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(Yn+l 2Y + Yn-i
ABSTRACT. For the difference equation

n
f(Y

h2 n

sufficient conditions are shown such that for a given Y0 there is either a

unique value of Y1 for which the sequence Yn strictly monotonically approaches

a constant as n approaches infinity or a continuum interval of such values.

It has been shown previously that the first alternative is related to the

existence of a Peierls barrier energy in the dislocation model of Frenkel and

Kontorova.
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I. INTRODUCTION.

In this paper we discuss the conditions for the existence and uniqueness
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of the solution to the nonlinear difference equation

Y 2Y +Y
n+l n n-i

h2
f (Y) (i.I)

n

introduced in 3 of Hobart (1965). As stated there, the boundary

conditions are

n _> 0 (i. 2a)

0

_
Y! < (l.2b)

sm
Y ; as n / (s.m. strictly (i. 2c)
n

monotonically

The function f is odd, twice differentiable, negative on the interval

0 < Y < and zero at the ends of this interval. We assume also that

f has been standardized according to 3 of Hobart (1965). This

assumption gives us reason not to incorporate h2 in f.

2. DEFINITIONS.

Consider first the difference equation (i.i) together with the

conditions (l.2a) and (l.2b) only For a given Y0 we can choose

arbitrarily a value of 0 _< Y! < and then, step by step calculate

Y Only three cases occur
n

Y0 < Y1 < < YN -< < YN+I (2.1a)

Y0 < Y1 < < Y > Y with Y < ,
n n+l n

or Yo >- Y1

Y0 <<Y < < Y < < <
n Yn+l

(2.1b)

(2.1c)
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We shall call a value of Y1 for which (2.1a) [(2.1b) or (2.1c)]

holds, a "large" ["small" or "correct"] Y1" Furthermore a "too

large" ["too small"] YI is a large [small] Y! for which any larger

[smaller] Y1 is large [small].

We notice that the Y’s corresponding to a correct Y1 form a
n

strictly monotonically increasing sequence bounded by Thus the

Y’s have a limit as n approaches infinity. The limit E mustn

satisfy 24 + Z h2 f(%) or f(E) 0 for which, according to

the restrictions stated in the introduction, the only suitable root is

3. THEOREM I.

If Y 2Y + Y h2 f(Y
n+l n n-I n

d2 f (Y)
f (Y) exists,

dy 2

Y0 is constant,

1 + h2 (Y) > 0

4 _< n _< m implies 0 < Yn-2 < Yn-i < and

f(Y) > 0 on 0 < Y <

then
dY

> 0 for each 2 _< n

_
m.

dY
n-I

dY
PROOF. We first show ----n--n > 0 for n _- 2 and n 3

dY
n-i
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dY2

dY
2 + h2 (YI > 1 > 0 (3.1)

and
dY dY

h (3.2)

so

and

dY
3

-----> i + h2 (Y2) > 0.
dY

2

dY dYn 2nNow we show --------> 0 for 4 _< n _< m assuming --------> 0
dYn_1 dYn_3

dYn_1 > 0
dY

n-2

(3.3)

dY dYn_2n : 2 + h2 (Y
dY dY n-i

n-I n-i

dY
Thus > 0 if

dY
n-i

(3.4)

Since

h 2 (Yn_l > 2 +

dYn_1 > 0 has been assumeddY
n-2

(2
dYn_3
dY

n-2
+ h2 (Yn_2)

(3.5)

dYn-3
dY

< 2 + h2 (Y
n-2n-2

< Yn-i and f (Y) > 0 onBut 4 < n <_ m so 0 < Yn-2
0 < Y < Y< .

n-2

Thus (Yn-2) < f ()

resulting in dY-- < 2+h
n-2

(3.6)

(3.7)

(3.8)
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And also (Yn-2) < f (Yn-I)

Using (3.8) and (3.9)we can modify (3.5) to
dY

dYn_1
> 0

if h2 (Yn_2 >-2 + i

(h2 { (Yn-2

Noting (3.7) we obtain
dY

> 0 if

[ha (Yn_2)] a + (2 h a (7)) [ha (Yn_2)
(I + 2h2 ()) < 0

The two roots of this polynomial in ha (Yn_2 are such that

r_ <- 2 and ha () < r+. With (3.7) we obtain

r_ < ha (Yn_2) < r+

(3.9)

(3 .i0)

(3.11)

(3.12)

on which range the polynomial is negative so (3.11) is satisfied.
dYn

Thus > 0 for each 2 _< n _< m.
dYn_1

4. THEOREM II.

Under the assumptions of Theorem I and the additional assumption

that f(Y) < 0 on 0 < Y < , we show that large implies too large

and small implies too small.

PROOF. Assume a constant value for Y0 and an initial value

L
of YI YI that is large. This means there is an N such that Y0

and I through Yn+l 2Yn + Yn-I h f (Yn) give

Y0 < YIL < < YLN -< < YLN+I By Theorem I (with m N + i) if

Y! is increased, YN+I must also increase until YN By
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Theorem I (with m = N) if Y is further increased, now YN must

W Since N is finite, repetition ofalso increase until YN-I
this process can be continued giving finally that Y2 must also

increase until Y! During each step Yl is large. Thus if

L L
Yl Y! is large, all Y1 > Y! are large.

S
Assume a constant valu for Y0 and an initial value of YI Y!

*that is small. Now suppose there is a smaller Y! Y1 that is either

*large or correct. If Yl were large, this would contradict the argu-

*ment that large implies too large. If YI were correct, we would also

S
have a contradiction. Since YI is small, there is an M such that

S yS S
Y0 < YI < <

n Yn+l with 0 S Yn < x (If Y <_ Y0 that

small implies too small is trivial). The assumptions that f(Y) < 0

on 0 < Y < and Yn+l 2Y + Y h2 f(Yn give that there must
n n-i S

be a first yS < 0 for some 0 < p < M + 1 + {_
Yn } with no

S ,yS >_ for 0 < n < p. If below Y1 there were a correct YIn

then by Theorem I (valid for all n if Y1 is correct and for all

n to and including N + 1 if Y1 is large) as Y! is increased

from Y either all Y’s increase or at least one Y > with non n

prior Y < 0 (n 0). For neither case can such a YI be small.
n

There is a contradiction in assuming a correct YI below a small

S S
YI. Thus if Y! = Y1 is small, all YI < Y! are small.

5. ALGORITHM.

If f(Y) < 0 on 0 < Y < and zero for the end points, and if

the assumptions of Theorem I are satisfied, we can by the algorithm

described in 2 of the paper by Hobart (1965) construct a correct

value of YI for a given Y0 This involves choosing an interval

bounded above by a large YI and below by a small Y! (initially
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0 < ! < ) testing the midpoint for large or small, retaining the

(half) interval bounded as the original, and repeating the process on

this interval.

If the midpoint is at no step correct, this process leads to a

unique limit point which we shall now argue must be a correct point

and the only correct point. Certainly there are no correct points to

be found on the discarded intervals for if the midpoint is large

[small], the discarded interval contains only points which are large

[small]. Since f is differentiable, it is continuous. Thus all

points in an infinitesimal neighbourhood of a large [small] point must

be large [small]. But the limit point has in its neighbourhood both

large and small points, so it must therefore be a correct point and

the only correct point.

If the midpoint is at some step a correct point, either it is the

only correct point or there is a continuous interval of correct points.

Two correct points cannot be separated by a large [small] point since

above [below] a large [small] point there can be only large [small]

points. A test can be made which distinguishes between an isolated

correct point and a continuum interval of correct points: If a

C
midpoint Yl Yl is correct, apply the algorithm described above

C Cseparately to the intervals Y! < Y < and 0 < Y! < Yl If at

Cno step for either the midpoint is correct, then Y is unique. If

the midpoint for either is at some step correct, then there is a

continuum interval.

6. THEOREM III.

Unless the result of the algorithm is a continuous interval of

correct values of Y1 it defines a unique Y1 g(Y0 for each Y0
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on 0 _< Y0 < since it is easily verified that YI is large and

Y 0 is small. For application to the Frenkel-Kontorova model, we

need the domain extended. Define 8 g(0) and note that necessarily

8 < . We now extend the domain of definition g to include

-8 < Y0 < 0 by showing that for Y0 in this domain Yl = 0 is small.

Relabel Yn+l = Y If Yl 8 is the unique correct Y! for
n

Y0 0, then all 0 < YI < 8 are small for Y0 0. Noting that

f (YI) 0 so that Y2 = -Y0 it follows that Y1 0 is small for

each 0 > Y0 > -8.

THEOREM III. If the assumptions of Theorem I and the additional

assumptions that f(Y) < 0 on 0 < Y < and f(Y) 0 for Y 0

or Y are satisfied, then either for each 0 <_ Y0 < there is

one and only one correct Y g(Y0) and for each -g(0) < Y0 < 0

there is one and only one correct Yl g(Yo) or for some- < Y < there is a continuous interval of correct values of Y

7. APPLICATION.

Assuming the function f is odd and that for the function f

chosen there is no continuum of correct YI values, we can use the

function g to define the path of configurations connecting II with I

in the Frenkel-Kontorova (1938) model as generalized in Hobart (1965).

For a given -g(0) < Y0 < g(0), Y1 is chosen so that Y ...s.m.
n

as n / , that is YI g(Y0 and Y_I is chosen so that

y s.m.__r as n / ,
n

that is Y_! -g(-Y0). The difference

equation (i.I) is satisfied for all n except zero for which

(y0) f(y0
g(Y0) 2Y0 g(-Y0)

h2
C7.1)
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is the nonzero external force only on the zeroth atom which is

necessary to hold static a general intermediate configuration. The

configurations I and II are given by the conditions that Y0 Y 0

II I) 0 respectively. The connecting path isand Y0 Y0 -g(Y <

II < Y0
I

given by Y0 Y0" The barrier energy is

I

V(I) V(II) J () d
II

(7.2)
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