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ABSTRACT: The perturbed SchrSdinger eigenvalue problem for bound states is cast

into integral form using Green’s Functions. A systematic algorithm is developed

and applied to the resulting equation giving rise to approximate solutions ex-

pressed as functions of the given perturbation parameter. As a by-product, con-

vergence radii for the traditional Rayleigh-Schrdinger and Brillouin-Wlgner

perturbation theories emerge in a natural way.
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1 INTRODUCTION

The method of Green’s Functions is a powerful and widely used tool for

obtaining analytical solutions to boundary value problems arising in diverse

areas of physics; most notably in potential theory. [i, 2] The Green’s Func-

tion approach is also extensively used to establish approximation methods in

quantum mechanical collision theory. [3] However the use of closed form Green’s

Functions as a basis for a perturbation treatment of bound state quantal problems

has not been exploited. [4, 5] In this paper, we view the notions of Green’s

Function and integral representations as unifying concepts from which conven-

tional bound-state perturbation theory can be derived. From this approach, we

are able to derive various properties such as convergence radii for the differ-

ent perturbation approximations. In addition, there are obvious advantages to

obtaining approximate results for energy and wavefunctions in a closed form

(see the Appendix in Section 5 for an example).

Although the arguments in this paper are restricted to bound-state

solutions of the time-lndependent SchrBdlnger equation, there is generality in

two ways. First, the results apply to any number of dimensions and to essen-

tlally arbitrary potentials; secondly, there is an easy generalization to almost

any linear differential equation of elliptic type.

The general equation we wish to solve is

H@(r) E(r) (I.I)

where H is defined as usual and (r) is defined on some domain with boundary. We seek a solution to eq. (I.I) defined over and subject to boundary con-

dition (r) 0, for r belonging to . Further we wish to know the allowed

values of the unknown parameter E. We assume that is an open, simpl connect-

ed subset of Euclidean space with plece-wlse smooth boundary. We further
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suppose that all eigenstates under discussion are non-degenerate. No essential

differences are needed to treat the degenerate case.

The essence of perturbation theory is to suppose that H can be written as

H
0 + cHI, where e is a small parameter and further that we know the solution to

H0 W. (1.2)

We wish to exploit this knowledge to approximate the solutions to eq. (I.I)

written in the form

(H0 + e:H1) E. (1.3)

We adopt the following notational definitions.

a) n unperturbed wavefunctlon for the tn-h eigenstate

b) W energy elgenvalue corresponding to nn

c) #j exact wavefunctlon for the jth elgenstate of the unknown problem

d) E exact energy elgenvalue corresponding to $

e) #j(k) order approximation to j

f) Ej
(k) order approximation to Ej

2. STATEMENT OF RELEVANT RESULTS FROM ANALYSIS

2.1 GREEN’S IDENTITIES: Let be an open simply connected region of R
v
with

sectionally smooth boundary . Let L(x) be a differential operator of the form

L(x--) V 2 + n(); (2.1.I)

finally let u and v be dlfferentlable functions defined on the union of and .
The following identities hold.

Green’s First Identity

f u*L[u]dT- f {lVul a (2.1.2)
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Green’s Second Identity:

fn{u*L(v) v(L[u])*}dT (u*Vv vVu*) "d. (2.1.3)

2.2 THE FREDHOLM ALTERNATIVE THEOREM [6

The Boundary value problem

L() f(x) for all x in fi

(x) 0 for all x in 3

has a unique solution only if the corresponding homogeneous problem has a non-

trivial solution, u 0, the inhomogeneous problem will have a solution only if

u* f dT 0. In this case there is an infinity of solutions of the(u, f) f
form cu + p, where u satisfies the homogeneous problem and p is any parti-

cular solution of the inhomogeneous problem.

2.3 VARIOUS THEOREMS AND PROPOSITIONS

THEOREM 1 [7] Suppose (x-y) is the Dirac delta function for the specific

n-dimensional coordinate system in use. Let L be a self-adJoint linear differen-

tial operator of the form L V2 + ().
n

(a) If the homogeneous problem

L[u] 0 in n

u=Oon 3f

has only the trivial solution u 0, then there exists a unique solution (in the

sense of generalized functions) to the problem

L[g(x,y)] (x,y) for all x and y in ,
g(x,y) 0 for all x on .

The function g(x,y) is called the Green’s Function for the boundary value problem

and is dependent not only on the operator L, but also on the geometry of and

its boundary.
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(b) If the homogeneous problem

L[u] 0 in

u 0 on R, (u,u) 1

has a non-trivial solution u(x) O, then there exists a (non-unique) solution

to the problem

L[G(x,y)] (x-y) u*(y)u(x) for all x and y in R, and G(x,y) 0

for all x on R.

The function G(x,y) is called the modified Green’s function for the boundary

value problem. It will be noted, that in keeping with the Fredholm Alternative

Theorem, the generalized function O(x,y) (x-y)-u*(y)u(x) is orthogonal to

u(x). We have

(u,p) fau*(;)p(;,)dx- /a[6(;-7)-u*(’)u(7)]u*(7)dx
u*(y)-u(y)(u,u) O,

where we have assumed (as we may) that u is normalized.

PROPOSITION 1 [8]: The Green’s function in part (a) of Theorem 1 is

syaetrlc in the sense that g*(xl,x2) g(x2,x1) for every xI and x2 lying in

PROPOSITION 2 [9]: Let u be a solutlon of the completely homogeneous

system: L[u] 0 for all x in R, u 0 for all x in . If we require that

(u,g) O, this is sufficient to insure that g will be symmetric.

THOR 2 [0]

(a) If the completely homogeneous problem has only the trivial solution,

then the unique solution to

L[] f(x) for all x in ,
and

(x) 0 for all x on

is given by
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() ff g*(y’x)f()dVY-- ft2 g(’)f()dVY" (2.3.1)

Where g(x,y) is the Green’s Function defined in part (a) of Theorem I.

(b) If the completely homogeneous problem has a non-trlvlal solution (say

u), and if (u,f) 0, then all solutions of

L f(x) for all x in fl,

(x) 0 for all x in 8

are given by

(x-) cu (x-) / f G* (,x-) f (y-) dVy

or (2.3.2)

(x-) -Cu(x-) / f G(,y--)f()dVy,

where C is an arbitrary constant.

3. THE APPROXIMATION THEORY

To begin we recall the basic equation from Section 1

Ho j wj j; (3.)

the solution of which is known, and the equation of interest which can be

written in two different ways

(H0- En) n -H1 n’ (3.2)

or

(H0 Wn) n (En Wn -eHl n" (3.3)

3. I APPROXIMATION THEORY BASED ON EQUATION (3.2)

We shall start with eq. (3.2) and apply Theorem 2 with L H0 En and

f(x) -EHIn. We first see which part of the alternative will apply. The

(H0-En)eq. n 0 will have a non-trivial solutlon only if E W for some s.
n s

To explore the consequences of thls we use the followlng equation:

(En Ws)(,H’n)
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If En Ws, then either 0 or (s,Hl0n) 0. In the case of 0, we are

back to the original unperturbed problem and we have s n, E W and 0n nn n

The case E W with e 0 and s n involves subtleties that have non s

bearing on the present development. [II] We, therefore, assume that E is such

that Wn<En<Wn+I. With this assumption, (Ho-En)On 0 has only the trivial

solution On 0, and by Theorem 2, part (a), On is given by

0n(X e ffl g(,)HI ()0n()dy
The Green’s Function, g(x,y), satisfies

(H0-En)g(,) (x-y) for all x and y in

and

(3.1.1)

(3..2)

g(,) 0 for all x on . (3.1.3)

By standard techniques eq. (2.3.2) can be formed into an equation for E

En Wn + e(n’HI0n) / (n’0n) (3 I .4)

We begin by supposing that system (3.1.2, 3.1.3) can be solved for g(x,y). Note

that E will occur as an unknown parameter, so it is more informative to writen

g(x,y;En). We then have the following system for En and On:
On -e fa g(’;En)Hl()On(Y--)dVy, (3..5)

En Wn + E(n,H1,0n)/(n,0n (3.1.6)

where HI(Y) n(X), Wn, and g(x,y;En) are presumed known. The strategy is to

employ a method of successive approximation and solve the system (3.1.5, 3.1.6)

self-consistently at any order of approximation. To show that this process is

feasible, we prove two crucial results:

(1) lira O bn.
-+0

(This will assure that we can start the iteration and that we can begin with

(o) n
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(il) The sequence defined by:

(k+l) (’) iag (.,’En)H1 (’),n(k) (’)dVySn (3.1.7)

will converge for suitably restricted e, thus insuring that we have a valid

approximation procedure.

To facilitate these proofs, we want to expand g(x,y;En) in the complete set of

eigenfunctions {k);. Let g akk where the ak’s are to be determined.
n=l

Substitute this into eq. (3.1.6) and obtain

k-1

where we have used H0k Wkk. Multiply by *() integrate and note that

(’k) k to obtain

kak k(y) /

giving the followlng series for g:

g(7,;En) . ,k(Y),k()/(Wk-En) with E @ Wk.
k=l

n

Using eq. (3.1.4), we obtain

g(x’y;En) (n’n)On*(Y)On (x)/(0n,Hln)

(3.1.8)

+ (y--)k(X--)/(Wk-En) (3.1.9)
k#n

Substitution of eq. (3.1.9) into eq. (3.1.5) produces

n (n’n)n (x--) 4- (@k,Hl,n)/(En-Nk). (3.1.10)
k

(0) (n (0)) i e (0) is a multiple of n We shallLet +0 and get Yn ’n n(X)
(k)) 1 at any stage of approximatioemploy the practice of requiring that (n,n

then normalizing at the end. This completes the proof of (i). We note that

eqs. (3.1.4, 3.1.10) with (n,$n) 1 are the standard expressions from which the

Brillouln-Wigner Perturbation procedure is developed. 12, 13, 14 The connec-

tion between the integral representation of the solution in term of Green’s
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Functions and the BW equations is thus apparent.

We now prove the second result. Let n be the hypothetical function to

(J)which the n(j) are supposed to converge. If we can show that lim ln -nll=0’
with the proper choice of e, then we will have convergence of the iteration pro-

cedure. From eq. (3.1.7) we have the following expression:

(J) (’)
_

n kI(,;E (j-l) (3.1.11)

The kernel, kI(,), is defined by

kI(x,y;En) g(x,y)Hl(y).
We write eq. (3. I.II) in the more convenient form

(J) (J-)n Kln
where K1 [u] -E/g(,;En)Hl()u()dVy.

(3.1.12)

(3.1.13)

It is clear, using eq. (3.1.13) and the linearity of K1 that

(J-l) 2. (j-Z) 3. (J-3) Kj (0)
Kln Kln Kln ln (3..4)

Now, since n is supposed to be a solution for eq. (3.1.1), we have Kn n’
for all integers p > 0. We can therefore write

(J) Kn

Using the linearity of K and the fact that Cn and n are fixed functions, we can

write

(j)]]n n I[ IK(n n)I[ ]]KlllJl]on n ]I" (3.1.16)

()It is clear from eq. (3.1.16) that lira In nll 0 if and only if IKII < 1.

u =quy [[KI ! f[k(,F)]d d fo, mb, S=d

operators [15] and the definition of KI, we impose the following requirements:

]JEll[2 <_ 2f ]kl(x,y;En) 12dVx dVy < i. (3.1.17)
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We therefore have the following inequality for e:

lel <{ffIkl(,;En) 12dvx d}-1/2. (3.1.18)

Thus we have shown that for some range of e, we have a reasonable approxl-

matlon procedure. Since the inequality (3.1.18) implicitly contains the unknown

energy, En, on the right side it is not useful as a practical estimate of the

convergence radius. However, its use as a demonstration of convergence in prln-

clple is not compromised by the occurrence of the unknown E provided, as assumen

E # Wk for any k. This can be seen by a reference to equation (3.1.8) and the

definition of kl(X,y;En). Whatever the energy E
n is, as long as E

n Wk, the

integral on the right of inequality (3.1.18) will be a finite number > 0 and

thus an e can be found which will satisfy (3.1.18).

The approximation scheme is summarized below:

E (k))Hl ()n(k) ()dYn’
(k+l) () -fg(x,y, n Y

and

E (k+l) W + (n,Hl ’(k)) with k 0 i, 2
n n ’n

(3.1.19)

(3.1.20)

The occurrence of E as an unknown parameter on the RHS of both equations means
n

that at any given level of approximation the system will have to be solved self-

consistently by numerical procedure. Although this makes the calculation more

difficult, it has the potential of returning some quite good values for E with
n

a fairly low order approximation to n"

3.2 APPROXIMATION PROCEDURE BASED ON EQUATION (3.3)

We observe that the homogeneous equation, (H0-Wn)n 0, has a non-trivial

solution; namely, #n" Thus Theorem 2, part (b) applies, and we can write the

solution to eq. (3.1) as

n Cn + G(,) [En-Wn-eHi]n(Y--)dy, (3.2.1)
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Provided that (n’ [En-Wn-eHl]n) 0, which is the same as

(En-Wn) (n, SHln). (3.2.2)

Equation (3.2.2) is satisfied, as has already been noted.

Recall also, that G(,) must satisfy

(H0-Wn)G(x-y) (x-y)- nn(X)" (3.2.3)

Following the convention adopted in Section 3.1., we shall require that

(k)) i at each order of the approximation and normalize at the end. With(n,n
this convention, we can replace E -W in Eq. (3.2.1) and obtain

n n

n Cn+(n,HIn) fcG,F)
_

(F) dVY-efC(x,Y)HI (Y)n()dVy. (3.2.4)

As a preliminary result, we now show that (n,%n) i if and only if C I.

PROOF: Multiply eq. (3.2.4) by n(X) and integrate to get:

(n,n) C + E(n,Hln)ffn*()G(x,Y)n(Y--)ddXx
fff*n(x--) G (x,y) HI ()n()dVdVx.

By Proposition 2, we have (n,G) 0 for every y in fl, giving C (n,$n). Ne

therefore wre

n(X--) bn(x-) / (bn,H1n) flG (x ,y) $n(y)d Y
(3.2.5)

eG(x’y)Hl ()n(Y--)d-
Equation (3.2.5) will be the basis for a useful approximation procedure.

We begin by proving the following proposition:

PROPOSITION 3: Suppose that G(x,y), Hi(Y) and n(X;e) satisfy the following

hypotheses

(1) G(x,y) is bounded and continuous on X

(li) n(X;) is well-defined for all contained in N {I0 <_ ]I < 6}

and is bounded and continuous with respect to x on
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(iii) HI(y) ,HI(y)G(x,y), and H1 (y)G(x,y)n(x,e) are Relman Integrable with

respect to y for all x in and for all e in N.
Then, n(X;e) is continuous with respect to e at e 0, and lira n(X;) n(X).

PROOF: Using eq. (3.2.5), we write

n(X;e) n(X--) + (n,Hln) fG(x,Y)n(;e)d-efG(x,y)HI ()n(X;e)d-
Using this and the postulated properties of HI, G, and n’ it is clear that

n(X;0) n(X). Next we show that lira n(X;e) n(X), proving continuity. We

have

hypothesis, there must exist M < such that JGnd’Y-JoGHlnd’yl <_ M, and we

get [n-nI<_l eMl, or lira n(X;) n(X--)’ concluding the proof.

As the next step, we have

PROPOSITION 4: Under the same hypotheses as Proposition 3,
Effi0

exists for all x in .
PROOF: Consider the difference n(X;h) Sn(X;O) and use Proposition 3 to

obrain

n(;h) n(;0) h{ (n,Hln(;h)) ]faG(,)n(;h)dVy

-j’aG (x,y)HlSn(;h)dy}. (3.2.6)

The equation being valid and well-defined for 0<_h<_. We now divide both sides of

eq. (3.2.6) by h, and consider the limit of the RHS as h+O. We obtain

llm[ (#n’Hln)fGndY-fGHlndY] -(G’Hln ()

since using Proposition 2 and 3

fG(,y--)n(Y--)dVy O.

Since the limit as of the RHS/h of eq. (3.2.6) exists, so also must limit of
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LHS/h as h0, implyin-tha ’[%n(X;)/] exists and is in fact given by

9n(;)/DE =-IG(x,y)H1 ()n(Y--) drY"

We now prove the following proposition:

PROPOSITION 5: The d.erivative, [kn(;)/k] exists for all k >_ 0, under
=0

the same assumptions as Propositions 3 and 4.

PROOF: We shall prove this by induction: Proposition 3 and 4 are the cases

k 0 and k 1. We write eq. (3.2.6) as follows:

n(X) n(X) + eF(x;e),

where F is defined as

F(,) (n,Hln) fflG (x ,y)n (y--) dVy-fflG (x, y)HI ()n()dVy (3.2.7)

we assume that [kSn/Ek] exists for k 0, I, 2, and show the
=0 n "existence for + i. The existence of [ / ] mplles the existence of

=0

[EF/E][ In fact we have, using Liebnltz’ Rule for the derivative of a
=0

product 16

-J,n/ -J j eJ8F/8 { C j(n,HI 8 )G(x,y)( n/8 )dVy

/fG(x,y)HI()(2 n )dVY}l (3.2.8)
--0

k
Clearly, the RHS of eq. (3.2.8) depends only on the existence of [ n/ek]l’

--0

for k 0, 2, . Next, observe that

n/,l (/)[F(;)] -IF/ + F/
=0 =0 =0 =0

Finally, we show that eq. (3.2.9) holds for E + I.
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Consider

%n %
@ 9,,n(;h)/- (;0)/Be

9,, F ,-I9,,@-iF(";h)/) + h) (;0) 9,,
F(x;h)/Be (3.2.10)

Divide eq. (3.2.10) by h and consider the limit of the RHS as h+0 (presuming

BF(;0)/B [
to exist) we have

@
9"+Iq

n
("; O)/@e 9"+I lim(i/h)[Bn(;h) B#n(;0)/@e]

h+0

-(9,,+l))9,,F(x;O)/
This concludes the proof of Proposition 5. We have shown that the function

n(X;e) is C with respect to e at e 0. Although this is a remarkable result,

it does not prove that n(X;e) is analytic in e.

From a practical point of view, however, Proposition 5 amply Justifies trying

the following power series expansion as a representation for n(X;e):
@n(;e)=n(X--)+e[@n/e] + (e2/2!)[2n/e2] + (3.2.11)

=0 =0

We next estimate the range of values of e for which the series (3.2.11) can be

expected to converge. A dominating series is the following:

,() I!%,11 + I!{I lv,(;o)/l I} + (3.2.12)

We can write the series (3.2.12) in the simpler form

() --=0 + il’t + le2/2"l(x2 +’ (3.2.13)

where the definition of the ak’S is obvious. By the ratio test, if

limleP+lp+IP!/ePep(p+l)! < I, then the series s(e) will be convergent, implying

that the series (3.2.11) is absolutely and uniformly convergent for x in . Thus,

let L lira lup+i/(P+l)Upl and convergence will be assured if lel < I/L. In

practice, the limit L is hard to compute, so we will estimate it using the first
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two terms of the series, i.e., p 0. If we define

K2[u fG(x,y)HI ()u()dY,

then we have

L o1/o0 IIK2[+n]ll/llnll IIK21].
Our estimate, therefore, becomes

ll<{ffIG(x,y)Hl()12dx a yl (3.2.14)

Inequality (3.2.14) should be compared with the estimate (3.1.18) which per-

tained to the BW theory.

Our next task will be to show the connection of this procedure to the

Rayleigh-Schrdinger theory. To do this, we expand G(x,y) in the ortho-

}"normal set {#k I"

Recall eq. (3.2.3)

(H
0 Wn)G(x,y) 6(x-y) n(Y)n(X)"

Substitution of G [ ak(n)k(X), and multiplication by {p(X) followed by
k=l

integration gives

k--i
*(y--) "()pk p n 6pn’

for calculating ak(n).
We, therefore, write

G(x,y) [ {s(Y)s(X)/(Ws-Wn).sn
Substitution of eq. (3.2.16) into eq. (3.2.10) gives

n(X) {n(X) + e({n’Htn) #n(S’n)s(X)/(Ws-Wn)s

( ,Hln)s()/(Ws-Wn).
s#n s

(3.2.15)

(3.2.16)

(3.2.17)

Let n+{n on the RHS of eq. (3.2.17) producing
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n(I) n + [ (+s,n)+s (-) / (Wn-Ws),
s#n

which is the defining equation for Rayleigh-Schrdlnger Perturbation Theory

(I) (I) (3) (k)
will produce the[13, 14]. Resubstitutlon of n n n n

RS theory.

4. SUMMARY

4.1 WAVE FUNCTION (EXACT GREEN’S FUNCTION KERNELS)

CBW) n(> -efgBW(’Y--)HI ()nC)dY
(RS) n(X--) n + f[En-Wn-eHl () ]gRs(X’Y)n()dY
The Green’s Functions satisfy the following equations:

(BW) (H0-En)gBw(X,y) (x-y),

(RS) (Ho-Wn) gRS (’’,-) (x-y)-n (y) n(X),

4.2 WAVE FUNCTIONS (EXACT EIGENFUNCTION EXPANSION)

(BW) n (x--) n (x--) e 7. (n’HIn) / (Wk-En)
k#n

(RS) n(X) n(X) e(n,Hln) (k,n)k(X)/(Wk-Wn)
k

[ (n,HlSn)#kC)/CWk-Wn)
k#n

4.3 WAVE FUNCTIONS (FIRST ORDER GREEN’S FUNCTION KERNELS)

(BW) n(I) n- egBw(X’y;En(1))Hl()n(Y--)dVY
(RS) #n

(I) n- e;flgRS(’)Hl()n(Y--)d
4.4 WAVE FUNCTIONS (FIRST ORDER EIGENFUNCTION EXPANSIONS)

(BW) n(1) n- e I (#k,Hln)k() / (Wk-En)
k@n

(RS) n(1) n e ! (k,Hln)k()/(Wk-Wn)
kn
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4.5 ENERGY FORMULAS (EXACT)

(BW, RS) E W + e(n HISn)n n

APPENDIX--THE PERTURBED INFINITE SOUAKE WELL IN CLOSED FORM PERTURBATION

THEORY. 8

Consider the infinite square well of rldth L with a perturbation "V
o

added to the right half of the well. The unperturbed solutions are

and

Cn(X) sin (nx/L)

W n2h2/SmL2.

The standard (RS) perturbation theory approach to this problem produces the

following results for the ground state

E 2)
WI + V012 (rV /2WI) kZ_l

and

l)(x) el(X) (4Vo/W1’) (-1)kk2k/(4k2-1) 2

k=l

The closed form modified Green’s Function obtained by standard techniques is

C(x,y) (/%nL) (L-y) coS(%nY)Sln(%nX)

-x sin(knY)COS(knx)] for x < y

and

C(x,y) (/nL) (L-x) coS(%nX)Sln(%ny)
y sin(%nX)COS(%ny)] for x > y

where % n/L and 2m/h2. For the ground state, n I, the use of this
n

Green’s Function in the appropriate equations yields

E2) WI + V0/2 V0/16WI

(5.1)

and
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x cos(%IX) (x<L/2)

l)(x) l(X) + (V0/4I) 2/L
(L-x) cos (% ix) (x>_L/2).

These equations are equivalent [8] to equations (5.1) and (5.2) and in many

cases would be more useful.
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