A COVERING THEOREM FOR ODD TYPICALLY-REAL FUNCTIONS

E.P. MERKES
Department of Mathematical Sciences
University of Cincinnati
Cincinnati, Ohio 45221 U.S.A.

(Received July 20, 1979)

ABSTRACT. An analytic function $f(z)=z+a_{2} z^{2}+\ldots$ in $|z|<1$ is typically-real if $\operatorname{Im} f(z) \operatorname{Im} z \geq 0$. The largest domain G in which each odd typically-real function is univalent (one-to-one) and the domain $\cap \mathrm{f}(\mathrm{G})$ for all odd typically real functions f are obtained.

KEY WORDS AND PHRASES. Typically-real functions, domain of univalence, covering theorems.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 30 C 25.

1. INTRODUCTION.

An analytic function $f(z)=z+a_{2} z^{2}+\ldots$ in the unit disk $E(|z|<1)$ is in the class T of typically-real functions if and only if there exists a nondecreasing function γ on $[0, \pi]$ such that $\gamma(\pi)=1, \gamma(0)=0$, and

$$
\begin{equation*}
f(z)=\int_{0}^{\pi} \frac{z d \gamma(t)}{1-2 z \cos t+z^{2}} \tag{1.1}
\end{equation*}
$$

[1]. The function γ when normalized on $(0, \pi)$ by $\gamma(t)=(\gamma(t+)+\gamma(t-)) / 2$ is uniquely determined by f.

The domain of univalence of the class T is known [2] to be

$$
\begin{equation*}
G=\{z:|z-i|<\sqrt{2}\} \cap\{z:|z+i|<\sqrt{2}\} . \tag{1.2}
\end{equation*}
$$

Brannon and Kirwan [3] proved that the largest domain contained in $f(G)$ for every function in T is $|w|<1 / 4$.

In this paper we obtain the corresponding results for the class T_{0} of odd typically-real functions. Recently Goodman [4] determined the largest domain that is contained in $f(E)$ for every $f \varepsilon T$. The analog of this result for the class T_{0} is an open problem.
2. The domain of univalence of T_{0}

THEOREM 2.1. The domain of univalence for T_{0} is the domain G of (1.2).
PROOF. Since $T_{0} \subset T$, each $f \varepsilon T_{0}$ is univalent in G. The theorem is established, therefore, if we can show that there is a function $f \varepsilon T_{0}$ that is not univalent in any domain D that properly contains G. Let $f(z)=$ $z\left(1+z^{2}\right) /\left(1-z^{2}\right)^{2}=\frac{1}{2} z /(1-z)^{2}+\frac{1}{2} z /(1+z)^{2}$. This function is clearly in T_{0} since T is a linear class. The function

$$
\begin{equation*}
\zeta=\frac{2 z}{1+z^{2}} \tag{2.1}
\end{equation*}
$$

maps G onto $|\zeta|<1$. By the change of variables (2.1), the function f has the form

$$
\begin{aligned}
f(z) & =\frac{1}{2} z /\left(1-2 z+z^{2}\right)+\frac{1}{2} z /\left(1+2 z+z^{2}\right) \\
& =\frac{1}{4} \zeta /(1-\zeta)+\frac{1}{4} \zeta /(1+\zeta)=\frac{1}{2} \zeta /\left(1-\zeta^{2}\right) .
\end{aligned}
$$

Since $\zeta /\left(1-\zeta^{2}\right)$ is not univalent in any domain that properly contains $|\zeta|<1$, we conclude that f is not univalent in any domain that properly contains G.
3. A covering theorem for T_{0}

THEOREM 3.1. The largest domain U contained in $f(G)$ for every $f \varepsilon T_{0}$ is the domain that includes the origin, is bounded in the right half-plane by $w=\rho e^{i \theta}$,
where

$$
\rho=\left\{\begin{array}{ll}
(\cos \theta) / 2 & , 0 \leq|\theta| \leq \pi / 4, \\
1 /(4|\sin \theta|) & , \quad \pi / 4<|\theta| \leq \pi / 2,
\end{array}\right\}
$$

and is symmetric relative to the imaginary axis.
PROOF. By, (1.1) we have

$$
-f(-z)=\int_{0}^{\pi} \frac{z d \gamma(t)}{1+2 z \cos t+z^{2}}=\int_{0}^{\pi} \frac{z d[1-\gamma(\pi-\tau)]}{1-2 z \cos \tau+z^{2}} .
$$

If $f(z)=-f(-z)$, then by the uniqueness of γ we have $\gamma(t)=1-\gamma(\pi-t)$ for $t \varepsilon[0, \pi]$. In particular, $\gamma(\pi / 2)=1 / 2$. For $f \varepsilon T_{0}$, therefore,

$$
\begin{aligned}
f(z) & =\int_{0}^{\pi / 2} \frac{z d \gamma(t)}{1-2 z \cos t+z^{2}}+\int_{\pi / 2}^{\pi} \frac{z d \gamma(t)}{1-2 z \cos t+z^{2}} \\
& =\int_{0}^{\pi / 2} \frac{z d \gamma(t)}{1-2 z \cos t+z^{2}}+\int_{\pi / 2}^{0} \frac{z d \gamma(\pi-t)}{1-2 z \cos (\pi-t)+z^{2}} \\
& =\int_{0}^{\pi / 2}\left[\frac{z}{1-2 z \cos t+z^{2}}+\frac{z}{1+2 z \cos t+z^{2}}\right] d \gamma(t) .
\end{aligned}
$$

By the change of variables (2.1), we obtain

$$
\begin{equation*}
f(z)=\int_{0}^{\pi / 2} \frac{\zeta d \gamma(t)}{1-\zeta^{2} \cos ^{2} t}, \gamma(\pi / 2)=1 / 2, \gamma(0)=0 \tag{3.1}
\end{equation*}
$$

Let $z \varepsilon \partial G$. By (2.1) we have that the corresponding ζ is on the unit circle $|\zeta|=1$. For fixed $\zeta=e^{i \theta},-\pi<\theta \leq \pi$, the function $2 f(z)$ is by (3.1) in the closed convex hull H of the circular $\operatorname{arc} w(s)=e^{i \theta} /\left(1-s e^{2 i \theta}\right)$, $s \varepsilon[0,1]$. For each $\lambda, 0 \leq \lambda \leq 1$, the point $\lambda e^{i \theta}+(1-\lambda) i / \sin \theta$ is on the linear portion of H. Let $D(\lambda)$ denote the square of the distance from such a point to the origin. If $\theta \neq 0, \pi$, we have

$$
D(\lambda)=\left|\lambda e^{i \theta}+\frac{1}{2}(1-\lambda) i / \sin \theta\right|^{2}=1+\left(1-\lambda^{2}\right) /\left(4 \sin ^{2} \theta\right)
$$

This function of λ has a minimum at $\lambda=1-2 \sin ^{2} \theta$ and $0 \leq \lambda \leq 1$ provided $|\sin \theta| \leq \sqrt{2} / 2$. Thus, the distance from any point of H to the origin is not less than $\left[D\left(1-\sin ^{2} \theta\right)\right]^{\frac{1}{2}}=|\cos \theta|$ when $0<|\theta| \leq \pi / 4$ or $3 \pi / 4 \leq|\theta|<\pi$. For other $\theta \varepsilon(-\pi, \pi]$ the distance from any point of H to the origin is $\min \{1,1 /(2|\sin \theta|)\}=1 /(2|\sin \theta|)$ for $\pi / 4<|\theta|<3 \pi / 4$ and 1 for $\theta=0$ or π. Since the convex hull H contains for each $z \varepsilon \partial G$ the values of $2 f(z)$ for all $f \varepsilon T_{0}$ and since every point of H is the value of $2 f(z)$ for some $f \varepsilon T_{0}$, we conclude that U is the exact domain covered by all $f \varepsilon T_{0}$ when $z \varepsilon G$.

REFERENCES

1. Robertson, M. S., On the coefficients of a typically-real function, Bull. Amer. Math. Soc., 41 (1935), 565-572.
2. Merkes, E. P., On typically-real functions in a cut plane, Proc. Amer. Math. Soc., 10 (1959), 863-868.
3. Brannan, D. A. and Kirwan, W. E., A covering theorem for typically-real functions, Glasgow Math. J., 10 (1969), 153-155.
4. Goodman, A. W., The domain covered by a typically-real function, Proc. Amer. Math. Soc., 64 (1977), 233-237.
