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We study the existence of mild and classical solutions for an abstract second-order impul-
sive Cauchy problem modeled in the form ü(t) = Au(t)+f(t,u(t),u̇(t)), t ∈ (−T0,T1),
t ≠ ti; u(0) = x0, u̇(0) = y0; �u(ti) = I1i (u(ti)), �u̇(ti) = I2i (u̇(t+i )), where A is the
infinitesimal generator of a strongly continuous cosine family of linear operators on a
Banach space X and f , I1i , I2i are appropriate continuous functions.
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1. Introduction. This paper is concerned with the second-order impulsive Cauchy

problem
ü(t)=Au(t)+f (t,u(t),u̇(t)), t ∈ (−T0,T1

)
, t ≠ ti,

u(0)= x0, u̇(0)=y0,

�u(ti)= I1i (u(ti)), �u̇(ti)= I2i (u̇(t+i )).
(1.1)

In problem (1.1),A is the infinitesimal generator of a strongly continuous cosine family

of linear operators (C(t))t∈R on a Banach space X; −T0 < 0 < t1 < t2 < ··· < tn < T1;

�u(ti)=u(t+i )−u(t−i ), �u̇(ti)= u̇(t+i )−u̇(t−i ), and Iji :X →X, f :R×X×X →X are

appropriate continuous functions.

The theory of impulsive differential equations has become an important area of

investigation in recent years. Relative to this theory, we only refer the reader to the

works of Rogovchenko [6, 7], Liu [5], Sun [3], and Cabada [1].

Motivated for numerous applications, recently, Liu [5] studied the first-order im-

pulsive evolution problem

u̇(t)=Au(t)+f (t,u(t)),
u(0)= x0,

�u(ti)= Ii(u(ti)),
(1.2)

where A is the infinitesimal generator of a C0-semigroup of linear operators on a

Banach space X. In the cited paper, Liu apply the semigroup theory to prove the exis-

tence of mild, strong and classical solutions for system (1.2) using usual assumptions

on the function f .

Our goal is to give some existence results of mild and classical solutions for the

second-order impulsive Cauchy problem (1.1) using the cosine functions theory. It is

well known that, in general, the second-order abstract Cauchy problem

ü(t)=Au(t),
u(0)= x0, u̇(0)=y0,

(1.3)
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cannot be studied by reducing this system to a first-order linear equation, therefore,

the existence results in this work are not consequence of those in Liu [5].

Throughout this paper, X denotes an abstract Banach space endowed with a norm

‖·‖ and C(t) denotes a strongly continuous operator cosine function defined on X
with infinitesimal generatorA. We refer the reader to [2, 10] for the necessary concepts

about cosine functions. Next, we only mention a few results and notations needed to

establish our results. We denote by S(t) the sine function associated with C(t) which

is defined by

S(t)x :=
∫ t

0
C(s)xds, x ∈X, t ∈R. (1.4)

For a closed operator B : D(B) → X, we denote by [D(B)] the space D(B) endowed

with the graph norm ‖·‖B , that is,

‖x‖B = ‖x‖+‖Bx‖, x ∈D(B). (1.5)

In particular, [D(A)] is the space

D(A)= {x ∈X : C(t)x is twice continuously differentiable
}
, (1.6)

endowed with the norm ‖x‖A = ‖x‖+‖Ax‖, x ∈D(A),
Moreover, in this paper the notation E stands for the space formed by the vectors

x ∈ X for which the function C(·)x is of class C1. It was proved by Kisyński [4] that

E endowed with the norm

‖x‖1 = ‖x‖+ sup
0≤t≤1

∥∥AS(t)x∥∥, x ∈ E, (1.7)

is a Banach space. The operator-valued functionG(t)=
[
C(t) S(t)
AS(t) C(t)

]
is a strongly contin-

uous group of linear operators on the space E×X generated by the operator �=
[

0 I
A 0

]
defined on D(A)×E. From this, it follows that AS(t) : E → X is a bounded linear op-

erator and that AS(t)x → 0, t → 0, for each x ∈ E. Furthermore, if x : [0,∞)→ X is a

locally integrable function, then

y(t)=
∫ t

0
S(t−s)x(s)ds (1.8)

defines an E-valued continuous function. This is an immediate consequence of the

fact that

∫ t
0
G(t−s)

[
0

x(s)

]
ds =



∫ t

0
S(t−s)x(s)ds

∫ t
0
C(t−s)x(s)ds


 (1.9)

defines an (E×X)-valued continuous function.

The existence of solutions of the second-order abstract Cauchy problem

ẍ(t)=Ax(t)+h(t), 0≤ t ≤ a,
x(0)= x0, ẋ(0)= x1,

(1.10)
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where h : [0,a] → X is an integrable function, has been discussed in [8]. Similarly,

the existence of solutions of the semilinear second-order abstract Cauchy problem

treated in [9]. We only mention here that the function x(·) given by

x(t)= C(t)x0+S(t)x1+
∫ t

0
S(t−s)h(s)ds, 0≤ t ≤ a, (1.11)

is called a mild solution of (1.10). In the case in which x0 ∈ E, x(·) is continuously

differentiable and

ẋ =AS(t)x0+C(t)x1+
∫ t

0
C(t−s)h(s)ds. (1.12)

The properties in the next result are well known (see [9]).

Lemma 1.1. In the previous condition, the following properties hold:

(1) if x ∈X, then S(t)x ∈ E for every t ∈R;

(2) if x ∈ E, then S(t)x ∈ D(A), (d/dt)C(t)x = AS(t)x and (d2/dt2)S(t)x =
AS(t)x for every t ∈R;

(3) if x ∈ D(A), then C(t)x ∈ D(A) and (d2/dt2)C(t)x = AC(t)x = C(t)Ax for

every t ∈R;

(4) if x ∈ D(A), then S(t)x ∈ D(A) and (d2/dt2)S(t)x = AS(t)x = S(t)Ax for

every t ∈R.

In Section 2, we discuss the existence of solution for the impulsive problem (1.1).

Firstly, we introduce the concept of mild and classical solution for the impulsive prob-

lem (1.1) and subsequently, employing the contraction mapping principle and the

ideas in Travis [10], we prove the existence of mild and classical solutions.

The terminology and notations are those generally used in operator theory. In par-

ticular, if Z and Y are Banach spaces, we indicate by �(Z : Y) the Banach space of the

bounded linear operators from Z into Y and we abbreviate to �(Z) whenever Y = Z .

In addition, Br (x : Z) will denote the closed ball in Z with center at x and radius r .

For a nonnegative bounded function ξ : (−T0,T1]→R and −T0 < t ≤ T1, we employ

the notation ξt for

ξt = sup
{
ξ(θ) : θ ∈ (−T0, t

]}
. (1.13)

Considering the notation in Liu [5], PCb((−T0,T1) : X) will be the space of the

bounded functions u : (−T0,T1) → X such that: u is continuous in t ≠ ti, u is left

continuous in each ti and u(t+i ) exist. We always assume PCb((−T0,T1) :X) endowed

with the uniform convergence norm, ‖u‖ = ‖u‖T1 .

Finally, PC1
b((−T0,T1) :X) will be the space

PC1
b
((−T0,T1

)
:X
)

= {(u,w) :u,w ∈ PCb
((−T0,T1

)
:X
)

and u̇(t)=w(t) for t ≠ ti
}
,

(1.14)

provided with the norm ‖|(u,w)|‖ = ‖u‖T1+‖w‖T1 .
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2. Existence results. In this section, we discuss the existence of mild and classical

solutions for the impulsive initial value problem (1.1). By comparison with the second-

order abstract Cauchy problem, we introduce the following definitions.

Definition 2.1. A function (u,v) ∈ PC1
b((−T0,T1) : X) is a mild solution of the

impulsive problem (1.1) if the impulsive conditions in (1.1) are satisfied and

u(t)= C(t)x0+S(t)y0+
∫ t

0
S(t−s)f (s,u(s),u̇(s))ds

+
∑

0<ti<t
C
(
t−ti

)
I1i
(
u
(
ti
))+ ∑

0<ti<t
S
(
t−ti

)
I2i
(
u̇
(
t+i
))
,

(2.1)

for every t ∈ (−T0,T1).

Definition 2.2. A function (u,v) ∈ PC1
b((−T0,T1)) is a classical solution of the

impulsive problem (1.1) if u∈ C2((−T0,T1)\{t1, t2, . . . , tn} :X) and (1.1) is satisfied.

2.1. Mild solutions. In order to establish the existence of mild solutions, we intro-

duce the following technical assumptions:

(A1) f : R×X×X → X is a continuous function and there exist positive constants

K1(f ) and K2(f ) such that

∥∥f(t,x,y)−f (t,x′,y ′)∥∥≤K1(f )
∥∥x−x′∥∥+K2(f )

∥∥y−y ′∥∥, (2.2)

for every x,x′,y and y ′ ∈X;

(A2) the functions Iji :X →X are continuous and there exist positive constants K(Iji )
such that ∥∥Iji (x)−Iji (x′)∥∥≤K(Iji )∥∥x−x′∥∥, (2.3)

for every x,x′ ∈X;

(A3) there exist functions B : [−T0,T1]→�(X), Fi :X →X, i∈ {1,2, . . . ,n}, such that:

(i) B(0) = 0, B(·) is strongly continuous and (d/dt)C(t)I1i (x) = B(t)Fi(x)
for every x ∈X and i∈ {1,2, . . . ,n};

(ii) for each i∈ {1,2, . . . ,n}, exists a positive constant K(Fi) such that

∥∥Fi(x)−Fi(x′)∥∥≤K(Fi)∥∥x−x′∥∥, ∀x,x′ ∈X. (2.4)

Theorem 2.3. Let x0 ∈ E, y0 ∈ X and assume that assumptions (A1)–(A3) hold. If

max{Λ1,Λ2}< 1, where

Λ1 =K1(f )
(‖S‖T1+‖C‖T1

)(
T0+T1

)+ n∑
i=1

(‖C‖T1K
(
I1i
)+‖B‖T1K

(
Fi
))
,

Λ2 =
(‖S‖T1+‖C‖T1

)(
K2(f )

(
T0+T1

)+ n∑
i=1

K
(
I2i
))
,

(2.5)

then there exists a unique mild solution of the impulsive problem (1.1).
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Proof. For (u,w)∈ PC1
b((−T0,T1) :X), we define Φ(u,w)= (Φ1(u,w),Φ2(u,w)),

where

Φ1(u,w)(t)= C(t)x0+S(t)y0+
∫ t

0
S(t−s)f (s,u(s),u̇(s))ds

+
∑

0<ti<t
C
(
t−ti

)
I1i
(
u
(
ti
))+ ∑

0<ti<t
S
(
t−ti

)
I2i
(
u̇
(
t+i
))
,

Φ2(u,w)(t)=AS(t)x0+C(t)y0+
∫ t

0
C(t−s)f (s,u(s),u̇(s))ds

+
∑

0<ti<t
B
(
t−ti

)
Fi
(
u
(
ti
))+ ∑

0<ti<t
C
(
t−ti

)
I2i
(
u̇
(
t+i
))
.

(2.6)

Clearly, Φ(u,w) ∈ �C1
b((−T0,T1) : X). In order to prove that Φ is a contraction map-

ping on PC1
b((−T0,T1) :X), we take (u,w), (v,z) in PC1

b((−T0,T1) :X). From assump-

tion (A1), we see that for t ∈ (−T0,T1)

∥∥Φ1(u,w)(t)−Φ1(v,z)(t)
∥∥≤

∫ t
0
‖S‖T1

(
K1(f )‖u−v‖θ+K2(f )‖u̇− v̇‖θ

)
dθ

+
∑

0<ti<t
‖C‖T1K

(
I1i
)∥∥u(ti)−v(ti)∥∥

+
∑

0<ti<t
‖S‖T1K

(
I2i
)∥∥u̇(ti+)− v̇(ti+)∥∥,

(2.7)

thus

∥∥Φ1(u,w)−Φ1(v,z)
∥∥
T1
≤
(
‖S‖T1K

1(f )
(
T0+T1

)+ n∑
i=1

‖C‖T1K
(
I1i
))‖u−v‖T1

+‖S‖T1

(
K2(f )

(
T0+T1

)+ n∑
i=1

K
(
I2i
))‖w−z‖T1 .

(2.8)

Similarly,

∥∥Φ2(u,w)−Φ2(v,z)
∥∥≤

(
‖C‖T1K

1(f )
(
T0+T1

)+‖B‖T1

n∑
i=1

K
(
Fi
))‖u−v‖T1

+‖C‖T1

(
K2(f )

(
T0+T1

)+ n∑
i=1

K
(
I2i
))‖w−z‖T1 .

(2.9)

Inequalities (2.8) and (2.9) and the assumption max{Λ1,Λ2} < 1 imply that Φ is a

contraction. Clearly, the unique fixed point of Φ, is the unique mild solution of (1.1).

The proof is completed.

Corollary 2.4. Let assumptions (A1) and (A2) be satisfied and assume that I1i ≡ 0

for i= 1,2, . . . ,n. If max{Λ1,Λ2}< 1, where

Λ1 =
(‖S‖T1+‖C‖T1

)
K1(f )

(
T0+T1

)
,

Λ2 =
(‖S‖T1+‖C‖T1

)(
K2(f )

(
T0+T1

)+ n∑
i=1

K
(
I2i
))
,

(2.10)

then there exists a unique mild solution, u(·), of problem (1.1). Moreover u(·) is con-

tinuous.
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Now we consider, briefly, some simple examples of functions satisfying assumption

(A3).

(1) If [D(A)] is the space D(A) endowed with the graph norm, see (1.5), and I :X →
[D(A)] is Lipschitz continuous, then (d/dt)C(t)I(x) = AS(t)I(x) = S(t)AI(x) for

each x ∈X.

(2) The cosine family (C(t))t∈R verifies the condition F (see Travis [10] for details),

if there exist a closed operator B : D(B) → X such B2 = A and BS(·) is a strongly

continuous family of bounded linear operators. If [D(B)] is the space D(B) provided

with the graph norm, see (1.5), and the function I :X → [D(B)] is Lipschitz continuous,

then (d/dt)C(t)I(x)=AS(t)I(x)= B2S(t)I(x)= BS(t)BI(x) for every x ∈X.
(3) Let r ∈R and g :X →X a Lipschitz function. If I(x)= S(r)g(x), from Travis [10,

Proposition 2.2], (d/dt)C(t)I(x) = AS(t)S(r)g(x) = (1/2)(C(r +t)−C(r −t))g(x),
for each x ∈X.

2.2. Classical solutions. Next, we establish the existence of classical solution for

the impulsive initial value problem (1.1), under the assumption that f is continuously

differentiable. For this purpose, we need the following lemmas.

Lemma 2.5. If g ∈ C([0,b] :X)∩C1
b((0,b) :X), b > 0, then h(t)= ∫ t0 C(t−s)g(s)ds

∈ E for every t ∈ [0,b].
Proof. Let t ∈ [0,b]. Since g is continuously differentiable

∫ t
0
C(t−s)g(s)ds =

∫ t
0
C(t−s)g(0)ds+

∫ t
0
C(t−s)

∫ s
0
g′(µ)dµds

=
∫ t

0
C(t−s)g(0)ds+

∫ t
0

∫ t−µ
0

C(ξ)g′(µ)dξdµ,
(2.11)

thus ∫ t
0
C(t−s)g(s)ds = S(t)g(0)+

∫ t
0
S(t−µ)g′(µ)dµ. (2.12)

We know that S(t)g(0) ∈ E, thus we only need to proof that the second term in the

right-hand side of (2.12) is in E. In relation with this property, for ρ ∈R, we have

C(ρ+h)−C(ρ)
h

∫ t
0
S(t−s)g′(s)ds = 1

2h

∫ t
0

(
S(t−s+ρ+h)−S(t−s+ρ))g′(s)ds

+ 1
2h

∫ t
0

(
S(t−s−ρ−h)−S(t−s−ρ))g′(s)ds,

(2.13)

thus

d
dρ
C(ρ)

∫ t
0
S(t−s)g′(s)ds = 1

2

∫ t
0

(
C(t−s+ρ)−C(t−s−ρ))g′(s)ds. (2.14)

Clearly, the right-hand side of equation (2.14) is a continuous function of t, therefore∫ t
0 S(t−s)g′(s)ds ∈ E. The proof is finished.
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Lemma 2.6. Let x̃0 ∈D(A), ỹ0 ∈ E and assume that the assumption in Theorem 2.3

holds. Suppose, furthermore, that f is continuously differentiable and that there exists

K3(f ) > 0 such that

max
{∥∥Djf(t,x,y)−Djf (t,x,ỹ)∥∥ : j = 1,2,3

}≤K3(f )
∥∥y−ỹ∥∥ (2.15)

for every (t,x,y),(t,x,ỹ)∈ [−T0,T1]×X2.

If ti and ti+1, are two consecutive impulse instants, then there exists a unique classical

solution u(·) of

ẍ(t)=Ax(t)+f (t,x(t), ẋ(t)), t ∈ (−T0, ti+1
)
,

x
(
ti
)= x̃0, ẋ

(
ti
)= ỹ0.

(2.16)

Moreover, u(t−i+1)∈D(A) and u̇(t−i+1)∈ E.
Proof. Let w : (−T0,T1)→X be the unique mild solution of

ẍ(t)=Ax(t)+f (t,x(t), ẋ(t)), t ∈ (−T0,T1
)
,

x
(
ti
)= x̃0, ẋ

(
ti
)= ỹ0,

(2.17)

and letu : (−T0, ti+1)→X be the mild solution of the initial value problem (2.16). From

the proof of [10, Proposition 3.3], we infer that w and u are classical solutions and

thus, that u(ti+1)=w(ti+1)∈D(A), since u=w on (−T0, ti+1).
On the other hand,

u̇
(
t−i+1

)=AS(ti+1
)
x̃0+C

(
ti+1

)
ỹ0

+
∫ ti+1

0
C
(
ti+1−s

)
f
(
s,u(s),u̇(s)

)
ds

= ẇ(ti+1
)
.

(2.18)

Clearly, AS(ti+1)x̃0+C(ti+1)ỹ0 ∈ E and from Lemma 2.5, the integral term in (2.18) is

in E, therefore ẇ(ti+1)∈ E. The proof is completed.

Now we establish the principal result of this paper.

Theorem 2.7 (classical solution). Let x0 ∈ D(A), y0 ∈ E and assume that the as-

sumptions in Theorem 2.3 and Lemma 2.6 hold. If (u,v) : (−T0,T1) → X is the mild

solution of (1.1) and I1i (u(ti)) ∈ D(A), I2i (u̇(t+i )) ∈ E for each i ∈ {1,2, . . . ,n}, then

(u,v) is a classical solution.

Proof. Let w : (−T0, t1)→X be the unique classical solution of

ẍ(t)=Ax(t)+f (t,x(t), ẋ(t)), t ∈ (−T0, t1
)
,

x(0)= x0, ẋ(0)=y0
(2.19)
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and let (u1,v1) : (−T0, t1] → X×X be the function defined by (u1,v1)(t) = (w(t−),
ẇ(t−)). From Lemma 2.6, we know that (u1(t1),v1(t1))∈D(A)×E; thus, there exists

a unique classical solution w(·) of the abstract Cauchy problem

ẍ(t)=Ax(t)+f (t,x(t), ẋ(t)), t ∈ (−T0, t2
)
,

x
(
t1
)=u1

(
t1
)+I11(u(t1)), ẋ

(
t1
)= v1

(
t1
)+I21(u̇(t+1 )). (2.20)

Similarly to the previous case, (u2,v2) : (−T0, t2]→X×X will be the function defined

by (u2,v2)(t)= (w(t−),ẇ(t−)).
In general, if w is the classical solution of the second-order Cauchy problem

ẍ(t)=Ax(t)+f (t,x(t), ẋ(t)), t ∈ (−T0, tk
)
,

x
(
tk−1

)=uk−1
(
tk−1

)+I1k−1

(
u
(
tk−1

))
,

ẋ
(
tk−1

)= vk−1
(
tk−1

)+I2k−1

(
u̇
(
t+k−1

))
,

(2.21)

we denote by (uk,vk) the function (uk,vk) : (−T0, tk]→ X, where uk(t) =w(t−) and

vk(t)= ẇ(t−).
Let (ũ, ṽ) : (−T0,T1)→X be the function defined by

(
ũ(t), ṽ(t)

)=



(
u1(t),v1(t)

)
if −T0 < t ≤ t1,(

uk(t),vk(t)
)

if tk−1 < t ≤ tk,(
un+1(t),vn+1(t)

)
if tn < t < T1.

(2.22)

It is easy to see that (ũ, ṽ) is the unique classical solution of the impulsive problem

ẍ(t)=Ax(t)+f (t,x(t), ẋ(t)), t ∈ (−T0,T1
)
, t ≠ ti,

x(0)= x0, ẋ(0)=y0,

�x(ti)= I1i (u(ti)), �ẋ(ti)= I2i (u̇(t+i )).
(2.23)

Next, we show that (ũ, ṽ) = (u,v). In order to reduce the proof, we introduce the

group of linear operators

U(t)=
(
C(t) S(t)
AS(t) C(t)

)
t∈R

(2.24)

on D(A)× E. The function (ũ, ṽ) is a solution of the first-order impulsive Cauchy

problem

Ẇ(t)=
(

0 I
A 0

)
W(t)+F(t,W(t)),

W(0)=
(
x0

y0

)
, �W(ti)= Ii


u

(
ti
)

u̇
(
t+i
)

 ,

(2.25)
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where Ii and F are defined in obvious manner. From the proof of [5, Lemma 2.3], we

infer that

W(t)=U(t)
(
x0

y0

)
+
∫ t

0
U(t−s)F(s,W(s))ds+∑

ti<t
U
(
t−ti

)
Ii

(
u
(
ti
)

u̇
(
t+i
)
)
, (2.26)

thus

ũ(t)= C(t)x0+S(t)y0+
∫ t

0
S(t−s)f (s,ũ(s), ṽ(s))ds

+
∑

0<ti<t
C
(
t−ti

)
I1i
(
u
(
ti
))+ ∑

0<ti<t
S
(
t−ti

)
I2i
(
u̇
(
t+i
))
,

ṽ(t)=AS(t)x0+C(t)y0+
∫ t

0
C(t−s)f (s,ũ(s), ṽ(s))ds

+
∑

0<ti<t
AS
(
t−ti

)
I1i
(
u
(
ti
))+ ∑

0<ti<t
C
(
t−ti

)
I2i
(
u̇
(
t+i
))
.

(2.27)

Finally, using θ(t) = max{‖u(t)− ũ(t)‖,‖v(t)− ṽ(t)‖}, from assumption (A1) and

(2.27), we obtain that

θ(t)≤ C1

∫ t
0
θ(s)ds, (2.28)

where C1 is a constant independent of t ∈ (−T0,T1). The Gronwall’s inequality implies

that u= ũ. The proof is completed.

3. Consequences. Next, we briefly consider the impulsive system

ü(t)=Au(t)+f (t,u(t)), t ∈ (−T0,T1
)
,

u(0)= x0, u̇(0)=y0,

�u(ti)= I1i (u(ti)), �u̇(ti)= I2i (u(ti)).
(3.1)

Definition 3.1. A functionu∈ PCb((−T0,T1) :X) is a mild solution of the second-

order impulsive problem (3.1) if

u(t)= C(t)x0+S(t)y0+
∫ t

0
S(t−s)f (s,u(s))ds

+
∑

0<ti<t
C
(
t−ti

)
I1i
(
u
(
ti
))+ ∑

0<ti<t
S
(
t−ti

)
I2i
(
u
(
ti
)) (3.2)

for each t ∈ (−T0,T1).

Definition 3.2. A functionu : (−T0,T1)→X is a classical solution of the impulsive

problem (3.1) if u ∈ PCb((−T0,T1) : X)∩C2((−T0,T1)\{t1, t2, . . . , tn} : X) and (3.1) is

satisfied.

In order to establish our next result, we introduce one more simple assumption:

(A4) the functions f : R×X → X, Iji : X → X are continuous and exist positive con-

stants K(f) and K(I1i ) such that∥∥f(t,u)−f (t,u′)∥∥≤K1(f )
∥∥u−u′∥∥,∥∥Iji (u)−Iji (u′)∥∥≤K(Iji )∥∥u−u′∥∥, (3.3)

for every u,u′ ∈X.



460 EDUARDO HERNÁNDEZ MORALES

Theorem 3.3. Let x0,y0 ∈X and assume that assumptions (A2), (A4) hold. If

∥∥S∥∥T1
K1(f )

(
T0+T1

)+ n∑
i=1

(∥∥C∥∥T1
K
(
I1i
)+∥∥S∥∥T1

K
(
I2i
))
< 1, (3.4)

then there exists a unique mild solution of (3.1).

Proof. The proof of this theorem is similar to the proof of Theorem 2.3. We omit

the details.

Using the ideas in the proofs of [10, Lemma 3 and Proposition 2.4], we can prove

the following lemma.

Lemma 3.4. Let x̃0 ∈D(A), ỹ0 ∈ E, and assume that the hypotheses in Theorem 3.3

hold. If f is continuously differentiable, then the mild solution, u(·), of

ẍ(t)=Ax(t)+f (t,x(t)), t ∈ (−T0, ti+1
)
,

x
(
ti
)= x̃0, ẋ

(
ti
)= ỹ0,

(3.5)

is a classical solution. Moreover, u(t−i+1)∈D(A) and u̇(t−i+1)∈ E.
The proof of Theorem 3.5 follows from the steps in the proof of Theorem 2.7.

Theorem 3.5 (classical solution). Let x0 ∈ D(A), y0 ∈ E, and assume that the as-

sumptions in Theorem 3.3 and Lemma 3.4 hold. If u : (−T0,T1) → X is the mild so-

lution of the impulsive problem (3.1) and I1i (u(ti)) ∈ D(A), I2i (u(ti)) ∈ E for every

i∈ {1,2, . . . ,n}, then u is a classical solution.
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