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ABSTRACT. In this paper, a new class of normalized univalent functions is intro-

duced. The properties of this class and its relationship with some other sub-

classes of univalent functions are studied. The functions in this class are close-

to-convex.
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1 INTRODUCTION

Denote by S the class of functions f which are regular and univalent in the
,

unit disc E and satisfy f(0) 0 and f’ (0) i. The subclasses S and C of star-

like and convex functions respectively are well known and have been extensively
,

studied. S and C are connected by the basic property
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,
f C if and only if zf’ e S (i.i)

The subclass K of S consisting of close-to-convex function is also well

,
known and many of the properties of S can be extended to the wider class K.

The purpose of this paper is to introduce a natural analogue of the class C

in terms of the property defined in (i.i).

2. MAIN RESULTS.

Def. Let f be regular in E with f(O) 0 and f’(0) I. Then f is said to

be quasi-convex in E if there exists a convex function g with g(0) 0,

g’(0) 1 such that for z e E,

Re .(zf’ (z))’
g’ (z)" > 0. (2.2)

Denote the class of quasi-convex functions by Q.

It is clear that when f(z) g(z), C Q so that C c Q. We show first

that Q c K, so that every quasi-convex functions is univalent.

THEOREM I. Let f e Q. Then, for z e E,

Re __zf..’.(z). > 0g(z)

and so Q c K c S thus, every quasi-convex function is close-to-convex and hence

univalent in E.

PROOF: A result of Libera [4] shows that, if s and t are functions re-
,

gular in E with s(0) t(0) 0 and t e S then for z E,

Re __s.’_(z) > 0 + Re s(z) > O.t’(z) t(z)

An immediate application of this with s(z) zf’ (z) and t(z) g(z) proves
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Theorem i.

It follows at once from the definition that

f Q if and only if zf’ e K. (2.2)

We can thus write

C > S

Q > K

where the direction of the arrow indicates set inclusion.

Theorem i shows that the image domain for all f e Q is close-to-convex.

However a specific characterisation of the image domain for f e Q remains an open

question.

we state now some basic properties of quasi-convex functions which can easily

be extended from the class of convex functions. We omit the proofs as they are

simple extensions from the convex case.

n
THEOREM 2. Let f e Q with f(z) z + a z Then for zl r < i,

nn=2

(i) lanl < i, n 2,3,...,

(+/-i) < If’(z) <
2- 2

(l+r) (l-r)

r
(iii)

r <_ If (z) -<
l-r

l+r

(iv) w > 1/2 where f(z)+ w in E

Z
All inequalities are sharp, equality being attained for f0(z) l-z
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We now give an example of a function in Q which is not convex.

Example 1 3 1 Let fl be the Koebe function; i e fl(z)
z

2 Then fl(-z)
maps E i-i conformally onto the w-plane cut from- to along the

x+ z
negative real axis. Let f2:f2 "(z) x E. Then f2 maps E onto it-

l+xz
self and takes the origin onto the point x. Define f3 by

f3(z) fl[f2(z)] fl(x) f3(0) 0 and

f3" (0) 0 (since f3 is univalent), and let f4

f3 (z)

f4 (z) f’0----- z E.

Combining all these transformations, we can write

fl +_z )_ fl(x
F(z) + xz

f (x) (-Ix i)
z

(i- z) 2

The function F is close-to-convex. In fact,

fl/X+ z

F’(z) 1 + .z/
fl(x) (i + x--z)2

F"(z)
F’ (z)

(i + xz)

and
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zF"(z)
F’ (z)

,,!x + z1x+z

i +z f
x+z I (x+z) (i +xz)

2xz z(, .- 1,* lz).
(x+ z) (i +xz)

+i

,,/x+z
fl )(" +z(- xl

,/" +_ z )l(-,-z)" (,,,z)
fl [l+xz /

(x+z) (t+xz)

i+ )z
fl (x+z) (l+x--z) (x+z) (.iz)

Le
ie i8 2

ie x + re i re (i-z re rI
e d8 dq).

is )1 + x re (x + re (i + xre

For

Now,

and 2 with (i < 2), we have correspndlng 81 and 82 with

(I ie F"(rei) } ( f’()} rleiRe + re d8 Re i+ d ;
F’ re18) fl ()

’i+ rlei f-[ (rlei@)}Re ----’) d
fl
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Hence, for 0 1
and 81 < 82,

i8 F_’:( reiS)I d8
F’ (rei8)

02
i fM(rlei

Re 1+ rle
I

fl (rlei )ide > -
which shows that f e K.

Now,

+ x+ z)l+zF’ (z)

l+xz

1 + l+x
l+xZ!

i- l-x

3
(i -x) i
(i +x) (l+xz)

2

(1 +

(i z) 3

l+x i- x, =zB=I+x 1-’x

Intergrating, we have for z e E,

’F(z)
z(l + -- z)

(i z)

We notice that F maps E onto the w-plane cut along a half-line ".
nce the choice of the point x in E is arbitrary, we can select x in such

a way that the half-line does not pass through the origin in F(E), which

means F is not, in general, starlike. Because of relationships (3) and (1)

between the classes Q and K and S we conclude that, in general,
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2

the function f, defined in E by f,(z)
F ()

d belongs to Q but not to
0

C.

3. SOME GROWTH PROBLEMS

n
Clunle and Keogh [i] showed that, if f C with f(z) z + . a z and

n=2
f CE) has finite area. Then n a o(I) as n / and the exponent Is best pos-

n

slble. We extend this result to quasl-convex functions.

n
THEOREM 3. Let f Q with f(z) z + a z If f(E) has finite area, then

n=2 n

n a o(1) as n + ,, the index of n being 5est possible.
n

PROOF: We use a modified version of the method of Clunie and Pommerenke [2].

By (2), we can write

(zf’(z))’ g’(z)h(z),

where Re h(z) )0 for z E and h(0) i. Thus,

z(zf’(z))’ 2zg’(z) Reh(z) zg’ (z) h(z),

i8
and so with z re 0 < r < i, Cauchy’s formula gives for n > I

2 1
n a z(zf’ (z))’e-nSd8

n 21[r
n

0

21[
_in0

d1 zg’(z)Re h (z)e O-

1[r
n 0

Since Re h(z) > 0 for a E,

21[

n21a -< i J [zg’(z) IRe h(z) dO + i
n n

1[r 0 21[r
n

21[

I zg
2r

n
0

-in0’(z) h(z)e dO.

21[

’(z) h(z)e
In0

dO (3.2)
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Re[z(zf,(z)),e-larg zg’(z)] from (3.1), and so inte-

grating the first of the above two integrals by parts we have

1 [zg’(z) IRe hCz)dO Re 1 z(zf’Cz)) ’e-larg z g’ (z)de

2/[-- -i arg z g’ (Z)de eRe ----I zf’(z)e z gn
wr 0

(z))

Also, zg’(z) h(z) z(zf,(z)),e-21 arg z g’(z)
and so (3.2) and (3.3) give

2

n [an] -< --n Re f’(z)e
r

-i arg g’(z) do(arg Z g’(z))

i

2r
2n

2/[

-2i arg z g’(Z)dozn+l (’f’ (z))’ e
0

1 1II + -12 say.n 2n
r

(3.4)

To estimate II, we note that, since f is regular in E and the area of

f(E) is finite, M(r,f’) 0.(i) as r- i
1 -r

2

where M(r,f) xl(reiS.) I- Since d
0

(arg z g’(z)) 2, we have

0

o(I) as r + i.I1 1-r
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Integrating 12 by parts gives

12 2
-2i arg z g’ (Z)Re(zg’ (z))’ d0F

n
(z)e

0
g’(z)

where

z

Fn(Z) t
n (tf’(t))’dt zn+if’(z) -nfn(Z),

0

and

z

f (z) tnf ’(t)dt.
0

Now

r

IFn (z) < rn+iM( t
nr,f’) + nM(r,f’) dt

0

< 2rn+iM(r, f’).

2w

dO 2, we have(z’ (z))_’
Since Re

(z)g
0

12 < 8rn+iM(r,f,)_. o(I)i-r as r + i as before.

Finally, choosing r 1-
i

in (3.4) the estimates for II and 12 give
n

na o(i) as n / and Theorem 3 is proved.
n

An examination of the proof of Theorem 3 gives

COROLLARY: Let f e Q, E {z: Izl r < i} and A(r) be the area of f(Er).r

Then, for n > 2,
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n[anl 0(i) A(I 1_)%
n (3.5)

,
We remark that (3.5) holds for the class S but appears still to be an open

problem for the class K.

Denote by C(r) the closed curve which is the image of f(Er) and by L (r) the

length of C(r). We prove

THEOREM 4. Let f e Q. Then, for 0 < r ,e i,

2/(A(r)) < L(r) < 2/ (A(/r)) (io l/_r

Further, if A(r) < for 0 < r < i, then

L(r) o(i) (lo_ir)1/2 as r +. I.

PROOF: The left hand inequality follows at once. from the isoperlmetrlc in-

equality. Since f e Q, F(z) zf’ (z) is close-to-convex. Thus from [3,p.45]

2 2

LCr) [zf (z) ld0 [(z);d0
0 0

r

< 2 M(;),zf’) d;)
0

n=l n=l n /
i-1/22/(A(/r) ioig_r
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If a(r) < for 0 < r < I, then from (3.7)

L(r)--" 2 [ la Irnn
n=l

N
< 2 [ lanlrn + [ nlanl

n=l n=N

2n 1/221/2 r n
n=l

N
2 [ lanlrn +N logl#r2

n=l

1
1/2

where N / 0 as N / Thus L(r) o(i) Io "as r /i.

1 1
1/2

The convex function fl (z) log_z shows that the factor lOl-r in

(3.6) is best possible.

For f e C it is well know that L(r) < 2M(r). It follows from (3.6) that

for f e Q, L(r) 0(i) M(r) log_r as r/l. The question of whether the

factor io can be removed remains open.

In conclusion, we remark that other results for the class C can be extended

to quasi-convex functions, often with only minor alterations in the proof. The

objective of this paper has been to introduce the class Q, exhibit its basic

properties and give some results whose proofs are not trivial extensions from the

class C.
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