(p) is

dense in p suppose ItTherefore -P 6 A Now x(p) is dense in

follows that y(p) 0(p) and hence there exists a B-p such that y h a 0.
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We claim that x(q) is dense in q for all q E a. For, if q E a and z(q) E q,
z E L, such that x(q) ^ z(q) 0(q), then there exists b E B- q such that

x^z^b 0; so that (xvy) ^z ^a^b 0, and hence z ^a^b 0 and since

a ^ b B-q, z(q) O(q). Conversely, suppose (1) and (li) hold and x E L.

For each p 6 X, by (i) and (li), there exists yEL and a E B-p such that

x^y^a 0 and (xVy)(q) is dense in for all q E a. By the usual
q

compactness argument, there exists yl,y2,...,yEL, al,...,an E B such that

n
V a

i
i a

i ^ aj 0 for i j x^Yi ^a 0 and (x v yi)(p) is dense
i=l

n
Now put y V (Yi ^ al)" Then x ^ y 0 and x v yfor all p

i=l

is dense in L. For, (x v y) ^ z 0 for some z E L, then, for all p E ai,

0(p) ((x v y) ^ z)(p) (x(p) v y(p)) ^ z(p) and hence z(p) 0(p) for all
,

p E a. and therefore z 0. Hence L E A

4. STONE LATTICES.

For any X, since the stalk . has exactly two complemented elements,
P

is dense (i.e. if x(p) o(p) then
P

is a Stone lattice if and only if .)p,
(x(p))p {0(p)}). Hence, by theorem 2.1, 3.2, and 3.4, we have the

following.

THEOREM 4.1. Suppose L is pseudocomplemented. Then the following are

equivalent.

(i) L is a Stone lattice

(ii) L is normal

(iii) Each stalk p, p E X, is a normal

(iv) Each stalk p E X, is a Stone lattice
P

(v) Each stalk t p E X, is dense.
P

The following theorem is a consequence of theorem 2.2, 3.3 and 3.5.
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THEOREM 4.2. Let L be a Heyting algebra. Then the following are

equivalent.

(i) L is an L-algebra

(ii) L is relatively normal

(iii) Each stalk O p E X, is relatively normal
P

(iv) Each stalk p, p E X, is an L-algebra.

Since L is an L-algebra if and only if it is relatively Stone lattice

(Theorem 4.11 of [ i]) (i.e., each interval is a Stone lattice) in view of

theorem 4.1, one may suspect that if L is an L-algebra, then each stalk is

relatively dense and hence a chain. This is not true (see 4.4 below),

though the converse is proved in the following.

THEOREM 4.3. If L is a Heyting algebra and each stalk is a chain, then

L is an L-algebra.

PROOF. If each stalk is a chain, then by theorem 1.5, the prime ideals

of L lie in disjoint maximal chains and hence L is relatively normal lattice

and hence the theorem follows from theorem 2.3.

EXAMPLE 4.4. Let B
4

be the 4-element Boolean algebra and A be the

distributive lattice obtained by adjoining an external element to B
4

as the

smallest element. Then A is an L-algebra which is not a chain (Thanks to

the referee).

Epstein and Horn ([ 6]) proved that L is a Stone lattice if and only if L
d

is pseudosupplemented and 0 x ^ y (0 x) ^ (0 y) for all x, y 6 L.

Now, these two necessary and sufficient conditions for L to be a Stone lattice

can be viewed in terms of the stalks as follows.

THEOREM 4.5. L
d

is pseudosupplemented if and only if Ixl is open for

each x 6 L and in this case xl 0 --x for all x L.

PROOF. Follows from Lemma 5.2.
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For any p X, let (p) be the smallest ideal of L containing p. The

proof of the following theorem is simple.

THEOREM 4.6. For any p X the stalk is dense if and only if (p) is
p

a prime ideal of L.

It can be easily seen that each stalk p, p X, is dense if and only if

x ^ Yl Ixl n IYl for all x,y E L. Hence from theorem 4.5 and 4.6 and

lemma 2.9 of [73 ), we have the following.

THEOREM 4.7. L is a Stone lattice if and only if xl is open for all

x E L and each stalk p X is dense.
P

REMARK 4.8. Swamy and Rama Rao ([ I0] proved that a lattice L is a Stone

lattice if and only if L is isomorphic to the lattice of all global sections

of a sheaf of dense bounded distributive lattices over a Boolean space in

which each section has open support (see also [ 9] ). It can be verified,

that when L is a Stone lattice, then our sheaf (,,X) coincides with the

sheaf constructed in ([ i03 ).

5. P-ALGEBRAS.

The following results interpret B-algebras in sheaf theoretic terminology.

LEMMA 5.1. Let x,y L. Then x y exists in B if and only if

{p X / x(p) < y(p)} is closed and in this case x_ y {p X / x(p) < y(p)}.

PROOF. For any p X, x(p) < y(p) if and only if there exists a B-p

such that x ^ a < y. If x=> y exists in B, then, for any p X, x(p) < y(p)

if and only if p x => y. Conversely, if {p 6 X / x(p) < y(p)} is closed,

then there exists a B such that p a if and only if x(p) < y(p) for all

p X. Hence a x -----> y.

The proof of the following is easy.

LEMMA 5.2. For any x,y E L, l(x,y) s open if and only if there exists

a largest element a of B such that x ^ a y ^ a.
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The following theorem is a consequence of the above lemmas.

THEOREM 5.3. The following are equivalent.

i) L is a dual B-algebra

2) For any x,y L, {a B / x v a y a} is a principal filter of B.

3) For any x,y E L, {a E B / x ^ a y ^ a} is a principal ideal of B.

4) L is a B-algebra

5) {p X / x(p) -< y(p)} is closed for every x,y L.

6) l(x,Y) is open for every x,y L.

THEOREM 5.4. Suppose L is a B-algebra. Then the following are equivalent.

i) L is a P-algebra; i.e. L is a BL-algebra

2) Each stalk is a chain

3) For every x,y L, there exists a E B such that x ^ a -< y and y ^ a’ < x.

4) For every x,y E L, there exists a E B such that x / a > y and y a’ - x.

PROOF. 2< 3 is proved in ([ iS] and 3--> 4 is clear. I -> 2 follows

from lemma 5.1.

6. POST ALGEBRAS.

The following definition is slightly different from that of Chang and

Horn ([3]).

DEFINITION 6.1. By a generalized Post algebra, we mean the lattice C (Z,C)

of all continuous maps of a Boolean space Z into a discrete bounded chain C

where, the operations are pointwise.

THEOREM 6.2. The following are equivalent

i) L is a generalized Post algebra.

2) There exists a chain C in L such that the natural map c > c(p) C + p
is an isomorphism for all p E X.

3) There exists a chain C and, for each p X, an order isomorphism a C /

P P

such that for any c 6 C and x 6 L, {p6 X/ ap(C) x(p)} is open in X.
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PROOF. I 2

Let L C (Z,D) where Z is a Boolean space and D is a discrete bounded

chain. It is well known that a Xa is a Boolean isomorphism of the algebra

of all clopen subsets of Z onto B, the centre of L, where Xa is the character-

istic function on a. We identify Xa with a. Also the Stone space X is

homeomorphic with Z.

Let C be the set of all constant maps of Z into D. For any d E D, let d

denote the constant map which maps every element of Z onto d. Then C is a

C+ L/e is achain in L. Let p X. Clearly, the natural map p P P
homomorphism.

If dl, d
2

D such that dl(p) d2(p) then dI ^ a d
2 ^ a for some a B-p

-I
and hence dI d2. Now, let x L. Then if p. x (d) for some d E D,

-i -i -i
since x Z + D is continuous, x (d) B-p and since x ^ x (d) d ^ x (d),

it follows that (x,d) 8 Hence 8 is an isomorphism.
P P

C / is an23: If C is a chain in L and the natural map p P
isomorphism for every p X, then, for any c C and x E L. {pX / (c)

P
x(p)} {p6X / c(p) x(p)} which is open.

3------i: We’first observe that since

_
is bounded and is an isomorphism

-p P
of C onto C is also bounded. Let X Spec B. Define 8 L / C (X,C)

P
-i

by (8(x))(p) ep (x(p)) for each x L and p 6 X. Let c E C. Then

( (x))-{ -c} {x / (x(p)) c}
P

{pX / (c) x(p)} is open by (3) and
P

-ihence 8(x) is continuous. Clearly 8 is a homorphlsm and one-one since e
P

is so. Now, we will show that 8 is onto. Let f 6 t (X,C). Define o: X /

by o(p) (f(p)) for every p X. We will show that o is a section. Let
P

x L and a B, then
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-i
s (xCa)) {pa I (fCP)) x(p)}

P

a {p6X / f(p) c} pX / e (c) x(p)}.
c6C P

-i
Since f is continusous, it follows that o (x(a)) is open. Since {x(a) / a B

and x L} is a base for the topology on it follows that is continuous

and clearly o idx. Therefore, x for some x L and also 8(x) f.

Hence 8 is an isomorphism and therefore L is a generalized Post algebra.

THEOREM 6.3. Let n > 2 and L a P-algebra. Then the following are

equivalent.

I) L is a Post algebra of order n.

2) Spec L is the disjoint union of maximal chains each with n-i elements.

3) Each stalk is a chain with n elements.

PROOF. i >2 is proved in ([ 5] ).

Since L is a P-algebra, by theorem 4.4, each stalk p X, a chain. Also,
P

by theorem 0. (5), Spec L is the disjoint union of the chains Spec p, p X.

If Spec L is the disjoint union of all maximal chains C A each with

n-I elements, then, for any p X, Spec C for some e A. Hence Spec
p e P

has n-i elements and therefore has n elements and hence (2)--(3).
P

Now, suppose each stalk is a chain with n elements and C is the n-
n

element chain 1 < 2 < < n. For any p 6 X let {0(p) (p) <
p Xlp

,...,x L. Deflne for any p % XX2p(P) <...< Xnp(P) l(p) where Xlp,X2p np

ep: Cn--’.p by =p(i) Xip(P) for each +/- Cn. Clearly, p is an order

isomorphism. Let i 6 C x 6 L and p X such that e (i) x(p). ie.,
n p

Xip(P) x(p) so that there exists a B-p such that Xip(q) x(q) for all

q a. Since L is a B-algebra and X.jp(p) <XkP(P) for all j < k, by theorem

5.3 there exists b 6 B-p such that x. (q) < (q) for all j < k and q b
3P Xkp

and hence Xip(q) Xiq(q) for all i Cn and q 6 b. Then p 6 a ^ b 6 B and
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for any q 6 a ^ b, eq(i) Xiq(q) Xlp(q) x(q). Hence {p6X / ep(1)
x(p)} is open for each i C and x E L.

n

DEFINITION 6.4. By a chain base C for L we mean a chain C with 0 in L

such that L is generated by the centre B and C; i.e., every x E L can be

n
written in the form V (a

i ^ c for some a 6 B and c E C
i=l i i i

DEFINITION 6.5. A chain base C in L is said to be regular, if, for

Cl # 2 E C and a B, c I
< c

2
and a ^ c

2
-< cI imply a 0.

It is proved in ([ 15] that a bounded distributive lattice L is a

generalized Post algebra if and only if there exists a regular chain base

for L. Now, we characterize chain bases and regular chain bases in terms of

the stalks. It is also proved in ([ 15] that if C is a chain base for L,

C / J defined by (c) c(p) is an eplmorphlsm forthe natural map p p’ P
all p X. We prove the converse in th4 following.

C-+ isTHEOREM 6.6. Let C be a chain in L and 0 E C. Then p P

an epimorphism for each p 6 X, if and only if C is a chain base for L.

PROOF. Suppose is an epimorphism for each p X and let x E L.
P

For each p X, there exists c C such that (Cp) x(p) ie., c (p) x(p),
P P P

so that there exists a E B-p such that c ^ a x ^ a. Therefore, there
P

exists a partition al,a2,...,a of B and Cl,C2,...,c C such that c
i ^ ai=n n

n n n
x ^ a_i so that x-- x ^ 1 x ^ V a. V (x ^ a V _(c

i ^ ai)._
i=l i=l i=l

Hence C is a chain base for L.

The following theorem is a straight forward verification.

THEOREM 6.7. Let C be a chain in L. Then the following are equivalent.

i) The natural map p: C / p is one for all p X.

< cI
imply a 0.2) For any cI # c

2
C and a B c

I
< c

2
and a ^ c

2
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3) For any cI # c
2

E C and 0 # a E B, a ^ cI # a ^ c2.

By summarizing the above results, we have the following

HEOREM 6.8. Suppose L is a bounded distributive lattice. Then the

following are equivalent.

l) L is a generalized Post algebra

:C/ is an2) There exists a chain C in L such that the natural map p P

isomorphism for all p X.

3) There exists a chain C and for each p X, an order isomorphism

C / such that for any C and x L {pX / (c) x(p)} is
P P p

open in X.

4) L has a regular chain base.

REMARK. The equivalence of (1) and (4) is established in ([IS]) by

using the Boolean extension techniques.
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