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ABSTRACT. The damping of avity waves, forming on the surface of a layer of

viscous, incompressible fluid which rests on top of a porous medium, is studied.

It is assumed that the ’free’ surface of the fluid has a thin film of soluble

material adsorbed on it and the relaxation time for the equilibrium of the film

is negligible in comparison to the free surface oscillations. The damping coeffi-

cient of the waves is calculated as a function of the parameters associated with

the surfactant and the permeability.
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i. INTRODUCTION.

In a recent issue of this journal, the author published a paper (henceforth

to be referred to as (I)), exploring the role of viscosity and permeability on the

damping characteristics of a gravity wave [I]. The purpose of the present paper
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is to extend this analysis to include the effect of a soluble surface-active

material and to examine afresh the damping of such waves. As before, we consider

a two-layer model wherein a layer of viscous, incompressible fluid of finite thick-

ness overlies an infinitely deep porous matrix which is assumed to be saturated

with the same fluid. The system has a ’free’ surface and an infinite horizontal

extent.

That the presence of a su’rfactant such as oil on water has a significant

effect on the damping of surface waves, is well known. As early as 1883, Aitken

[2] gave an excellent qualitative physical explanation of the phenomenon and sup-

ported it by experimental studies. He attributed the calming effect of the oil to

the variations of surface tension. Such variations, in the present context, are

obtained when a disturbance propagating on the free surface of the fluid causes

local and periodic changes in the distribution of the adsorbed material. The in-

homogeneity thus developed gives rise to the surface tension gradient whose

angential component enables the contaminated fluid surface to support a tangential

tress. The latter on a clean surface is zero, thus spelling out the hydrodynam-

,_cal consequence of the presence of a surface-active substance.

The theoretical treatment of such problems has been carried out by several

authors, viz., Dorrestein [3], Levich [4], Tempel and Riet [5], Miles [6], to

mention a few. Dorestein considers an insoluble film on the surface of an in-

finitely deep ocean but takes into account the surface viscosity and compressibility

to discuss the damping of gravity waves in the frame work of a linearized theory.

Levich works both with soluble as well as insoluble films. Tempel and Riet also

attempt both the cases but they question the accuracy of Levich’s boundary condition

for the tangential stress. However, their own boundar condition seems to agree

with that of Levich when appropriate comparisons are made [6]. Whereas the above

authors formulate their problems in a body of fluid having infinite depth and
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infinite horizontal extent, Miles develops his analysis for s.urface waves in a

closed basin.

The basic appeal in the present treatement is to waves in the ocean. Thus,

whereas the fluid body is assumed unbounded, we adopt the viewpoint that in a

realistic model there should be a porous medium underlying a finite layer of fluid.

As such permeability is considered one of the possible mechanisms leading to the

damping process.

2. FORMULATION OF THE PROBLEM

We consider a layer of viscous, imcompressible fluid of finite depth h and in-

finite horizontal extent, overlying an infinitely deep porous bed which is saturated

with the same fluid. Also we assume ;chat the system is contaminated due to the

presence of a soluble surface-active material having Co (moles/cma) and Yo
(moles/cm2) as the respective sufactant concentration and adsorbtion. The problem

is to study the decay of a plane wave, viz., exp(it’ ikx’) propogating in the

direction of x’axis under the combined effect of the surface activity, the viscosity

and the permeability. The y’-axis is taken in the vertically upward direction.

The linearized Navier-Stokes equations of motion for the fluid and Darcy’s

equations for the bed are:

q’it

i

i V,p,
1

+ 9V’2q (2 I)
O I

1 V’p’ D’(n) (2 2)
0 2 0

q 2

Here the subscripts ’i’ and ’2’, used as ’i’ below, refer to the fluid and the bed

respectively. The quantities V’ (x, --) and q’i (ui’ ,vi’) represent the

gradient and the velocity respectively and the latter satisfy the equations of

continuity

V’,q’I 0 and V’.q’
2

0 (2.3)

In the above formulation, the gravitational effect is included in the pressure

term so as to write
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P’ P’ + ogY’
i i Po (2.4)

where, P’. are the hydrodynamical pressures in the two regimes, p is the atmos-
1 o

pheric pressur% O is the fluid density and g is the acceleration due to gravity.

Also 9 is the kinematic viscosity of the fluid, n is the porosity of the medium and

D’(n) represents the drag of the fluid due to the solid particles in the porous

matrix. We assume that the particles are fixed so that D’(n) may be taken as a

constant, equivalent to -, where K’ is the bed permeability.

As mentioned earlier, the presence of a wave at the surface affects the dis-

tribution of both the bulk as well as the surface concentration of the contaminants.

If these changes are from Co to Co + c’(x’,y’,k’) and Yo to Yo + y’(x’,y’,t’), then,

following Levich [4], we have,

c’ V2St’ l’ ’c’ (2.5)

where ’ is the diffusion constant of the surface material.

The equations (2.1) to (2.5) are to be solved subject to the following bound-

ary conditions

the kinematic condition: v’ E’ at y’ 0
i t’

the vertical stress condition: PI + 2v0V’ly, G’oE’x’x’ at y’ =0

the horizontal stress condition: 0(u’ + v’ G’ at y’ 0ly’ ix’ x’
Aside from the above, we also have the surface adsorption,

(2.6)

(2.7)

(2.8)

Yo + y’(x’,y’,t’) governed by

y’ + + ’c’ 0 at y 0 (2 9)t You x’ y’

Here we have used E’(x’,t’) for the wave elevation and G’ + G’(x’,y’,t’) for the
o

variable surface tension, where is the equilibrium value and ’ is the smallo

perturbation consequent upon the wave motion. At the interface, we have

v’ v’ at y’ h (2 i0)i 2

U’ly, a (U,l + ip’ at y’ =-h (2 ll)
2x’

P’I + 2VpV’ly, P’2 at y’ =h (2.12)
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The dimensionless number a is the slip constant. The conditions (2.10) (2.12)

were discussed in (I). Finally we have:

q’ / 0 as y’ /- (2 13)
2

We now introduced the dimensionless variables based upon the wave number k and

the frequency of the wave motion. Thus we write:

(x,y) k(x’,y’), t t’ (uj vj)
k (u’ j,vj

(k2/2)p-lp F gk/o
2

ePj

k
2

k
2

k 8o 2
D D’/, K K’ E E’k I I’ /m, 0" ’/

c’ CoC, y’ yo’y’, rl a/,/xi" (2.14)

Thus the equilibrium values of the dimensionless bulk concentration and the surface

adsorption is each equal to 1 unit. We also define the dimensionless stream func-

tion j by the usual relation, qj Vx(0,0,j). The above equations in terms of the

new variables are:

(- v2)v2
1

0 (2.15)

;9 )V22(- +nD 0 (2.16)

ct lv2c 2.17

Et + ix 0 at y 0 (2.18)

e(lyy ixx Ox at y=O (2.i9)

tlytt e(3lyxxt + lyyyt) Ftixx aoIxxxx at y 0

kc
o

Yt + lyx + o Cy at y 0

aty khix 2x
(i + D) at y kh(i + 3e)ly elyyy n 2y
1

lyy t](tly 2y -2yt at y kh

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

c, 2 / 0 as y / (2.25)
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In order to find G, we assume that the local equilibrium between the surface

and the subsurface solution is constantly maintained. This amounts to saying that

the relaxation time for the equilibrium between the material in the adsorbed film

and the dissolved material in the underlying liquid is negligible compared with the

period of the gravity waves. The experimental support for this assertion comes from

the work of Davies and Vose [7]. Under this assumption, the surface tension

as well as the surfactant adsorption Yo + Y’ are completely determined by the sur-

factant concentration c’(x’,E’,t’) c + c’(x’,E’,t’) c + c’(x’,o,t’). As a
O O

result, we can write

’ c’(x’ o K’)(do’% (2.26)d--"o

and

dy’ .= c’(x’ (2.27),o,t )(d-2 o

where the subscript ’o’ refers to the equilibrium value.

It has been shown by Adam [8] that the surface of a surfactant solution be-

haves, in many cases, like an ideal two dimensional solution, and in that case the

adsorption is related to the concentration by means of a Langmuir adsorption

isotherm
C
s (2.28)+ y’ y’Yo a’ + c’

s

where y’ is the saturation adsorption in moles/cm2, a’ is szyszkowski constant which

is that value of the surface concentration, c’ at which y + y’ attains half its
S O

saturation value. Using (2.28) in (2.27) we get,

cV(x ,o,t )a y
y’ (2 29)

2(a’ + c
O

Also, under these conditions, the surface-tension depends upon the concentration as

given by Szyszkowski’s equation,

C
S

’ (’ + ’o ROy’ in(l + --) (2.30)
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where ’ is the surface tension of pure water, R is the gas constant and @ is the

absolute temperature.

d’ Io R@y’

dc’ (a’ + c
o

(2.31)

Using the above equation in (2.26), we get

ROy
0" c (x’,o,t’ (a’ + cO)

(2.32)

Writing the equations (2.29) and (2.32) in the dimensionless forms, we have

and

c(x,o,t)y
2Ca+l)

k3c( x, o,t Reyyo
20(a+ i)

(2.33)

(2.34)

Also from (2.30), we have for the equilibrium value,

RTyoYk
3

]_
( ( in(l + --)
o 0 2 a

P
(2.35)

3. SOLUTION OF THE PROBLEM

Our interest is to discuss the decay of the plane wave solutions of the form

i(t-x)
e of the equations (2.15) to (2.17) subject to the auxiliar conditions (2.18)

to (2.25). Thus, for various unknowns in these equations, we write, as an example

f(x,y,t) F(y)ei(t-x)

and solve the resulting ordinary differential equations. The equations (2.15) and

(2.16) with (2.25) yield,

i eY+kh + e-(y+kh) + e-6(y+kh) + eBy

2 ey+kh, where 82 i +

(3.1)

(3.2)

Assuming that %<<e, implying thereby that the thickness of the diffusion boundary

layer is small compared to that of the viscous boundary layer, we have, from (2.17),
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2
C epy, p 1 + i/X (3.3)

where we have to take the branch of 8 and p on which I. Substituting

(3.1) (3.3) in the equations (2.19) (2.24) and invoking the relations (2.33),

(2.34) for O and y we have:

e[2ekh + 2e-kh + 5(1 + 82)]
iRTk3yoy
pco2(a + i)

0

(i- 2ie- L)ekh e-kh(l- 2ie + L) 5(2ie8 + L) 0

ekh e-kh + 8+M 0

,++5-=o

(i + 2e) (i + 2e) 28e DN 0

1 8
2

( ) + B(+ ) + 5(-+ S) + .N 0

Rek3YoY
where, L F + o In(l + I__)

2 a
(3.4)

ilc p ya
M-

o (3 5)
Yok (a + 1) 2

i (3.6)N l+n--
Eliminating the 6 unknowns , etc. from the above 6 equations we get the deter-

minant (with some rows interchanged),

1 1 1 0 -i 0

i + 2e -(i+2e) -2e8 0 -DN 0

1 1 8
2- ) (+ ) (-+ 8) o aN 0

kh -kh
e -e 0 8 0

2ee
kh 2ee

-kh e( 1+82 0

-kh(ekh(l-2ie-L) -e l-2ie+L) 0 -(2ieS+L) 0

Expanding it in powers of eI/2, we have,

M

-iRSYoYk3
2p (a+l)

0

(3,7)
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3/2 i 2iT i
L[ i+NDT) + /[ (I-iNDT) + e(iND+N+ + e (2iNT-:NDT +--D + :)]

i__(iT + ND) + (iND T) e(iT DN + TN +
7T iND)

9r{e312 2iN ND +
6i 9
q 2

--iT+ NDT) + [L{’(I- iNDT) + (i- iNDT)

1 7i NDT
+ --(-T + iND) + (2DN iN

2rl 2D

3/2 9N 43" T iNDT.

+ e(3iNT 2NDT + i__)5

7iT ND
+ {imm T) + (iDm T) + (- TND + TiN +--_

3/2.129 T iDNT 5NT DiN 2
+ e(5ND-2iN + iT_ __2i) + e ---- + + + ---)] +0(e 0

n 2 --- (3.8)

where (3.9)
pco2M(a +i)

and T tanh(kh).

The equation (3.8) together with (2.14) yields the dispersion relation giving

the frequency of the propogating wave as a function of the physical parameters.

In order to find its antecedent, we set e M 0 in the above equation. Denoting

by in this case, we have,o

(gk + o ){i + T(D + i)} m2 (iT + D + i).
p n o n

Using it in the dimensional variables from (2.14) and separating the resulting

eqiation into the real and the imaginary parts, we get

k3g
2 o(gk + )tanh kh (3.10)
o

and

k3g
2 o tanh kh + n

m (gk +)(io p +ntanh kh
(3.11)

giving us the two possible modes of vibration. This result was established by Puri

in an earlier paper [9].
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Also if we set 0, the equation (3.8) reduces to its analogue in (I).

4. DISCUSSION OF THE SOLUTION.

The principal objective is to study the damping characteristics of the wave

form exp(iet’ ikx’) as it evolves from an initially assumed form

exp(ieot’- ikx’), where eo is given by (3.10). If e eo + el’ e << o’ then

the condition that the wave will be damped out is Im e
I

> 0. To find el, on the

other hand, we invoke the equation (3.8) subject to (2.14) and obtain

and

+ P(

el 2Q( I-T2) 1 T
2

).} +__[P/l_ {2(NI iT) +
2PQ(I-T2)

e D N D 2N D NDo nv oo oo oo ooo

P (2OT. i 2. 2iQ
N N D

o o o o o

2T 2 i+ 2iT 2i + ----) + ,,T + ,, D
o o o o

i 2
+ /o{P(2Q + -)((2 T

i(l T2) 7i(i T2) iT
D 2NN D + N "D
o o o o o

(2- T2) (i- T 2) (i- T2)+N 2nN D 2N D
o o o o o

+ 4
2i 14i 2iT T+D 2N D N D
O O O O O

2iT + N--)}
o o

p[/(l- T2)
+
(i- T2) + l(i- % )] +r nN D ND N

o o o o
o o o

i(l T2)
nN D

o o

i(l- T 2) 7i(i- T 2)[P{(2- T2)
D 2qN D
o o o

iT
+
(i- T2)

+N D N D
O O O O

+ e [P(3T +
iT 3iT iT

2
T
2

o -- + nN J" + N D + i(l +
o o o o o

(i T 2)
+
(3- 7T2)

+ 4iT] +0(3/2)
D qN D q
o o o

where M
o

3/2
i cV’Y

o o %oa

ko (a + i)

(4.1)

(4.2)

P

3
iReYoYk

2M (a+l)
o o

(4.3)
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312i cry
Q I- o o (4.4)

4kYoqo

The quantities with the subscript 0 are the same as their unsubscripted alanogues,

scaled to the initial frequency e
o

For a bed of sand, the permeability K’ 0(i0-6)cm2. We assume that the

kinematic viscosity is 0(10-2)cm2/sec and the water density 0 is 1 gm/cm
3

so that

D’ 0(104). Also, for water e 0(i), and, therefore, q 0(103). The porosity

n may be taken to be .35 so that n N 0(i).
o

The values of the various surface activity parameters can vary vastly by

several orders of magnitudes, depending upon the particular solute. The parameters

P, Q, besides, depend upon k and e The numerical data used here is taken from
o

the afore-mentioned work of Tempel and Riet. We shall denote it by DATA. It

-12 -5
varying between, l0 to i0 F betweenconsists, in appropriate units, of co,

i0
-I0 and 10

-9
and a’ between i0

-I0
to 10-6. The frequency e is calculated from the

o

equation (3.10), for a depth h of 5 to 20 cms and a range of wave lengths varying

from .5 to 6 cms at intervals of .5 cms. (The results mentioned below are for

h 5 cms only).

It turns out that for a’ 0(10-6 to 0(i0-5) cm2, F’ 0(i0-I0) to 0(10-9

and c 10
-9

to 10
-8

moles/cm
3

o Yo varies from 0(i0 13) to 0(I0 -II) moles/cm
2
and

P assumes a value between 0(10-2 to 0(10-1). This holds for the full range of

-i
12 wave lengths mentioned above. In this case, that is, taking P 0(i0 ), the

expression for the damping of el, simplifies considerably and becomes:

eo 2 3/2 T
2e

I --[iP(2 T + i (i- 1] (4.5)
o

whence from we can easily calculate,

o
T
2

Im e
I

[8(2 + vr (i- T2)/]
o

(4.6)
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kr2Rec (a’ + kr ’)
O o ( 7)where 8 2a’ (a’)2 + (a’ + kF ,)2Po o o

which shows that even a small amount of surface adsorption, that is, of the order

-130(i0 can produce damping which is comparable to the viscous damping in the

order of magnitude. The permeability in this case, however, is completely in-

effective as a dissipative mechanism.

As mentioned in (I), there are situations in which the damping due to per-

colation may not be negligible. The wave motion in shallow water, for example,

may markedly reduce the size of D due to the upward flow of water. Also the

drainage of the water table due to the outgoing tide could increase the porosity

significantly. (These cases are discussed by Murray [i0, ii]. As a result, K’ may

be 0(15-4 or 0(10-3 so that D’ 0(102 or 0(i0) and D 0(D’).

Under these conditions, the equation (3.8), up to the first order, becomes:

Num
e_+/- e , where (4.8)

iP (i- T
2 i-i/2(i- T2)

+
/-{ +(2- T2)]Num -kNoDo + NoDo -- o

i312(1 T2) 1+
2T DN D +e)o

O O

(4.9)

DEN P
/ + (4.10)

n n o
0

As before, the quantity P in (4.9) and (4.10) is taken to be 0(i0-i). Following

the usual procedure, it can be shown that Im eI > 0, thus leading to the decay

of the wave. The table I below compares the values of ImeI
based on the equa-

tions (4.6) and (4.8). It is easy to see the roll of the permeability. The in-

teresting feature of the result (4.8) is that the contributions to the damping due

to the presence of the three factors, viz., surface adsorption, viscosity and the
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permeability are not just additive but are also interactive. On the other hand,

-19
the full range of values of DATA poduces P as low as 0(i0 ). Obviously then

the first four terms in (4.9) and the first term in (4.10) are irrelevant and

therefore get discarded. The damping then is uneffected by the surface activity.

This conclusion agrees with that of Miles [6].

A matter of interest in these problems is to study the variation of Im e
1

as a function of the bulk concentration, c This study was carried out on the
O

bases of the complete equation (4.1) and the full range of DATA values. Table II

lists the main results. It shows that the damping increases with c until a
O

certain maximum is reached; thereafter, the damping actually decreases. This

agrees with the available theoretical studies of Tempel and Riet, and the experi-

mental findings of Davies and Vose,

Table I: Variations of Im(I) with and without Porosity

Wave length (cm) i0 Im(00I) based on

equation 4.6 equation 4.8

.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

2.10457

0.827192

0.516942

0. 388364

0. 319839

0.277370

0. 248289

0.226939

0.210458

0.197251

0.186364

0.177195

3.07999

i. 32250

0.880049

0.691694

0.586376

0.515857

0.462615

0.419288

0.382454

0.350370

0.322064

0.296936
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