Internat. J. Math. & Math. Sci. Vol. 3 No. 1 (1980) 15-28

ON BLOCK IRREDUCIBLE FORMS OVER EUCLIDEAN DOMAINS

W. EDWIN CLARK and J.J. LIANG

Department of Mathematics University of South Florida Tampa, Florida 33620 U.S.A.

(Received December 11, 1978)

<u>ABSTRACT</u>. In this paper a general canonical form for elements in a ring Euclidean with respect to a real valuation is established. It is also shown that this form is unique and minimal thus gives the arithmetical weight of an element with respect to a radix.

<u>KEY WORDS AND PHRASES</u>. Euclidean Domains, Canonical Forms, Arithmetical Coding. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 94A10.

1. INTRODUCTION.

In this paper we shall establish a general canonical form for elements in a ring Euclidean with respect to a real valuation. We show this form is unique and minimal and thus gives us the arithmetical weight of an element with respect to a radix r.

Throughout R will denote a commutative ring Euclidean for a real valuation v satisfying:

(i) v(R) is well-ordered by the usual ordering of the real numbers.

(ii) for a, $b \neq 0$ in R, there exists q, r in R such that a = bq + rand v(r) < v(b).

For completeness we recall that an element r of R is called a radix (or a base) for R if every element a of R can be represented as a finite sum of the form

$$a = \sum_{i} a_{i} r^{i} \quad \text{where } v(a_{i}) < v(r) \quad (1.1)$$

and we call such a representation a weak radix-r form (or representation) for a. For convenience we often write $a = (a_{n-1}, \ldots, a_0)$ or $a_{n-1}, \ldots, a_1 a_0$ in lieu of (1.1). The form (1.1) is said to be a minimal weak radix form for a if the number of indices i with $a_i \neq 0$ is minimal. The weight of a relative to the radix-r form is the number of nonzero a_i 's in a minimal weak radix-r form. Some canonical minimal forms were given by Reitwiesner [1] for integers with radix r = 2, Clark and Liang [2], Boyarinov [3], Kabatyanskii [4] for integers with general radis r and Clark and Liang [5] for Gaussian integers with radix $r = \pm 1 \pm i$,

We shall establish here a more general canonical minimal form for radix r of R which we call a block irreducible form.

LEMMA 1. Let r be an element of R such that $v(r) \ge 3$. Then $(a_m, \dots, a_1, a_0) = (b_m, \dots, b_1, b_0)$ if and only if there exists c_0, \dots, c_j, \dots in R such that

$$b_0 = a_0 = c_0 r$$

$$b_j = a_j + c_{j-1} - c_j r, \quad \text{for } 0 < j < m$$

$$b_m = a_m - c_{m-1}$$

and

PROOF. Assume $(a_m, \ldots, a_1, a_0) = (b_m, \ldots, b_1, b_0)$. This implies $a_0 \equiv b_0 \mod r$ hence $b_0 = a_0 - c_0 r$. Now, $c_0 r = a_0 - b_0$ implies $v(c_0) < \frac{v(r) + v(r)}{v(r)} = 2$. Therefore, $(a_m, \ldots, a_1, a_0) = (a_m, \ldots, a_1 + c_0, b_0) = (b_m, \ldots, b_1, b_0)$ which implies $(b_m, \ldots, b_1) = (a_m, \ldots, a_1 + c_0)$. We thus have $b_1 \equiv a_1 + c_0 \mod r$. Again, let $b_1 \equiv a_1 + c_0 - c_1 r$ or $c_1 r \equiv a_1 - b_1 + c_0$. Hence,

$$v(c_1) < \frac{v(r) + v(r) + 2}{v(r)} < 2 + \frac{2}{v(r)} < 3$$

since $v(r) \ge 3$. Now, $(a_m, \dots, a_2, a_1 + c_0) = (a_m, \dots, a_2 + c_1, b_1) = (b_m, \dots, b_2, b_1)$. Therefore, $(a_m, \dots, a_2 + c_1) = (b_m, \dots, b_2)$. As before $a_2 + c_1 - c_2r = b_2$ or $c_2r = a_2 - b_2 + c_1$. We have $v(c_2) < \frac{2v(r) + 3}{v(r)} < 3$. Proceeding in this way we get

$$a_j + c_{j-1} - c_j r = b_j, \quad v(c_j) < 3 \text{ for all } j$$

If $a_j = b_j = 0$, we have $c_{j-1} = 0$ since $c_{j-1} = c_j r$ implies $v(c_{j-1}) > v(r) \ge 3$, a contradiction.

For the converse, we must assume $v(a_i)$ and $v(b_i)$ are both less than v(r).

DEFINITION 0. We call the a_i in (1.1) and in Lemma 1 digits, and the c_i in Lemma 1 carries. Note that if $v(r) \ge 3$ then all carries c_j satisfy $v(c_j) < 3$ thus all carries are digits. However if v(r) < 3 then a carry may not be a digit. To avoid this complication we make the following

ASSUMPTION. Henceforth all carries are assumed to be digits.

DEFINITION 1. The form (a_n, \dots, a_0) is reducible if there exists a form (b_m, \dots, b_0) such that

(1)
$$b_i = 0$$
 for some $i \in \{0, 1, ..., n\}$

and

(2) $(b_m, \dots, b_0) = (a_n, \dots, a_0)$

Otherwise the form (a_n, \ldots, a_0) is called irreducible.

LEMMA 2. The form (a_n, \dots, a_0) is irreducible if and only if

(1) $a_i \neq 0$ for all i = 0, ..., n

and

=

+

(2) there exists no $k \leq n$ such that $(a_k, \ldots, a_1, a_0) = (b_{k+1}, 0, b_{k-1}, \ldots, b_0)$ where (b_{k-1}, \dots, b_0) is irreducible.

PROOF. Let (a_n, \ldots, a_0) be irreducible then clearly (1) holds. If (2) fails then

$$(a_k,\ldots,a_0) = (b_{k+1},0,b_{k-1},\ldots,b_0)$$
 for some $k \leq n$.

If k = n we get a contradiction so we may assume $k + 1 \leq n$. We can write

$$\begin{aligned} a_{n}r^{n} + \dots + a_{k+1}r^{k+1} + b_{k+1}r^{k+1} &= c_{m}r^{m} + \dots + c_{k+1}r^{k+1}. \end{aligned}$$

Therefore, $(a_{n}, \dots, a_{k+1}, a_{k}, \dots, a_{0}) + (a_{n}r^{n} + \dots + a_{k+1}r^{k+1}) + (a_{k}, \dots, a_{0})$

$$\begin{aligned} &= a_{n}r^{n} + \dots + a_{k+1}r^{k+1} + (b_{k+1}, 0, b_{k-1}, \dots, b_{0}) = a_{n}r^{n} + \dots + a_{k+1}r^{k+1} + b_{k+1}r^{k+1} \\ &+ (0, b_{k-1}, \dots, b_{0}) = c_{m}r^{m} + \dots + c_{k+1}r^{k+1} + (0, b_{k-1}, \dots, b_{0}) \\ &= (c_{m}, \dots, c_{k+1}, 0, b_{k-1}, \dots, b_{0}), a \text{ contradiction. Conversely, let } a = (a_{n}, \dots, a_{1}, a_{0}) \\ &\text{satisfy (1) and (2) and being reducible. Then} \end{aligned}$$

$$(a_{n},...,a_{1},a_{0}) = (b_{m},...,b_{j},...,b_{0})$$

where $b_j = 0$ for some j, $0 \le j \le n$ and j being smallest possible. Now

$$b_{0} = a_{0} - c_{0}r$$

$$b_{1} = a_{1} + c_{0} - c_{1}r$$

$$\vdots$$

$$0 = b_{j} = a_{j} + c_{j-1} - c_{j}r$$

$$c_{j} = 0 + c_{j} - 0 \cdot r$$

We have $(a_{j}, a_{j-1}, \dots, a_{0}) = (c_{j}, 0, b_{j-1}, \dots, b_{0})$. By the choice of j, b_{j-1}, \dots, b_{0} must be irreducible otherwise we would have $(c_{j}, 0, b_{j-1}, \dots, b_{0}) = (b_{m}^{t}, \dots, b_{j-1}^{t}, \dots, b_{s}^{t} = 0, \dots, b_{0})$ and we could use this to find a smaller "j". If $(a_{j}, a_{j-1}, \dots, a_{0}) = (b_{m}, \dots, b_{s}, 0, b_{s-2}, \dots, b_{0})$, then we can write $(a_{n}, \dots, a_{0}) = (b_{t}^{t}, \dots, b_{s}^{t}, 0, b_{s-2}, \dots, b_{0})$. By "addition", $(a_{n}, \dots, a_{j+1}, 0, 0, \dots, 0)$ $+ (0, \dots, 0, a_{j}, a_{j-1}, \dots, a_{0}) = (a_{n}, \dots, a_{j+1}, 0, \dots, 0) + (\dots, b_{s}, 0, b_{s-2}, \dots, b_{0}) = (b_{t}^{t}, \dots, b_{s}^{t}, 0, b_{s-2}, \dots, b_{0}).$

DEFINITION 2. The form (a_n, \ldots, a_1, a_0) is called block irreducible if whenever $a_j \neq 0$ for all j, t < j < s but $a_s = a_t = 0$, we must have $(a_{s-1}, \ldots, a_{t+1})$ irreducible. In otherwords (a_n, \ldots, a_1, a_0) is composed of irreducible sequences (or blocks) separated by sequences (or blocks) of zeros.

LEMMA 3. If a = qr + c where v(c) < v(r) and $v(a) \ge v(r) \ge 2$, then $v(q) < \frac{2}{v(r)} v(a)$.

The following corollary is an immediate consequence of lemma 3. COROLLARY. If $v(r) \ge 2$, then the sequence

$$a = q_1 r + a_0,$$

 $q_1 = q_2 r + a_1,$
 $\dots,$
 $q_i = q_i r + a_i,$ where $v(a_i) < v(r),$

contains an element q_k such that $v(q_k) < v(r)$.

REMARK. The sequence given above need not be bounded since e.g. in the ring of integers for base r = 3, we have (-1,2) = (-1,2,2) = (-1,2,2,2) = ... = -1since 2 = (1,-1), (2,2) = (1,0,-1), (2,2,2) = (1,0,0,-1), etc.

• DEFINITION. Let $a = (a_n, \dots, a_1, a_0) = a_n r^n + \dots + a_1 r + a_0$. Then

$$a = q_0 r + a_0, \qquad q_0 = a_n r^{n-1} + \dots + a_1$$

$$q_0 = q_1 r + a_1, \qquad q_1 = a_n r^{n-2} + \dots + a_2$$

$$\vdots$$

$$q_i = q_{i+1} r + a_i, \qquad q_{i+1} = a_n r^{n-(i+2)} + \dots + a_{i+2}$$

$$\vdots$$

$$q_n = 0 \cdot r + a_n$$

Suppose $a_0 \neq 0$. We shall say that $a_i = 0$ is the soonest possible zero after a_0 if $a_0 \neq 0$, $a_1 \neq 0, \ldots, a_{i-1} \neq 0$, $a_i = 0$ and for no smaller i is it possible to find a representation for a with $a_i = 0$, j < i.

REMARK. $a = (a_n, \dots, a_0)$ is irreducible if and only if $a_0 \neq 0$ and $a_{n+1} = 0$ is the soonest possible zero after a_0 .

REMARK. If $a = ..., a_{s+2}^{0,a_s,...,a_t,0,a_{t-1}^{0,a_{t-1}^$

$$a = q_0 r + a_0$$

$$\vdots$$

$$q_{t-2} = q_{t-1} r + a_{t-2}$$

$$q_{t-1} = q_t r + 0$$

$$q_t = q_{t+1} r + a_t$$

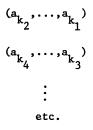
$$q_{s-1} = q_s r + a_s$$
$$q_s = q_{s+1} r + 0$$
$$\vdots$$

Clearly, $(a_{s},...,a_{t})$ is irreducible if and only if a_{s+1} is the soonest possible zero after a_{t} and $a_{t} \neq 0$. We shall show in theorem 3 that this process must stop (at or before. n+2 where $v(q_{n}) < v(r)$).

LEMMA 4. If $a = (a_n, \dots, a_k, 0, 0, \dots, 0) = (b_m, \dots, b_k, \dots, b_0)$ then $b_i = 0$ for $i = 0, 1, \dots, k-1$.

PROOF. Since $b_0 \equiv 0 \mod r$ and $v(b_0) < r$, this implies $b_0 = 0$. Thus $\frac{a}{r} = (a_n, \dots, a_k, 0, \dots, 0) = (b_m, \dots, b_k, \dots, b_1)$ and $b_1 = 0$. By induction, $b_0 = b_1 = \dots = b_k = 0$.

THEOREM 1. (Uniqueness of Block Irreducible Form) Let $v(r) \ge 3$ and a = (a_n, \dots, a_1, a_0) be a block irreducible form with non zero blocks.



Then these blocks are unique in the sense that if (a_{ℓ}, \ldots, a_k) and (b_m, \ldots, b_t) are the i-th irreducible blocks in two different block irreducible representations, then k = t, $\ell = m$ and

$$\sum_{j=k}^{m} a_{j}r^{j} = \sum_{j=k}^{m} b_{j}r^{j}$$

PROOF. Let $a = (\ldots, 0, a_{\ell}, \ldots, a_{k}, 0, \ldots, 0)$ and $a = (\ldots, 0, b_{m}, \ldots, b_{t}, 0, \ldots, 0)$ where $(a_{\ell}, \ldots, a_{k})$ and (b_{m}, \ldots, b_{t}) are both irreducible. By lemma 4, $a_{k} \neq 0$ iff $b_{t} \neq 0$, hence t = k and if $\ell < m$, then $(b_{m}, \ldots, b_{k}) = (\ldots, 0, a_{\ell}, \ldots, a_{k})$ not irreducible. Therefore, $\ell = m$. We may assume k = 0. Then we have

$$\sum_{j=0}^{m} \mathbf{b}_{j} \mathbf{r}^{j} \equiv \sum_{j=0}^{m} \mathbf{a}_{j} \mathbf{r}^{j} \mod \mathbf{r}^{m+2}$$

or

$$\sum_{j=0}^{m} (b_j - a_j)r^j \equiv 0 \mod r^{m+2}$$

Therefore, either

$$\sum_{j=0}^{m} (b_j - a_j)r^j = 0$$

in which case we have

$$\sum_{j=0}^{m} \mathbf{b}_{j} \mathbf{r}^{j} = \sum_{j=0}^{m} \mathbf{a}_{j} \mathbf{r}^{j}$$

or

$$2\left(\sum_{j=0}^{m} (b_j - a_j)r^j\right) \ge v(r)^{m+2}$$

which implies

$$2[v(r)^{m+1} + ... + v(r)] > v(r)^{m+2}$$

or

$$2\mathbf{v}(\mathbf{r})\left(\frac{\mathbf{v}(\mathbf{r})^{\mathbf{m}+1}-1}{\mathbf{v}(\mathbf{r})-1}\right) > \mathbf{v}(\mathbf{r})^{\mathbf{m}+2}$$

or

$$v(r)^{m+1} - 1 = \frac{2(v(r)^{m+1} - 1)}{2} \ge 2\left(\frac{v(r)^{m+1} - 1}{v(r) - 1}\right) > v(r)^{m+1}$$

a contradiction. Therefore,

$$\sum_{j=k}^{m} a_{j}r^{j} = \sum_{j=k}^{m} b_{j}r^{j}.$$

By induction one may show that the next irreducible block is also unique and all blocks are unique.

THEOREM 2. (Minimality of Block Irreducible Form) If $a = (a_n, \dots, a_0)$ is a block irreducible form, then it is minimal. Furthermore for each i, if $a = (b_m, \dots, b_i, \dots, b_0)$ then (b_i, \dots, b_0) has weight at least the weight of (a_i, \dots, a_0) .

PROOF. It suffices to show that for each i, (b_1, \ldots, b_0) has no more zero terms than (a_1, \ldots, a_0) . By lemma 4, we may assume $a_0 \neq 0$, $b_0 \neq 0$. Thus we have $a = (\ldots, 0, a_k, \ldots, a_0)$ where (a_k, \ldots, a_0) is irreducible. If $b = (\ldots, b_k, \ldots, b_0)$ then $b_j \neq 0$ for $j = 0, \ldots, k$, for suppose not, let $b_j = 0$, some $j \in \{1, 2, \ldots, k\}$. By lemma 1

$$b_{0} = a_{0} - c_{0}r$$

$$b_{s} = a_{s} + c_{s-1} - c_{s}r, \qquad 0 < s \le j - 1$$

$$0 = a_{j} + c_{j-1} - c_{j}r$$

$$c_{j} = 0 + c_{j} - 0 \cdot r$$

$$(a_{j}, \dots, a_{0}) = (c_{j}, 0, b_{j-1}, \dots, b_{0})$$

which cannot happen since (a_k, \ldots, a_0) is irreducible. Now, suppose we have a 1 - 1 mapping of zeros of (b_p, \ldots, b_0) into zeros of (a_p, \ldots, a_0) for some p where p is beyond the first irreducible block of (a_n, \ldots, a_0) . If $b_p = 0$ and $a_p = 0$, we map b_p to a_p . However, if $a_p \neq 0$ and $b_p = 0$, we then have the following situation:

$$(a_{p},...,a_{\ell}) \text{ is irreducible}
0 = a_{p} + c_{p-1} - c_{p}r
b_{p-1} = a_{p-1} + c_{p-2} - c_{p-1}r
\vdots
b_{j} = a_{j} + c_{j-1} - c_{j}r
\vdots
b_{\ell} = a_{\ell} + c_{\ell-1} - c_{\ell}r
b_{\ell-1} = 0 + c_{\ell-2} - c_{\ell-1}r$$

Suppose $b_j = 0$ for some $j \in \{p-1, \ldots, \ell\}$, we have $a_j - c_j r = -c_{j-1}$. Hence $(c_p, 0, b'_{p-1}, \ldots, b'_{\ell}) = (a_p, \ldots, a_{\ell})$. Since we can begin the carrying at a_j [with $a_j - c_j r$] and this will allow us to get 0 at the p-th digit, we obtain a contradiction to the fact that (a_p, \ldots, a_{ℓ}) is irreducible. Hence $b_{p-1} \neq 0$, $b_{p-2} \neq 0, \ldots, b_{\ell} \neq 0$. Now if $b_{\ell-1} = 0$ we have $c_{\ell-2} = c_{\ell-1}r$ which implies $c_{\ell-2} = c_{\ell-1} = 0$ and so we have $(0, b_{p-1}, \ldots, b_{\ell}) = (a_p, \ldots, a_{\ell})$ since we do not need the carry from $(\ell-1)$ st digit (it is zero). Therefore $b_p = 0$ can be mapped to $a_{\ell-1} = 0$.

THEOREM 3. (Existence of Block Irreducible Form) Every element a in R has a block irreducible form with respect to a radix r if $v(r) \ge 2$.

PROOF. Let $a = (a_{\ell}, \ldots, a_{0})$ be any weak radix-r form for a. Assume that $a_{j} \neq 0$ but $a_{t} = 0$, t < j, also (a_{k}, \ldots, a_{j}) irreducible but $(a_{k+1}, a_{k}, \ldots, a_{j})$ reducible. Then $(a_{k+1}, a_{k}, \ldots, a_{j}) = (a_{k+2}', 0, a_{k}', \ldots, a_{j}')$ where (a_{k}', \ldots, a_{j}') is irreducible. Now, we can rewrite a as $a = (a_{n+1}', \ldots, a_{k+2}', 0, a_{k}', \ldots, a_{j}', 0, \ldots, 0)$. Applying the above to $(a_{n}', \ldots, a_{k+2}')$ and induction yield for n as large as desired, $a = (a_{m}, \ldots, a_{n}, \ldots, a_{0})$ where (a_{n}, \ldots, a_{0}) is block irreducible. Now we want to show the process will stop. Note that $a = (a_{m}, \ldots, a_{n}, \ldots, a_{0})$ leads to the sequence of

$$a = q_0 r + a_0$$
$$q_0 = q_1 r + a_1$$
$$\vdots$$
$$q_n = q_{n+1} r + a_n$$

and at some point $v(q_n) < v(r)$ which implies that $v(q_j) < v(r)$ for all $j \ge n$ since $q_{n+1}r = q_n - a_n$ so $v(q_{n+1}) < \frac{2v(r)}{v(r)} = 2 \le v(r)$ and by induction. Now pick any n such that $v(q_n) < v(r)$ and $a = (\dots, a_n, \dots, a_0)$ where (a_n, \dots, a_0) is block irreducible. Suppose $a_n \ne 0$. We then have $q_n = rq_{n+1} + a_n$, $q_{n+1} = r \cdot 0 + q_{n+1}$ and $0 = r \cdot 0 + 0$. So $a = (0, q_{n+1}, a_n, \dots, a_\ell, 0, \dots)$ where $a_n \ne 0, a_\ell \ne 0$ and (a_n, \dots, a_ℓ) is irreducible. If $(q_{n+1}, a_n, \dots, a_\ell)$ is irreducible, we are done. If not $(0, q_{n+1}, a_n, \dots, a_\ell) = (a_{n+2}^*, 0, a_n^*, \dots, a_\ell^*)$ and (a_n^*, \dots, a_ℓ^*) is irreducible so $a = (a_{n+2}^*, 0, a_n^*, \dots, a_\ell^*, 0, \dots, a_1, a_0)$ is block irreducible. Now if $a_n = 0$ we claim $a_j = 0$ for $j \ge n$. Otherwise for smallest n < j such that $a_j \ne 0$ we have

$$q_{n} = q_{n+1}r + 0$$

$$\vdots$$
$$q_{j-1} = q_{j}r + 0$$
$$q_{j} = q_{j+1}r + a_{j}$$

but $q_{j-1} = q_{jr}$ implies $q_j = 0$ and $a_j = -q_{j+1}r$ implies $a_j = 0$, a contradiction.

In what follows we shall give an algorithm for finding the block irreducible form for $v(r) \ge 3$. Actually these are just some ideas on how to possibly simplify the search for block irreducible forms.

LEMMA 5. Let A_k be the set of all representatives of the form $(a_k, a_{k-1}, \dots, a_0)$ where all proper subsequences are irreducible but the sequence itself is reducible. Let $A = A_1 \cup A_2 \dots \cup A_k \dots$. If (a_{k-1}, \dots, a_0) is irreducible then $(a_k, a_{k-1}, \dots, a_0)$ is irreducible iff $(a_k, a_{k-1}, \dots, a_{k-j}) \notin A_j$ for all $j \in \{1, 2, \dots, k\}$, $a_k \neq 0$.

PROOF. Since (a_{k-1}, \ldots, a_0) is irreducible so are all proper subsequences. Thus, if (a_k, \ldots, a_0) were reducible then ther is a smallest j such that (a_k, \ldots, a_{k-j}) is reducible. No proper subsequences will be reducible since it would contradict to the choice of j.

ALGORITHM. (For finding block irreducible form) We may assume $a_0 \neq 0$, $a_1 \neq 0$. By definition $(a_1, a_0) \notin A_1$ iff (a_1, a_1) is irreducible. If $(a_1, a_0) \notin A$, consider (a_2, a_1, a_0) . WOLG, assume $a_1 \neq 0$, i = 0, 1, 2. It is irreducible iff $(a_2, a_1) \notin A$, and $(a_2, a_1, a_0) \in A_2$. In general if we have chosen (a_{k-1}, \dots, a_1) irreducible then (a_k, \dots, a_1) is also irreducible iff $(a_k, a_{k-1}) \notin A_1$, $(a_k, a_{k-1}, a_{k-2}) \notin A_2$, \dots , $(a_k, \dots, a_0) \notin A_k$. Thus if we find $(a_k, \ldots, a_j) \in A_t$, then we replace (a_k, \ldots, a_0) by $(b_{k+1}, 0, b_{k-1}, \ldots, b_j, a_{j-1}, \ldots, a_0)$ and we know $(b_{k-1}, \ldots, b_j, a_{j-1}, \ldots, a_0)$ is irreducible. Reduce the rest of a by carring b_{k+1} to the left as necessary and then begin the same process with the new (k+1)st term if it is non zero (or the next non zero term).

LEMMA 6. If the form $(a_{k+1},...,a_0) \in A_{k+1}$, then there exist carries c_j , j = 0,1,...,k+1 such that

(1)	$a_{k+1} = c_{k+1}r - c_k$
(2)	$v(a_{\theta} - c_{\theta}r) < v(r)$
(3)	for jε{1,,k}

and

but

 $v(a_j - c_j r) \ge v(r)$ $v(a_j - c_j r + c_{j-1}) < v(r)$

PROOF. Let $(a_{k+1}, \ldots, a_0) \in A_{k+1}$ then $(a_{k+1}, \ldots, a_0) = (b_{k+2}, 0, b_k, \ldots, b_0)$ with $b_j = a_j + c_{j-1} - c_j r$, $j = k+1, \ldots, 1$ and $b_0 = a_0 - c_0 r$. Now $0 < v(b_j) < v(r)$ for $j \le k$ otherwise $b_j = 0$ would imply $(a_j, \ldots, 0)$ being reducible, a contradiction. Also, $v(a_j - c_j r) \ge v(r)$ for $1 \le j \le k$. Since if $v(a_j - c_j) < v(r)$ then $(a_{k+1}, a_k, \ldots, a_j)$ would be reducible, again a contradiction since no proper subsequence of $(a_{k+1}, a_k, \ldots, a_0)$ is reducible.

EXAMPLE. Let R be the ring of Gaussian integers and r = 100. The element a = [-(1+i),4 + 71i,50 + 50i] ϵA_2 because a = (0,-95 - 28i, -50 - 50i) and (4 + 71i, 50 + 50i) is irreducible since 4 + 71i + $u_1 + u_2i \neq 100(v_1 + v_2i)$ for any u_i , $v_i \in \{0,\pm1\}$.

REFERENCES

- Reiwiesner, G. H. <u>Advances in Computers</u> (F. L. Alt, ed.), Vol. 1, Academic Press, New York, 1960.
- Clark, W. E. and J. J. Liang. On arithmetic weight for a general radix presentation of integers, <u>IEEE Trans. Information Theory</u> (Nov. 1973) 823-826.
- Boyarinov, I. M. Nonbinary arithmetic codes with large minimum distance, Vol. 11, No. 1, <u>Problemy Peredachi Informatsii</u> (Jan. - March 1975) 57-63. (Russian)
- Kabatyanskii, G. A. Bounds on the number of code words in binary arithmetic codes, Vol. 12, No. 4, <u>Problemy Peredachi Informatsii</u> (Oct. - Dec. 1976) 46-54. (Russian)
- Clark, W. E. and J. J. Liang. Weak radix representation and cyclic codes over Euclidean domains, <u>Communications in Algebra</u> <u>4(11)</u> (1976) 999-1028.