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ABSTRACT. Two Sturmian theorems are established for second order linear

nonhomogeneous systems of two differential equations wlth the ule of a mImum

principle. The results also hold for homogeneous systems. For illultratlon, an

example is given.
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i. INTRODUCTION.

Sturmlan theorems for second order linear homogeneous systems of n dlf-

ferential equations with coefficient matrices having nonnegatIV off-dlagonal

elements were given by Ahmad and Lazer [2] with the use of an extremal character-

ization of the smallest positive eigenvalue. The main purpose here is to establish

two Sturmian theorems for second order linear nonhomogeneous systems of two
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differential equations by using a maximum principle. The results also hold for

homogeneous systems. The method used is different from the above-mentloned paper,

and we do not require all the off-dlagonal elements of the coefficient matrices

to be nonnegative; furthermore, we allow the systems to involve first order

derivative terms.

Using a maximum principle for a scalar equation, we give some sufficient con-

ditions for one component of a solution of a nonhomogeneous system to be greater

than or equal to the other. In particular, Theorems i and 4 are useful towards

the hypotheses concerning the inequalities of the components of the solutions in

the two Sturmian results. As an illustration, an example is given. With the use

of a maximum principle for a linear system, two Sturmian theorems for nonhomo-

geneous systems are establ.ished. As an illustration, another example is given.

2. Comparison theorems. Let us consider the nonhomogeneous system

2

Lu. + [ hij(x)uj fi(x), i i, 2,
i

j=l
(2.1)

where Lui _= u"i + g(x)u’i, u (ul(x), u2(x)) is a real 2-vector solution, and the

coefficients g and hij are bounded. Such type of systems with g 0 and f
l

0

represents the motion of a particle of unit mass subject to horizontal and vertical

forces in the (Ul,U2)-plane with x denoting the time.

The next four comparison results give us some sufficient conditions for one

component of a solution of a boundary value problem involving (2.1) to be greater

than or equal to the other component.

THEOREM 1. Let the boundary conditions for the system (2.1) be

ui(a) r, ui(b) s, i i, 2, (2.2)
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where r and s are given constants. If fl -> f2’

hll h21

2

(hlj- h2j) <- 0,
j--i

them every solution u with u2
> 0 for a < x < b satisfies the inequality

uI
< u

2
for a < x < b.

PROOF. Let v -= u. u2. Since fi f2’
2

Lv +

_
(hlj h2j)u4>j 0 for a < x < b.

j=l

(2.4)

It follows from (2.4) and u2> 0 that

(L + hll h21)v >0 for a < x < b.

At the end-points a and b, v=0. If v > 0 at some interior point of the interval

[a, b] then it attains its positive maximum M at some point in the interior of

the interval. By the strong maximum principle (cf. Protter and Weinberger [3,

p. 6 ]) for a scalar equation and the continuity of v, we have v M for

a < x < b. This contradicts v=0 at the end-points a and b. Thus

uI
< u

2
for a < x < b.

An argument analogous to the above proof of Theorem i gives the following result.

THEOREM 2. If fl < f2’ (2.3) and (2.4) hold, then every solution of the

Boundary value problem (2.1) and (2.2) with u
2

< 0 for a < x < b satisfies the

inequality u
I

> u
2

for a < x < b.
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h22,Remark I If h12 < and (2 3) holds then we have (2.4).

To illustrate the above theorems, let us consider the following example.

EXAMPLE i. Let the boundary value problem for u be given by

u + u2/2 0 for 0 e x < , (2.5)

+ u
2

0 for 0"< x < ,u
2

(2.6)

ui(0) 0 ui(), i 1,2. (2.7)

Solving (2.6) and (2.7), we have u
2

2p sin x, where p is an arbitrary constant.

If p 0, then the hypotheses of Theorem i are satisfied, and hence for

0 < x < , uI <- u2. If p < 0, then the hypotheses of Theorem 2 are satisfied, and

hence for 0 < x < , uI
> u2. In fact, with u

2
2psinx, it follows from (2.5)

and (2.7) that uI psinx.

A proof similar to that of THeorem I gives the following two comparison re-

sults.

THEOREM 3. If fl > f2,(2.3) holds, and

2. (hlj >0h2j (2.8)

then every solution of the boundary value problem (2.1) and (2.2) with u
2

< 0 for

a < x < b satisfies the inequality uI
< u

2
for a < x < b.

< f ,(2 3) and (2 8) hold then every solution of the boun-THEOREM 4. If fl 2

dary value problem (2.1) and (2.2) with u
2 - 0 for a < x < b satisfies the in-

equality uI >- u
2

for a x < b.

In particular, Theorem 4 gives a criterion for one nonnegative component of a

solution to be less than or equal to the other component. This criterion may be

used when such inequalities of components are made in the hypotheses of Theorems 5

and 6. In establishing the Sturmian theorems, we need the following strong maxi-

mum principle, which follows from the corresponding result for a coupled elliptic
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system (f. Protter and Weinberger [3,p. 192]).
2

LEMMA i. If
Lu. + . ci’3(x)u" >- 0 for a < x < b, i i, 2,

j=l

where the coefficients c.. are bounded on the interval a < x < b,
2

< 0cij. -> 0 for i j and j=l cl-"J (2.9)

< M at x a and x b for i=l, 2and if M is a nonnegative constant such that ul
then u. -< M in the interval a <’x < b.

Remark 2. Condition (2.9) implies that c.. < 0.
iI

Let

2

+ [ Hij(x)Uj Fi(x), i i, 2,LUi
j=l

(2.10)

where the coefficients H.. are bounded and F. < 0. Let us consider ontrivial

nonnegative solutions of (2.1) and (2.10) respectively. These correspond

respectively to trajectories lying in the first quadrant of the (uI u2)-plane
and (U

1 U2)-plane (cf. Cheng [I]). We shall also need the following condition;

(I) there does not exist an interval where u vanishes identically.

The following result gives a Sturmian theorem for u satisfying (2.1) and U

satisfying (2.10) respectively.

THEOREM 5. If fi -> 0, hij < H..m3 for i, j i, 2, HI2 -> 0, and one of the

> 0 and h
2

< 0 holds then between any two consecutive zerostwo conditions h21 1

of U satisfying (2.10) such that 0 < U
I

-< U
2
between the zeros, there exists at

most one zero of any solution u of (2.1) satisfying u
I

> u
2

> 0 and condition (I).

PROOF. Between two consecutive zeros of U satisfying (2.10), let

ui/Ui’w
i

i i, 2. Then w
I

> w
2

> 0, and (2.1) gives

22Ul I
Lw + w’ + Uj(hiji u. i -i j--1

Hijwi)] > 0. (2.11)
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For i i, the last term of the left-hand side of (2.11) is given by

(hll- Hll)Wl + [(h12 H12)w2 + Hl2(W2 Wl)]U2/UI < (hll Hll)Wl

< and > 0 For i 2, it follows from wI
> w

2
> 0,since wI

> w2
> 0, h12 HI2, HI2

h21 -< HZI, and U
1

-< U
2

that the last term of the left-hand side of (2.11) is

given by

[h21(wI w2) + (h21 H21)w2]UI/U2 + (h22 H22)w2

h21wI + (h22- H22 h21)w2 if h21
_<

t(h22 H22)w2 if h21 <- 0.

Thus (2.11) gives rise to the following system

>-0

LwI + ...U1. w + (hll Hll)W1 e 0,

2u
Lw2

+
U2

w
2
+ h21wl + (h22 H22 h21)w2 e 0 if h e 0

21

2U 0Lw2 +
U2

w
2 + (h22 H22)w2 e 0 if h21

(2.12)

(2.13)

(2.14)

If between tWo consecutive zeros of U, u has two zeros, then

w (Wl(X), w2(x)) also has. Since w determined by (2.12) and (2.13), or by (2.12)

and (2.14) satisfies the hypotheses of Lemma i, it follows that w 0 between

these points. This in turn implies that u -< 0 between its two zeros, and we have

a contradiction since u is nonnegative and satisfies condition (I). Thus

between any two consecutive zeros of U, there exists at most one zero of u.

Let us construct an example to illustrate Theorems5.

EXAMPLE 2. Let U be the solution of the boundary value problem (2.5),
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(2.6) and (2.7) given in Example 1 with p > 0. Then 0 < U
1

< U
2

forO < x

Let us consider nontrivial nonnegative solutions u of the following problem

u’ + u2/2 0 for 0 < x, (2.15)

+ u2/4 0 for 0 < x,u
2

(2.16)

uI(0) 0 u2(0). (2.17)

Solving (2.16) and (2.17), we obtain u
2

qsin(x/2), where q is an arbitrary non-

negative constant. Using this, we obtain from (2.15) and (2.17) that

uI 2qsin(x/2) + kx,

where k is an arbitrary nonnegative constant. The hypotheses of Theorem 5 are

satisfied with h21 0. It follows that there exists at most one zero of u in

the interval 0 < x < . In fact, we see explicitly that the nontrivial non-

negative solutions u determined above do not have a zero in the interval

0 < x < w.

Another Sturmian theorem is as follows.

THEOREM 6. If f -> 0 for i I, 2, h12 < > 0, h
2

> H
2

<
i HI2 HI2 i i’ hll HII

2

[ (h2j H2j) -< 0, and one of the two conditions h21 >- 0 and h21
j=l

< 0 holds,

then between any two consecutive zeros of U satisfying (2.10) such that

0 < UI
< U

2
between the zeros, there exists at most one zero of any solution u

of (2.1) satisfying u
I

> u
2

_> 0 and condition (I).

PROOF. From (2.11), we obtain the following system (2.12) and
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> 0Lw2 +
U2

w
2 + h21wI + (h22- H22 H21)w2 >- 0 if h21

2U 2

Lw
2
+ w + (hmj >- 0 if h

2
j=l

H2j )w2 i

The theorem follows from an argument similar to that in the proof of Theorem 5.

Remark 3. If fl > 0, then u need not satisfy condition (I) in Theorems 5

and 6. This is because when fl > 0 then (2.12) becomes a strict inequality,

and wI cannot be identically zero on an interval. Hence in the proofs of

Theorems 5 and 6, w < 0 between the two zeros of u implies that wI
< 0 some-

where there. This in turn gives uI < 0 somewhere between the two zeros of u, and

we have the desired contradiction since u is nonnegative.
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