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ABSTRACT. Let B be a connutative ring with i, and G (={o}) an automorphlsm

group of B of order 2. The generalized quaternion ring extension B[j over

B is defined by S. Parimala and R. Sridharan such that (1) B[j] is a free

2B-odule with a basis {l,j}, and (2) j -l and jb o(b)j for each b in

B. The purpose of this paper is to study the separability of B[j ]. The

separable extension of B[j] over B is characterized in terms of the trace

(= i+o) of B over the subrlng of fixed elements under o. Also, the

characterization of a Galols extension of a connutative ring given by Parlmala

and Sridharan is improved.
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I. INTRODUCTION.

In 6, we studied the separable extension of group rings RG and

quaternion rings Ri,j,k over a ring R with I. We have shown that

Ri,j,k is a separable extension of R if and only if 2 is a unit in R.

Recently, S. Parimala and R. Sridharan (5) investigated another

class of quaternion ring extensions Bj over a commutative ring B with

and with an automorphism group G (= ) of order 2, where Bj is a

free B-module with a basis 1,j), j2 -I, and jb 6(b)j for each b in

B. Their work is based on the following characterization of a Galois

extension of a commutative ring (5, Proposition 1.1): Let A be the

set of elements in B fixed under . Assume 2 is a unit in A. Then, B

is Galois over A if and only if BABJ M2(B), a matrix algebra over

B of order 2, where the Galois extension is in the sense of Chase-Har-

rison-Rosenberg (2). The purpose of this paper is to study the separ-

ability of Bj. Without the assumption that 2 is a unit in A, we shall

characterize the separability of Bj in terms of the trace (= I+) of

B over A. This shows the existence of a separable generalized quater-

nion ring extension B with 2 not a unit in A. When Char(A) 2, we

shall show that Bj is a separable extension over B if and only if B

is Galois over A. Thus we can improve the above theorem of Parimala

and Sridharan. Then, the case in which 2 is a unit will be discussed,

and several examples are constructed to illustrate our main results.

2. PRELIMINARIES.

Let us recall some basic definitions as given in I,2,3,4

and 6. Let B be a commutative ring containing a subring A with the

same identity I. Then B is called a Galois extension over A (2, or

31, Chapter 3) with a finite automorphism group G if (I) there exist
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elements ai,bi in B / i 1,2,...,n for some integer nsuch that

aibi and ai6(bi) 0 whenever 6 in G, and (2) A b in B

/ (b) b for all 6 in G. The map 6 is called the trace of B over

A denoted by Tr. Let S be a ring (not necessarily commutative) contain-

ing a subring R with the same identity I. Then S is called a separable

e_xtension of R if there exist elements, (ci,di in S / i 1,2,...,n for

some integer n} such that (I) a(ci(R)di) (cidi)a for all a in S

where @ is over R, and (2) cidi I. Such an element cidi is

called a separable idempotent for S. When R is contained in the center

of S, S is called a separable R-algebra. The separable R-algebra S is

called an Azumaya R-alge.bra if R is the center of S.

3. SEPARABLE QUATERNION ALGEBRAS.

Throughout, we assume that B is a commutative ring with I, and G

(= {6) an automorphism group of order 2 of B, and that Bj3 is the

generalized quaternion algebra over A, where A is the subring of elements

fixed under 4. Our main goal in the section is to study a separable ex-

tension Bj3 over B without the assumption that 2 is a unit in A. We

begin with a description of the set of separable idempotents for B[j3

(if there are any) over B. Clearly, 11,1j,j1,jj} is a basis for

LEMMA 3.1. The element x a11(1(R)1)+a12(1j)+a21(J(R)1)+a22(J(R)j) is

a separable idempotent for B[j] over B if and only if (I) a22 -6(a11)
such that Tr(a11) I, and (2) a21 6(a12) such that a12((b-6(b)) 0

for all b in B and Tr(a12) O.

PROOF. Let x be a separable idempotent for Bj over B. Then

xu ux for each u in Bj]. Hence xj jx; that is,

6(a11 (j1)+ (a12) (j(R)j)- 6(a21) (I(R)I)-6(a22) (1(R)j)
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a11(1(R)j)_a12(11)+a21(jj)-a22(J1). Equating corresponding coef-

ficients, we have (a11) -a22, a12 (a21); that is, a22 -(a11)
and a21 (a12) for 62 I. Also, bx xb for all b in B, so

b12(b-(b)) 0. Thus x a11(11)+a12(1j)+(a12)(J(R)1)-(a11)(j(R)j)
with a12(b-(b)) 0. Moreover, by the second condition of a separable

idempotent, a11+(a12+(a12))j+(a11) I, so Tr(a11) and Tr(a12)
O. Conversely, it is straightforward to verify that any x satisfying

all equations as given is a separable idempotent.

THEOREM 3.2. Bj is a separable extension over B if and only if

there is an element c in B such that Tr(c) I.

PROOF. The necessity is a consequence of Lemma 3.1. For the suf-

ficiency, if Tr(c) I, we take a11 c, a12 a21 0. Then a11(11)-
(a11)(jj) is a separable idempotent for Bj by Lemma 3.1. Thus Bj

is a separable extension over B.

Using Theorem 3.2, we can obtain a characterization of a separable

extension Bj over B when Char(A) 2.

THEOREM 3.3. Assume Char(A) 2. Then, Bj is a separable exten-

sion over B if and only if B is a Galois extension over A.

PROOF. Let B be a Galois extension over A. Corollary 1.3 on P. 85

in 3 implies that Tr(c) for some c in B. Thus Bj is a separable

extension over B by Theorem 3.2. Conversely, by Theorem 3.2 again,

there exists an c in B such that Tr(c) I, so (c+(c)) I. By hypo-

thesis, Char(A) 2, (c) (-c) =-(c), so c-(c) I. Hence the

ideal generated by (b-(b)) / b in B)= B. This implies that B is

Galois over A by the statement 5 in Proposition 1.2 on P. 81 in 3.

Let us recall that the theorem of Parimala and Sridharan (Propo-

sition 1.1 in 5): Assume 2 is a unit in A. Then, B is Galois over A
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if and only if BAB[J M2(B), a matrix algebra over B of order 2.

We are going to improve it without the assumption that 2 is a unit in A.

THEOREM 3.4. If B is Galois over A, then BABJ M2(B).
PROOF. If B is Galois over A, there exists an c in B such that

Tr(c) (3, Corollary 1.3, P. 85). Hence BKjl is a separable ex-

tension over A by Theorem 3.2. But B is also a separable extension

over A by Proposition 1.2 in 3], so the transitive property of separ-

able extensions ([4], Proposition 2.5) implies that Bj is a separable

A-algebra. Moreover, we claim that (I) B[j] is an Azumaya algebra

over A, and (2) B is a maximal commutative subalgebra of Bj. The

proof of these facts was given in [7]. For completeness, we give an

outline here. For part (I), it suffices to show that A is the center

of Bj]. Clearly, A is contained in the center. Now, let b+b’j be in

the center. Then j(b+b’j) (b+b,j)j and c(b+b’j) (b+b’j)c for each

c in B. Equating coefficients of the basis 1,j} in the above equations,

we have that b is in A and b’ 0 by Statement 5 in Proposition 1.2 on

P. 81 in 3]. For part (2), to show that B is a maximal commutative

subalgebra of B[j] is to show that the commutant of B in B[j] is B.

The computation is similar to part (I).

Moreover, noting that B is separable over A, we then conclude

that BA(BjS) HomB(BjS,Bj] by Theorem 5.5 on P. 65 in 3, and

this implies that BABJ]
_

M2(B), where (BjS) is the opposite ring.

In 7], the sufficiency of the Parimala and Sridharan theorem was

shown by a different method from [5. Now we slightly improve the

statement without the assumption that 2 is a unit in A.

THEOREM 3.5. Let B[j] be a separable extension over B. If

BABJ] M2(B), then B is Galois over A.
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PROOF. Since BCj3 is a separable extension over B, there exists

an element c in B such that Tr(c) by Theorem 3.2. Hence the se-

quence B-*A-0 is exact under the trace map. But A is projective over

A, so the sequence splits, and then A is an A-direct summand of B. By

hypothesis, BAB[J M2(B which is an Azumaya B-algebra, so BCj is

an Azumaya A-algebra (3], Corollary 1.10, P. 45). Therefore B is

Galois over A by using the same argument as given in 7.
In Theorem 3.5, the hypothesis that BAB[J] = M2(B) can be replaced

by that AB[J is an Azumaya B-algebra with the se proof.

4. .PEGIL PBLE UAT.RNION ALGEBS.

Theorem 3.5 tells us that B is an Azumaya A-algebra such that

M2(B) when B is Galois over A. In this section, we are go-

ing to discuss generalized quaternion algebras Bj in which 2 is a

unit in A when B is projective and separable over A. With a similar

argument as given in Lemma 3. I, we have

M 4.1. The element a11(11)+a12(1j)+a21(J1)+a22(jj) in

A]AAJ] is a separable idempotent for Aj3 if and only if (I) a22

-a11 such that 2a11 I, and (2) a21 a12 such that 2a12 0.

THE0M 4.2. The A-algebra A[j] is separable if and only if 2 is

a unit in A.

PROOF. The necessity is clear by Lemma 4.1; the sufficiency is

immediate because (I/2) (11-jj) is a separable idempotent.

Now we give a characterization of B[j in which 2 is a unit when

B is projective and separable over A.

THE0 4.3. Let B be separable d projective over A. Then,

Bj] is a separable extension over B and projective over Aj as a bi-

module if and only if 2 is a unit in A.
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PROOF. Let 2 be a unit in A and let c be (I/2). Then Tr(c)

I/2+I/2 I, and hence B[j is separable over B by Theorem 3.2. By

hypothesis, B is projective over A, so B[j] is left projective over

A (for BCj is left projective over B). Hence B[j is left projective

over A[j] ([3], Proposition 2.3, P. 48). We next claim that B[j is

also right projective over A [j. In fact, BAAJl-- B[j defined

by (b1+b’j) bb’j for all b and b’ in B is an isomorphism as

right Aj3-modules. But B is projective over A, so BAA[J] is right

projective over A[j. This proves that B[j] is right projective over

A[j]. Thus B[J]A(B[j) is projective as AjJ-A[-module. Since

B[j] is a direct summand of BCJA(B[j) as a B[JA(Bj)-module
(for B[j is separable over A), B[j is projective as a A[j-Aj-mo.

dule.

Conversely, to show that 2 is a unit in A, it suffices to show

that A[j is a separable A-algebra by Theorem 4.2. Since B[j is a

separable extension over B, Tr(c) for some c in B by Theorem 3.2.

Hence Tr: B-,A-0 is exact. We claim that Tr induces an exact se-

quence: Bj-A[j-@0 as A[j1-Aj-modules. We define :
B[j]-A[j3-0 by (b+b’j) Tr(b)+Tr(b’)j. Clearly, is an additive

group homomorphism. Moreover, for a,a’ in A, (b+b’ j) (a+a’ j)

(ba-b’a’)+(ba’+b’a)j, so ((b+b’j)(a+a’j)) Tr(ba-b’a’)+Tr(ba’+b’a)j

(aTr(b)-a’Tr(b’))+(a’Tr(b)+aTr(b’)) j. Also,

(b+b’j)(a+a’j) (Tr(b)+Tr(b’)j)(a+a’j) ((b+b’j)(a+a’j)). Thus

is a right A[j-homomorphism. Similarly, by noting that Tr I+6

and that (Tr)6 Tr 6(Tr), it is straightforward to verify that is

a left A[j-homomorphism. But then A[j] is A[j-A[j3 projective such

that is onto (for Tr(c) in A/j). This implies that the exact
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sequence : Bj--A[jI-O splits as Aj-Aj-modules. Thus Aj is

an A[j]-direct summand of B[j. Now by hypothesis, Bj is Ajl-pro-

jective, so BCJA(Bj) is ACJAACj-projective where (Bj3) is

the opposite algebra of B[j. By hypothesis again, B[j3 is separable

over A, so Bj is projective over ACJAAJ3. Therefore, the Aj]-

direct summand A[j of B[j] is also projective over AJ(R)AA]. This

proves that Aj] is separable over A, and so 2 is a unit in A by Theo-

rem 4.2.

5 EXAMPLES.

This section includes several examples to illustrate our results.

(I) Let Z be the ring of integers, and ZxZ (_- B) the ring of direct

product of Z under the componentwise operations. Define : ZxZ-ZxZ

by (a,a’) (a’,a) for a,a’ in Z. Then is an automorphism group of

order 2 and {(a,a) / a in Z (= A) is the subring of ZxZ of the fixed

elements under . Imbed Z in ZxZ by a-(a,a). Then we have

(a) ZxZ is a free A-module with a basis {(I,0),(0,I).
(b) ZxZ is separable over Z.

(c) (ZxZ) j3 is a separable extension over ZxZ because Tr((1,0))

(I,0)+(0,I) (1,1) by Theorem 3.2.

(d) Z[j is not separable over Z because 2 is not a unit in Z by

Theorem 4.2.

(e) (ZxZ) gj is not projective over Zj] because 2 is not a unit

in Z by Theorem 4.3.

(2) Let Z(3 be the local ring of Z at the prime ideal (3). Re-

place Z by Z(3 in Example (I). Then we have

(a) 2 is a unit in Z(3 ).

(b) All properties (a),(b) and (c) in Example (I) hold.



GENERALIZED QUATERNION ALGEBRAS 245

(c) (Z(3)xZ(3))j] is projective over Z(3)[jl by Theorem 4.3.

(3) ZxZ and Z(3)xZ(3 in Example (I) and Example (2) are Galois

over Z and Z(3 respectively by using Proposition 1.2 on P. 64 in [3,

Since Tr((3,-2)) (3,-2)+(-2,3) (1,1) which is not in any maximal

ideal of ZxZ or Z(3)xZ(3). Thus (ZxZ)(R)z(ZXZ)[j M2(ZxZ) and

(Z(3)xZ(3))(R)Z( (Z( xZ(3 )[j
3) 3) M2(Z(3)xZ(3)) by Theorem 3.4.

(4) Let i be the usual imaginary unit. Then Z[iN is not separable

over Z. Z[i has an automorphism group {: (a+bi) a-bi for a,b in

Z such that 2 and Z is the fixed ring of 6. Also, (a) (Zi)[j

is not separable over Z6il, and (b) Z[i is not Galois over Z.
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