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ABSTRACT. Let S be a subset of a metric space X and let B(X) be the class of all

nonempty bounded subsets of X with the Hausdorff pseudometric H. A mapping

F S / B(X) is a directional contraction iff there exists a real [0,i) such

that for each x E S and y E F(x), H(F(x), F(z)) < d(x,z) for each zE [x,y] 0 S,

where [x,y] {z E X d(x,z) + d(z,y) d(x,y)}. In this paper, sufficient

conditions are given under which such mappings have a fixed point.
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I. Introduction.

In this paper, we prove a fixed point theorem for set valued directional

contraction mappings (see definition below). The main result extends an earlier

result of Assad and Kirk [i] and has some interesting consequences.
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Throughout this paper, (X,d) represents a complete metric space and B(X) is

the class of all nonempty bounded subsets of X with the Hausdorff pseudometric H

induced by d (see [3] p. 33), that is if A,B g B(X), then

H(A,B) max{sup d(a,B), sup d(A,b)}.
aEA bEB

It follows immediately from the definition of H, that for any A,B E B(X),

d(x,B) < H(A,B) for any x A, (i.I)

d(x,B) < d(x,A) + H(A,B) for any x E X, (1.2)

and given > 0 and x A, there exists a y B such that

d(x,y) < H(A,B) + . (1.3)

For x,y E X, we will denote

[x,y] {z g X d(x,z) + d(z,y) d(x,y)},

and (x,y] [x,y] {x}, (x,y) (x,y] " {y}. The following result is due to

Caristi [2] and is used in the proof of the main result.

THEORF/ (Caristi) Let f X + X be a mapping. If there exists a lower

semi-continuous (.S.e.) mapping X + [0,) such that for each x S,

d(x,f(x)) < (x) (f(x)),

then f has a fixed point.

2. MAIN RESULTS.

Let S be a nonempty subset of X.

DEFINITION I. A mapping F S / B(X) is a directional contraction (d.c)

iff there exists a real [0,i) such that for each x e S and y e F(x),

for all z e [x,y] n S.

H(F(z), F(x)) < d(z,x), (2.1)

The real in (2.1) will be called a contraction constant of F.

THEOREM I. Let S be a closed subset of X and F S / B(X) be a d.c mapping
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with contraction constant . If F satisfies

a) for each x e S, y e F(x) S, there exists a z e (x,y) n S with

F(z) c S, (2.2)

b) the mapping g S / [0,oo) defined by g(x) d(x,F(x)) is .S.e., (2.3)

then F has a fixed point, that is x g F(x) for some x g S.

We first prove the following lemma which simplifies the proof of Theorem i.

LEMMA. Under the hypothesis of Theorem i, for any 8, < 8 < I, there

exists a mapping A S / B(X) with the following properties

i) for each x e S, A(x) # and A(x) c F(x),

ii) if y e A(x), then d(x,y) < (i- 8+)-id(x,F(x)),
(2.4)

(2.5)

iii) if A(x) n S for some x e S, then there exists a y y(x) A(x)

and a z z(x,y) e (x,y) S such that

d(x,y) < d(x,F(x)) + (8-s)d(x,z). (2.6)

PROOF. Define a mapping A S + B(X) by

A(x) {y F(x) d(x,y) < (i- 8+)-id(x,F(x))}.
Since (I-8+a) < I, A(x) # for any x S and satisfies (2.4) and (2.5).

Suppose A(x) n S for some x e S. Choose a sequence {yn c_ F(x) such that

d(x,Yn) d(x,F(x)). (2.7)

Since the sequence {yn} is eventually in A(x), we may assume that the sequence

{yn} c__ A(x). It then follows by the supposition that for each n I (positive

integers), Yn F(x) S and consequently by (2.2) for each n e I, there exists

a z satisfyingn

Zn e (x, yn n S and F(zn) _c S. (2.8)

Now, since d(x z < d(x yn it follows by (2 7) that there is a subsequence
n

{z } of the sequence {z and a real % > 0 such thatn
k n

d(X,Znk) + %. (2.9)
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We claim that % > O. Suppose % O. Then th sequence {z } / x. Moreover,

since Yn e F(x), it follows by the definition of F and (2.8) that

H(F(x), F(z )) < d(x z / 0 as k + . (2.10)n
k n

k
Now, (2.10) implies that F(x) S, for if y is an arbitrary element of F(x),

then by (1.3) for each k e I, there is a w
k e F(z such that

d(y,wk) < H(F(x), F(z )) + I

nk
/ 0 as k + . Since {wk} c_ S and S is closed, it

follows that y and hence F(x) c__ S. However, this contradicts the supposition

that A(x) n S . Thus > 0. Now choose an > 0 such that

(B-a)% > O. Then by (2.9), (8-)d(x,z > 6 eventually and hence
n
k

by (2.7) and the last inequality,

d(x,Ynk) <_ d(x,F(x)) + 6 <_ d(x,F(x)) + (8-)d(X,Znk)
and the corresponding z znkeventually. Thus there exists a y Yrs.

satisfying (2.8) such that (2.6) holds.

PROOF OF THEOREM i. Define a mapping f S / S as follows: for x e S,

let f(x) be any element of A(x) 0 S if A(x) n S # ; and if A(x) s S ,
then by the lemma, there exist elements y y(x) A(x) and z z(x,y)e (x,y) n S

satisfying (2.6), let f(x) z in this case. Note that for any x e S,

H(F(x), F(f(x)) < d(x,f(x)). (2.11)

This is obvious if A(x) S and if A(x) S # , then since f(x) F(x)

and f(x) [x,f(x)] S, therefore the definition of F implies (2.11). Set

-i(x) (i-8) g(x). Then is .6.c. on S. We show that f satisfies (1.4).

Let x S. We consider cases (i) when A(x) S # and case (ii) when

A(x) S . In case (i), f(x) A(x) and hence by (2.5),

d(x,f(x)) < (l-8+d)-id(x,F(x)). This implies that

a(l- B)-id(x,f(x)) <_ (x) -d(x,f(x)). Therefore, by (i.i), (2.11) and the last

inequality

(f(x)) (i )-ig(f(x)) < (I-8)-IH(F(x), F(f(x))) < (x) -d(x,f(x)).
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Thus (1.4) holds in this case. In case (ii), there is a y y(x) e F(x such

that f(x) e (x,y) and satisfies (2.6). Thus by (2.6),

d(f(x),F(x)) < d(f(x),y) d(x,y) -d(x,f(x)) < d(x,F(x)) (l-8+e)d(x,f(x)).

It now follows by (1.2) and (2.11) and the above inequality that

(i-8) (f (x)) g(f (x)) < d (f (x) ,F(x) + H(F(x) ,F(f (x)) < d (x, F (x)) (i-8) d (x ,f (x)),

that is

d(x,f(x)) < (x) (f(x)).

Thus f satisfies (1.4) and consequently by Caristi’s theorem f(x) x for

some x e S. This implies that x F(x) for otherwise f(x) A(x) n S and hence

by the definition of f, A(x) n S . Thus f(x) e (x,y(x)) for some y(x)cA(x).

This contradicts x # f(x). Consequently, x F(x).

Recall, that a metric space is called convex iff for each x,y e X, x # y

there exists a z (x,y). It is easy to show (see [4]) that if S is a elosed

subset of a complete, convex metric space and x e S and y { S, then there

exists a z e [x,y) S where S denotes the boundary of S. As a result of this,

the following is an immediate consequence of Theorem I.

COROLLARY i. Let X be convex and S a closed subset of X. Let F S/ B(X)

be a d.c mapping such that f(S) c__ S. If g(x) d(x,F(x)) is Z.6.C. on S, then

F has a fixed point.

The following special case of Corollary i extends to B(X) an,earlier

result of Assad and Kirk [i].

COROLLARY 2. Let X be convex and S a closed subset of X. Suppose

F X / B(X) satisfies the condition: there exists an e [0,i) such that for

all x,y e S,

H(F(x), F(y)) < d(x,y). (2.12)

If F(S) c S, then F has a fixed point.
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PROOF. Since a mapping F satisfying (2.12) is a d.c mapping, it suffices

to show that the mapping g on S defined by g(x) d(x,F()) is continuous. To

prove this, let {Xn} be a sequence in S such that {xn} + x g S. It follows

that for each n E I,

g(x) d(x,F(x)) _< d(x,xn) + d(Xn,F(x)) < d(x,xn) + g(xn) + H(F(Xn), F(x)).

That is, g(x) < g(xn) + (l+)d(Xn,X). Similarly, it follows that for each

n g I, g(xn) <_ g(x) + (l+)d(Xn,X). Thus
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