Internat. J. Math. & Math. Sci. Vol. 3 No. 3 (1980) 455-460

SOME FIXED POINT THEOREMS FOR SET VALUED DIRECTIONAL CONTRACTION MAPPINGS

V.M. SEHGAL

Department of Mathematics University of Wyoming Laramie, Wyoming 82071

(Received July 5, 1979)

<u>ABSTRACT</u>. Let S be a subset of a metric space X and let B(X) be the class of all nonempty bounded subsets of X with the Hausdorff pseudometric H. A mapping $F : S \rightarrow B(X)$ is a directional contraction iff there exists a real $\alpha \in [0,1)$ such that for each $x \in S$ and $y \in F(x)$, $H(F(x), F(z)) \leq \alpha d(x,z)$ for each $z \in [x,y] \cap S$, where $[x,y] = \{z \in X : d(x,z) + d(z,y) = d(x,y)\}$. In this paper, sufficient conditions are given under which such mappings have a fixed point. *KEY WORDS AND PHRASES: Directional contraction, Hausdorff pseudometric.*

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES: Primary 47H10, Secondary 54H25.

1. Introduction.

In this paper, we prove a fixed point theorem for set valued directional contraction mappings (see definition below). The main result extends an earlier result of Assad and Kirk [1] and has some interesting consequences. Throughout this paper, (X,d) represents a complete metric space and B(X) is the class of all nonempty bounded subsets of X with the Hausdorff pseudometric H induced by d (see [3] p. 33), that is if A,B ε B(X), then

$$H(A,B) = \max\{\sup d(a,B), \sup d(A,b)\}.$$

acA beB

It follows immediately from the definition of H, that for any A,B ε B(X),

d(x,B) < H(A,B) for any x εA , (1.1)

 $d(x,B) \leq d(x,A) + H(A,B)$ for any x εX , (1.2)

and given $\varepsilon > 0$ and x εA , there exists a y εB such that

$$d(x,y) < H(A,B) + \varepsilon.$$
 (1.3)

For x,y ε X, we will denote

$$[x,y] = \{z \in X : d(x,z) + d(z,y) = d(x,y)\},\$$

and $(x,y] = [x,y] \setminus \{x\}$, $(x,y) = (x,y] \setminus \{y\}$. The following result is due to Caristi [2] and is used in the proof of the main result.

THEOREM (Caristi) Let $f : X \to X$ be a mapping. If there exists a lower semi-continuous (l.s.c.) mapping $\phi : X \to [0,\infty)$ such that for each x ε S,

$$d(\mathbf{x},\mathbf{f}(\mathbf{x})) \leq \phi(\mathbf{x}) - \phi(\mathbf{f}(\mathbf{x})), \qquad (1.4)$$

then f has a fixed point.

2. MAIN RESULTS.

Let S be a nonempty subset of X.

DEFINITION 1. A mapping $F : S \rightarrow B(X)$ is a directional contraction (d.c) iff there exists a real $\alpha \in [0,1)$ such that for each $x \in S$ and $y \in F(x)$,

$$H(F(z), F(x)) < \alpha d(z,x),$$
 (2.1)

for all $z \in [x,y] \cap S$.

The real α in (2.1) will be called a contraction constant of F.

THEOREM 1. Let S be a closed subset of X and F : $S \rightarrow B(X)$ be a d.c mapping

with contraction constant α . If F satisfies

a) for each $x \in S$, $y \in F(x) \sim S$, there exists a $z \in (x,y) \cap S$ with $F(z) \subseteq S$, (2.2)

b) the mapping $g : S \rightarrow [0,\infty)$ defined by g(x) = d(x,F(x)) is l.s.c., (2.3) then F has a fixed point, that is $x \in F(x)$ for some $x \in S$.

We first prove the following lemma which simplifies the proof of Theorem 1.

LEMMA. Under the hypothesis of Theorem 1, for any $\beta, \alpha < \beta < 1$, there exists a mapping A : S \rightarrow B(X) with the following properties

- i) for each x ε S, A(x) $\neq \phi$ and A(x) $\leq F(x)$, (2.4)
- ii) if $y \in A(x)$, then $d(x,y) \leq (1-\beta+\alpha)^{-1}d(x,F(x))$, (2.5)
- iii) if A(x) \cap S = φ for some x ϵ S, then there exists a y = y(x) ϵ A(x)

and a $z = z(x,y) \in (x,y) \cap S$ such that

$$d(x,y) < d(x,F(x)) + (\beta - \alpha)d(x,z).$$
 (2.6)

PROOF. Define a mapping $A : S \rightarrow B(X)$ by

$$A(x) = \{y \in F(x) : d(x,y) \leq (1 - \beta + \alpha)^{-1} d(x,F(x))\}.$$

Since $(1 - \beta + \alpha) < 1$, $A(x) \neq \phi$ for any $x \in S$ and satisfies (2.4) and (2.5). Suppose $A(x) \cap S = \phi$ for some $x \in S$. Choose a sequence $\{y_n\} \subseteq F(x)$ such that $d(x,y_n) \rightarrow d(x,F(x)).$ (2.7)

Since the sequence $\{y_n\}$ is eventually in A(x), we may assume that the sequence $\{y_n\} \subseteq A(x)$. It then follows by the supposition that for each n ε I (positive integers), $y_n \varepsilon F(x) \searrow S$ and consequently by (2.2) for each n ε I, there exists a z_n satisfying

$$z_n \in (x, y_n) \cap S \text{ and } F(z_n) \subseteq S.$$
 (2.8)

Now, since $d(x,z_n) \leq d(x,y_n)$, it follows by (2.7) that there is a subsequence $\{z_n\}$ of the sequence $\{z_n\}$ and a real $\lambda \geq 0$ such that

$$d(\mathbf{x}, \mathbf{z}_{n_k}) \neq \lambda.$$
 (2.9)

We claim that $\lambda > 0$. Suppose $\lambda = 0$. Then the sequence $\{z_n\} \rightarrow x$. Moreover, since $y_n \in F(x)$, it follows by the definition of F and (2.8) that

$$H(F(x), F(z_{n_k})) \leq \alpha d(x, z_{n_k}) \neq 0 \text{ as } k \neq \infty.$$
(2.10)

Now, (2.10) implies that $F(x) \subseteq S$, for if y is an arbitrary element of F(x), then by (1.3) for each $k \in I$, there is a $w_k \in F(z_{n_k})$ such that $d(y,w_k) \leq H(F(x), F(z_{n_k})) + \frac{1}{k} \neq 0$ as $k \neq \infty$. Since $\{w_k\} \subseteq S$ and S is closed, it follows that y and hence $F(x) \subseteq S$. However, this contradicts the supposition that $A(x) \cap S = \phi$. Thus $\lambda > 0$. Now choose an $\varepsilon > 0$ such that $\delta = (\beta - \alpha)\lambda - \varepsilon > 0$. Then by (2.9), $(\beta - \alpha)d(x, z_{n_k}) \geq \delta$ eventually and hence by (2.7) and the last inequality,

 $d(x,y_{n_k}) \leq d(x,F(x)) + \delta \leq d(x,F(x)) + (\beta - \alpha)d(x,z_{n_k})$ eventually. Thus there exists a y = y_{n_k} and the corresponding z = z_{n_k} satisfying (2.8) such that (2.6) holds.

PROOF OF THEOREM 1. Define a mapping $f : S \rightarrow S$ as follows: for $x \in S$, let f(x) be any element of $A(x) \cap S$ if $A(x) \cap S \neq \phi$; and if $A(x) \cap S = \phi$, then by the lemma, there exist elements $y = y(x) \in A(x)$ and $z = z(x,y) \in (x,y) \cap S$ satisfying (2.6), let f(x) = z in this case. Note that for any $x \in S$,

$$H(F(x), F(f(x)) \le \alpha d(x, f(x)).$$
 (2.11)

This is obvious if $A(x) \cap S = \phi$ and if $A(x) \cap S \neq \phi$, then since $f(x) \in F(x)$ and $f(x) \in [x, f(x)] \cap S$, therefore the definition of F implies (2.11). Set $\phi(x) = (1 - \beta)^{-1}g(x)$. Then ϕ is ℓ .s.c. on S. We show that f satisfies (1.4). Let $x \in S$. We consider cases (i) when $A(x) \cap S \neq \phi$ and case (ii) when $A(x) \cap S = \phi$. In case (i), $f(x) \in A(x)$ and hence by (2.5), $d(x, f(x)) \leq (1 - \beta + \alpha)^{-1} d(x, F(x))$. This implies that $\alpha(1 - \beta)^{-1} d(x, f(x)) \leq \phi(x) - d(x, f(x))$. Therefore, by (1.1), (2.11) and the last inequality

$$\phi(f(x)) = (1-\beta)^{-1}g(f(x)) \leq (1-\beta)^{-1}H(F(x), F(f(x))) \leq \phi(x) - d(x, f(x)).$$

Thus (1.4) holds in this case. In case (ii), there is a $y = y(x) \in F(x)$ such that $f(x) \in (x,y)$ and satisfies (2.6). Thus by (2.6), $d(f(x),F(x)) \leq d(f(x),y) = d(x,y) - d(x,f(x)) \leq d(x,F(x)) - (1-\beta+\alpha)d(x,f(x)).$ It now follows by (1.2) and (2.11) and the above inequality that $(1-\beta)\phi(f(x)) = g(f(x)) \leq d(f(x),F(x)) + H(F(x),F(f(x))) \leq d(x,F(x)) - (1-\beta)d(x,f(x)),$ that is

$$d(x,f(x)) < \phi(x) - \phi(f(x)).$$

Thus f satisfies (1.4) and consequently by Caristi's theorem f(x) = x for some x ε S. This implies that x ε F(x) for otherwise $f(x) \notin A(x) \cap S$ and hence by the definition of f, $A(x) \cap S = \phi$. Thus $f(x) \varepsilon (x,y(x))$ for some $y(x) \varepsilon A(x)$. This contradicts x \neq f(x). Consequently, x ε F(x).

Recall, that a metric space is called convex iff for each x, y \in X, x \neq y there exists a z \in (x,y). It is easy to show (see [4]) that if S is a closed subset of a complete, convex metric space and x \in S and y \notin S, then there exists a z \in [x,y) \cap ∂ S where ∂ S denotes the boundary of S. As a result of this, the following is an immediate consequence of Theorem 1.

COROLLARY 1. Let X be convex and S a closed subset of X. Let $F : S \rightarrow B(X)$ be a d.c mapping such that $f(\partial S) \subseteq S$. If g(x) = d(x,F(x)) is ℓ .s.c. on S, then F has a fixed point.

The following special case of Corollary 1 extends to B(X) an earlier result of Assad and Kirk [1].

COROLLARY 2. Let X be convex and S a closed subset of X. Suppose F : X \rightarrow B(X) satisfies the condition: there exists an $\alpha \in [0,1)$ such that for all x,y ϵ S,

$$H(F(x), F(y)) < \alpha d(x,y).$$
 (2.12)

If $F(\partial S) \subset S$, then F has a fixed point.

PROOF. Since a mapping F satisfying (2.12) is a d.c mapping, it suffices to show that the mapping g on S defined by $g(x) = d(x,F(\dot{x}))$ is continuous. To prove this, let $\{x_n\}$ be a sequence in S such that $\{x_n\} \rightarrow x \in S$. It follows that for each $n \in I$,

$$\begin{split} g(x) &= d(x,F(x)) \leq d(x,x_n) + d(x_n,F(x)) \leq d(x,x_n) + g(x_n) + H(F(x_n), F(x)). \\ \text{That is, } g(x) \leq g(x_n) + (1+\alpha)d(x_n,x). & \text{Similarly, it follows that for each} \\ n \in I, g(x_n) \leq g(x) + (1+\alpha)d(x_n,x). & \text{Thus } |g(x_n) - g(x)| \to 0 \text{ as } n \to \infty. \end{split}$$

REFERENCES

- Assad, N. A. and W. A. Kirk. Fixed point theorems for set valued mappings, <u>Pacific J. of Mathematics</u> 43 3(1972) 553-561.
- Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions, <u>Trans. Amer. Math. Soc</u>. 215(1976) 241-251.
- Kelly, J. L. and I. Namioka. <u>Linear Topological Spaces</u>, D. Van Nostrand, Princeton, N.J., 1963.
- Sehgal, V. M. and C. H. Su. Some fixed point theorems for nonexpansive mappings in locally convex spaces, <u>Bull</u>. <u>U.M.I</u>. (4) 10(1974) 598-601.