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1. Introduction. The well-known Itô formula relies on the fact that the integrands

in the Itô processes are nonanticipating. However, in many cases, this essential con-

dition is not satisfied. Take the example of the stochastic integral
∫ 1
0 B(1)dB(t), t < 1,

where B(t) is a Brownian motion. Clearly, B(1) is anticipating and
∫ 1
0 B(1)dB(t) cannot

be defined as an Itô integral; necessitating an extension.

We are interested in generalizing the Itô formula to anticipating processes in an

infinite-dimensional space. For this purpose, we consider the infinite-dimensional

space to be the white noise space (�′(R),µ), where �′(R) is the space of tempered

distributions and µ is the standard Gaussian measure on �′(R). We use the Hitsuda-

Skorokhod integral as the underlying extension of the Itô integral and we prove the for-

mula for processes of the form θ(X(t),F) where X(t) is a Wiener integral, θ ∈�2
b(R2)

and F ∈�1/2, a Sobolev space in the Hilbert space (L2)≡ L2(�′(R),µ).
A number of variations to the formula in this paper exist. Prevault [9] developed

a formula which was applied to processes of the form Y(t) = θ(X(t),F), where F
is a smooth random variable depending on the whole trajectory of (B(t))t∈R+ , and

(X(t))t∈R+ is an adapted Itô process. His proof relies on the expression of infinitesimal

time changes on Brownian functionals using the Gross Laplacian. In [6], Kuo developed

a formula which was applied to processes of the formY(t)= θ(X(t),B(c)), 0≤ a≤ c ≤
b, with X(t) a Wiener integral. The main tool of his proof is the very important white

noise function, the S-transform, and the fact that both X(t) and B(t) have Gaussian

laws. The proof in this paper is a limiting process of Kuo’s proof.

2. Background. In this section, the basic background from white noise analysis are

introduced and the interested reader is provided with the relevant references.

2.1. Concept and notations. Let E be a real separable Hilbert space with norm

|·|0. Let A be a densely defined selfadjoint operator on E, whose eigenvalues {λn}n≥1

satisfy the following conditions:

(i) 1< λ1 ≤ λ2 ≤ λ3 ≤ ··· ;
(ii)

∑∞
n=1λ−2

n <∞.
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For any p ≥ 0, let �p be the completion of E with respect to the norm |f |p := |Apf |0.

Note that �p is a Hilbert space with the norm | · |p and �p ⊂ �q for any p ≥ q. The

second condition on the eigenvalues above implies that the inclusion map i : �p+1 → �p
is a Hilbert-Schmidt operator.

Let � be the projective limit of {�p ; p ≥ 0}, and let �′ be the dual space of �. Then

the space � = ⋂
p≥0 �p equipped with the topology given by the family {| · |p}p≥0 of

seminorms is a nuclear space. Hence �⊂ E ⊂ �′ is a Gel’fand triple with the following

continuous inclusions:

�⊂ �q ⊂ �p ⊂ E ⊂ �′p ⊂ �′q ⊂ �′, q ≥ p ≥ 0. (2.1)

We used the Riesz representation theorem to identify the dual of E with itself.

It can be shown that for all p ≥ 0, the dual space �′p is isomorphic to �−p , which is

the completion of the space E with respect to the norm |f |−p = |A−pf |0.

Minlo’s theorem allows us to define a unique probability measure µ on the Borel

subsets of �′ with the property that for all f ∈ �, the random variable 〈·,f 〉 is normally

distributed with mean 0 and variance |f |20. We are using 〈·,·〉 to denote the duality

between �′ and �. This means that the characteristic functional of µ is given by

∫
�′
ei〈x,ξ〉dµ(x)= e−(1/2)|ξ|20 , ∀ξ ∈ �. (2.2)

The probability space (�′,µ) is called the white noise space. The space L2(�′,µ) will

be denoted by (L2); that is, (L2) is the set of functions ϕ : �′ → C such that ϕ is

measurable and
∫

�′ |ϕ(x)|2dµ(x) < ∞. If we denote by Ec the complexification of

E, the Wiener-Itô theorem allows us to associate to each ϕ ∈ (L2) a unique sequence

{fn}n≥0, fn ∈ E⊗̂nc and expressϕ asϕ =∑∞
n=0 In(fn)where In(fn) is a multiple Wiener

integral of order n (see [3]). This decomposition is similar to what is referred to as the

Fock-space decomposition as shown in [8].

The (L2)-norm ‖ϕ‖0 of ϕ is given by

‖ϕ‖2
0 =

∞∑
n=0

n!
∣∣fn∣∣2

0, (2.3)

where |·|0 denotes the E⊗̂nc -norm induced from the norm |·|0 on E. For any p ≥ 0, let

|·|p be the �⊗̂np,c-norm induced from the norm |·|p on �p and define

‖ϕ‖p =
( ∞∑
n=0

n!
∣∣fn∣∣2

p

)1/2

. (2.4)

Let (
�p

)= {
ϕ ∈ (

L2); ‖ϕ‖p <∞}
. (2.5)

If 0 < p ≤ q, then (�q) ⊂ (�p) with the property that for any q ≥ 0, there exists

p > q such that the inclusion map Ip,q : (�p)↩ (�q) is a Hilbert-Schmidt operator and

‖Ip,q‖2
HS ≤ (1−‖ip,q‖2

HS)−1 where ip,q is the inclusion map from �p into �q as noted

earlier.
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Analogous to the way � was defined, we also define (�) as the projective limit of

{(�p); p ≥ 0} and (�)∗ as the dual space of (�). With the above result, (�)=⋂
p≥0(�p)

with the topology generated by the family {‖·‖p ; p ≥ 0} of norms. It is a nuclear space

forming the infinite-dimensional Gel’fand triple (�)⊂ (L2)⊂ (�)∗. Moreover, we have

the following continuous inclusions:

(�)⊂ (
�q

)⊂ (
�p

)⊂ (
L2)⊂ (

�−p
)⊂ (

�−q
)⊂ (�)∗, q ≥ p ≥ 0. (2.6)

We note that by letting E = L2(R), we get �′ = �′(R) and obtain the Gel’fand triple

(�) ⊂ (L2) ⊂ (�)∗. The elements in (�) are called test functions on �′ while the ele-

ments in (�)∗ are called generalized functions on �′. The bilinear pairing between (�)
and (�)∗ is denoted by 〈〈·,·〉〉. Ifϕ ∈ (L2) andψ∈ (�), then 〈〈ϕ,ψ〉〉 = (ϕ,ψ̄), where

(·,·) is the inner product on the complex Hilbert space (L2).
An elementϕ ∈ (�) has a unique representation asϕ =∑∞

n=0 In(fn), fn ∈ �⊗̂nc with

the norm

‖ϕ‖2
p =

∞∑
n=0

n!
∣∣fn∣∣2

p <∞, ∀p ≥ 0. (2.7)

Similarly, an element φ ∈ (�)∗ can be written as φ =∑∞
n=0 In(Fn), Fn ∈ (�′c)⊗̂n with

the norm

‖φ‖2
−p =

∞∑
n=0

n!
∣∣Fn∣∣2

−p, for some p ≥ 0. (2.8)

The bilinear pairing between φ and ϕ is then represented as

〈〈φ,ϕ〉〉= ∞∑
n=0

n!
〈
Fn,fn

〉
. (2.9)

It is possible to construct wider Gel’fand triples than the one above; for example, by

Kondratiev and Streit (see [6, Chapter 4] and the Cochran-Kuo-Sengupta (CKS) space

in [1]).

2.2. Hermite polynomials, Wick tensors, and multiple Wiener integrals. The Her-

mite polynomial of degree n with parameter σ 2 is defined by

: xn :σ2= (−σ 2)nex2/2σ2
Dnxe−x

2/2σ2
. (2.10)

These polynomials have a generating function given by

∞∑
n=0

tn

n!
: xn :σ2= etx−(1/2)σ2t2 . (2.11)

The following formulas are also helpful:

: xn :σ2 =
[n/2]∑
k=0

(
n
2k

)
(2k−1)!!

(−σ 2)kxn−2k, (2.12)

xn =
[n/2]∑
k=0

(
n
2k

)
(2k−1)!!σ 2k : xn−2k :σ2 , (2.13)

where (2k−1)!!= (2k−1)(2k−3)···3·1 with (−1)!!= 1.
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The trace operator is the element τ ∈ (�′c)⊗̂2 defined by

〈τ,ξ⊗η〉 = 〈ξ,η〉, ξ,η∈ �c. (2.14)

Let x ∈ �′. The Wick tensor : x⊗n : of an element x is defined as

: x⊗n :=
[n/2]∑
k=0

(
n
2k

)
(2k−1)!!(−1)kx⊗(n−2k)⊗̂τ⊗k, (2.15)

where τ is the trace operator. The following formula similar to (2.12) is also important

for Wick tensors, that is,

x⊗n =
[n/2]∑
k=0

(
n
2k

)
(2k−1)!! : x⊗(n−2k) : ⊗̂τk. (2.16)

For x ∈ �′ and ξ ∈ �, the following equalities related to Wick tensors hold:

〈
: x⊗n :,ξ⊗n

〉=: 〈x,ξ〉n :|ξ|20 ,
∥∥〈 : x⊗n :,ξ⊗n

〉∥∥
0 =

√
n!|ξ|n0 . (2.17)

In order to make mathematical computations concerning multiple Wiener integrals

easier, they are expressed in terms of Wick tensors. This is achieved via two statements

as follows (see [6, Theorem 5.4]):

(1) let h1,h2, . . . ∈ E be orthogonal and let n1+n2+··· = n. Then for almost all

x ∈ �′, we have

〈
: x⊗n :,h⊗n1

1 ⊗̂h⊗n2
2 ⊗̂···〉=:

〈
x,h1

〉n1 :|h1|20 :
〈
x,h2

〉n2 :|h2|20 ··· ; (2.18)

(2) let f ∈ E⊗̂nc . Then for almost all x ∈ �′,

In(f )(x)=
〈

: x⊗n :,f
〉
, (2.19)

where In(f )(x) is a multiple Wiener integral of order n. With this relationship,

we are able to write test functions and generalized functions in terms of Wick

tensors as follows: any element ϕ ∈ (L2) can be expressed as

ϕ(x)=
∞∑
n=0

〈
: x⊗n :,fn

〉
, µ-a.e. for x ∈ �′, fn ∈ E⊗̂nc . (2.20)

Suppose ϕ ∈ (�). Since �⊗̂nc is dense in E⊗̂nc , we have

ϕ(x)=
∞∑
n=0

〈
: x⊗n :,fn

〉
, fn ∈ �⊗̂nc . (2.21)

For an element φ∈ (�p)∗, it follows that

φ(x)=
∞∑
n=0

〈
: x⊗n :,Fn

〉
, Fn ∈

(
�′p

)⊗̂n. (2.22)
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2.3. The white noise differential operator. Let y ∈ �′ andϕ = 〈: x⊗n :,f 〉 ∈ (�). It

can be shown that the directional derivative

lim
t→0

ϕ(x+ty)−ϕ(x)
t

=n〈 : x⊗(n−1) :,y⊗̂1f
〉
, (2.23)

where y⊗̂1 is the unique continuous and linear map from E⊗̂nc into E⊗̂(n−1)
c such that

y⊗̂1g⊗n = 〈y,g〉g⊗(n−1), g ∈ Ec. (2.24)

This shows that the function ϕ has Gâteaux derivative Dyϕ. For general ϕ(x) =∑∞
n=0〈: x⊗n :,fn〉, fn ∈ �⊗̂nc , we define an operator Dy on (�) as

Dyϕ(x)≡
∞∑
n=1

n
〈

: x⊗(n−1) :,y⊗̂1fn
〉
. (2.25)

It can be shown that Dy is a continuous linear operator on (�) (see [6, Section 9.1]).

By the duality between (�)∗ and (�), the adjoint operator D∗y of Dy can be defined by

〈〈
D∗yΦ,ϕ

〉〉= 〈〈
Φ,Dyϕ

〉〉
, Φ ∈ (�)∗, ϕ ∈ (�). (2.26)

Now let � be the Schwartz space of all infinitely differentiable functions f : R → R
such that for all n,k∈N,

sup
x∈R

∣∣∣∣xn
(
dk

dxk

)
f(x)

∣∣∣∣<∞. (2.27)

If we take y = δt , the Dirac delta function at t, then

(1) ∂t ≡ Dδt is called the white noise differential operator, the Hida differential

operator, or the annihilation operator,

(2) ∂∗t ≡D∗δt is called the creation operator,

(3) for ϕ ∈ (�), Ḃ(t)ϕ ≡ ∂tϕ+∂∗t ϕ is called white noise multiplication.

2.4. The S-transform. Let Φ ∈ (�)∗. The S-transform is a function on �c defined

by

S(Φ)(ξ)= 〈〈
Φ, : e〈·,ξ〉 :

〉〉
, ξ ∈ �c. (2.28)

The S-transform is an injective function because the exponential functions span a

dense subset of (�). IfΦ ∈ (L2), the S-transform ofΦ is also called the Segal-Bargmann

transform of Φ.

3. White noise integrals. From now on, our reference Gel’fand triple is (�)β ⊂
(L2)⊂ (�)∗β . A white noise integral is a type of integral for which the integrand takes

values in the space (�)∗β of generalized functions. As an example, consider the integral∫ t
0 e−c(t−s) : Ḃ(s)2 : ds where Ḃ is white noise. In this case, the integrand is an (�)∗β -

valued measurable function on [0, t]. A second example is the integral
∫ t
0 ∂∗s Φ(s)ds

where Φ is also (�)∗β -valued. If
∫ t
0 ∂∗s Φ(s)ds is a random variable in (L2), then the

white noise integral is called a Hitsuda-Skorokhod integral. So in general, if Φ is an
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(�)∗β -valued function on a measurable space (M,�,m), a white noise integral is an

integral of the type

∫
E
Φ(u)dm(u), E ∈�. (3.1)

Despite the fact that (�)∗β is not a Banach space, these integrals can be defined in the

Pettis or Bochner sense by the use of the S-transform.

3.1. White noise integrals in the Pettis sense. We need to define
∫
EΦ(u)dm(u) as

the generalized function in (�)∗β that satisfies the following:

S
(∫

E
Φ(u)dm(u)

)
(ξ)=

∫
E
S
(
Φ(u)

)
(ξ)dm(u), ξ ∈ �c. (3.2)

In particular, if Φ(u) is replaced by ∂∗uΦ(u), we have

S
(∫

E
∂∗uΦ(u)dm(u)

)
(ξ)=

∫
E
ξ(u)S

(
Φ(u)

)
(ξ)dm(u), ξ ∈ �c. (3.3)

The above two equations then call for the following conditions on the function Φ to

be satisfied:

(a) S(Φ(u))(ξ) is measurable for any ξ ∈ �c ;

(b) S(Φ(·))(ξ)∈ L1(M) for any ξ ∈ �c ;

(c) for any E ∈ �, the function
∫
E S(Φ(u))(·)dm(u) is a generalized function in

(�)∗β . (This can be verified by using the characterization theorem for generalized

functions.)

The statement in (c) can be rewritten as

〈〈∫
E
Φ(u)dm(u), : e〈·,ξ〉 :

��
=
∫
E

〈〈
Φ(u), : e〈·,ξ〉 :

〉〉
dm(u), ξ ∈ �c. (3.4)

Since the linear span of the set {: e〈·,ξ〉 :, ξ ∈ �c} is dense in (�)∗β , the above equation

implies that

〈〈∫
E
Φ(u)dm(u),ϕ

��
=
∫
E

〈〈
Φ(u),ϕ

〉〉
dm(u), ϕ ∈ (�)∗β . (3.5)

In terms of the S-transform, Pettis integrability can be characterized using the follow-

ing theorem. For a proof, see [6, Section 13.4].

Theorem 3.1. Suppose that the function Φ :M → (�)∗β satisfies the following condi-

tions:

(1) S(Φ(·))(ξ) is measurable for any ξ ∈ �c ;

(2) there exists nonnegative numbers K, a, and p such that

∫
M
S
(
Φ(u)

)
(ξ)dm(u)≤K exp

[
a|ξ|2/(1−β)p

]
, ξ ∈ �c. (3.6)
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Then Φ is Pettis integrable and for any E ∈�,

S
(∫

E
Φ(u)dm(u)

)
(ξ)=

∫
E
S
(
Φ(u)

)
(ξ)dm(u), ξ ∈ �c. (3.7)

3.2. White noise integrals in the Bochner sense. We know that (�)∗β is not a Banach

space but (�)∗β =∪p≥0(�p)∗β and each of the spaces (�p)∗β is a separable Hilbert space.

With this in mind, the white noise integral
∫
EΦ(u)dm(u) can be defined in the Bochner

sense in the following way. Let Φ :M → (�)∗β , then Φ is Bochner integrable if it satisfies

the following conditions:

(1) Φ is weakly measurable;

(2) there existsp ≥ 0 such thatΦ(u)∈(�p)∗β for almost allu∈M and ‖Φ(·)‖−p,−β ∈
L1(M).

If Φ is Bochner integrable, then we have

∥∥∥∥
∫
M
Φ(u)dm(u)

∥∥∥∥−p,−β ≤
∫
M

∥∥Φ(u)∥∥−p,−βdm(u). (3.8)

The following theorem contains the conditions for Bochner integrability in terms of

the S-transform and helps estimate the norm ‖Φ(u)‖−p,−β of Φ. See [6, Section 13.5].

Theorem 3.2. Let Φ :M → (�)∗β be a function satisfying the following conditions:

(1) S(Φ(·))(ξ) is measurable for any ξ ∈ �c ;

(2) there exists p ≥ 0 and nonnegative functions L ∈ L1(M), b ∈ L∞(M), and an

m-null set E0 such that

∣∣S(Φ(u))(ξ)∣∣≤ L(u)exp
[
b(u)|ξ|2/(1−β)p

]
, ∀ξ ∈ �c, u∈ Ec0 . (3.9)

Then Φ is Bochner integrable and
∫
M Φ(u)dm(u)∈ (�q)∗β for any q > p such that

e2
(

2‖b‖∞
1−β

)1−β∥∥A−(q−p)∥∥2
HS < 1, (3.10)

where ‖b‖∞ is the essential supremum of b. It turns out that for such q,

∥∥∥∥
∫
M
Φ(u)dm(u)

∥∥∥∥−q,−β ≤ ‖L‖1

(
1−e2

(
2‖b‖∞
1−β

)∥∥A−(q−p)∥∥2
HS

)−1/2

. (3.11)

An example worth noting is the following. Let F ∈ �′(R) and f ∈ L2(R), f ≠ 0.

Then F(〈·,f 〉) is a generalized function and if the Fourier transform F̂ ∈ L∞(R), then

F(〈·,f 〉) is represented as a white noise integral by

F
(〈·,f 〉)= 1√

2π

∫
R
eiu〈·,f 〉F̂(u)du. (3.12)

In this case, Φ(u)= eiu〈·,f 〉F̂(u), u∈R and it satisfies the conditions in Theorem 3.1

for Pettis integrability.
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4. An extension of the Itô integral. A number of extensions of the Itô integral

exist. One such extension is by Itô [4], where he extended it to stochastic integrals for

integrands which may be anticipating. In particular, he showed that
∫ 1
0 B(1)dB(t) =

B(1)2. In [2], a special type of integral called the Hitsuda-Skorokhod integral (see

Definition 4.1 below) was introduced as a motivation to obtain an Itô type formula

for such functions as θ(B(t),B(c)), t < c, for a �2-function θ. (We note here that B(c),
t < c, is not �t measurable.)

Consider the Gel’fand triple (�)β ⊂ (L2) ⊂ (�)∗β which comes from the Gel’fand

triple �(R) ⊂ L2(R) ⊂ �′(R) as described in Section 2.1. Suppose Φ : [a,b]→ (�)∗β is

Pettis integrable. Then the function t→ ∂∗t Φ(t) is also Pettis integrable and (3.3) holds.

Definition 4.1. Letϕ : [a,b]→ (�)∗β be Pettis integrable. The white noise integral∫ b
a ∂

∗
t ϕ(t)dt is called the Hitsuda-Skorokhod integral ofϕ if it is a random variable in

(L2).

Consider a stochastic process ϕ(t) in the space L2([a,b]×�′(R)) which is nonan-

ticipating. The Itô integral
∫ b
a ϕ(t)dB(t) for the process ϕ(t) can be expressed as a

white noise integral in the Pettis sense. The following theorem due to Kubo and Take-

naka [5] (see also [6, Theorem 13.12] for a proof) implies that the Hitsuda-Skorokhod

integral is an extension of the Itô integral toϕ(t) which might be anticipating. A look

at Example 4.3 will throw some light on the difference between Itô’s extension and

the Hitsuda-Skorokhod integral.

Theorem 4.2. Let ϕ(t) be nonanticipating and
∫ b
a ‖ϕ(t)‖2

0dt <∞. Then the func-

tion ∂∗t ϕ(t), t ∈ [a,b], is Pettis integrable and∫ b
a
∂∗t ϕ(t)dt =

∫ b
a
ϕ(t)dB(t), (4.1)

where the right-hand side is the Itô integral of ϕ.

Example 4.3. Letϕ(t)= B(1), t ≤ 1. It was observed earlier that by Itô’s extension,∫ 1
0 B(1)dB(t) = B(1)2. However, for the Hitsuda-Skorokhod integral,

∫ 1
0 ∂

∗
t B(1)dt =

B(1)2−1. This equality can be verified by using the S-transform in the following way.

Since B(1)= 〈·,1[0,1)〉, we have (SB(1))(ξ)= ∫ 1
0 ξ(s)ds. Now, by the use of (3.3),

S
(∫ 1

0
∂∗t B(1)dt

)
(ξ)=

∫ 1

0
ξ(t)

(
SB(1)

)
(ξ)dt

=
∫ 1

0

∫ 1

0
ξ(t)ξ(s)dtds

= S
〈

: ·⊗2 :,1⊗2
[0,1)

〉
(ξ).

(4.2)

Therefore,
∫ 1
0 ∂

∗
t B(1)dt = 〈: ·⊗2 :,1⊗2

[0,1)〉. We can apply the results from Section 2.2

concerning Wick tensors to get∫ 1

0
∂∗t B(1)dt =:

〈·,1[0,1)〉2
:1

= 〈·,1[0,1)〉2−1

= B(1)2−1.

(4.3)
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We clearly see a difference between the integral
∫ 1
0 B(1)dB(t) as defined by Itô and

the Hitsuda-Skorokhod integral of B(1).

Definition 4.4. For ϕ =∑∞
n=0〈: ·⊗n :,fn〉, we define

Nϕ =
∞∑
n=1

n
〈

: ·⊗n :,fn
〉
. (4.4)

The operator N is called the number operator. Moreover, the power Nr , r ∈R, of the

number operator is defined in the following way: for ϕ =∑∞
n=0〈: ·⊗n :,fn〉,

Nrϕ =
∞∑
n=1

nr
〈

: ·⊗n :,fn
〉
. (4.5)

For any r ∈ R, Nr is a continuous linear operator from (�)β into itself and from

(�)∗β into itself. Let �1/2 be the Sobolev space of order 1/2 for the Gel’fand triple

(�)β ⊂ (L2)⊂ (�)∗β . In other words, for [a,b]⊂R+, �1/2 will denote the set ofϕ ∈ (L2)
such that (∂tϕ)t∈[a,b] ∈ L2([a,b];(L2)). The norm on �1/2 will be defined as

‖ϕ‖2
1/2 =

∥∥(N+1)1/2ϕ
∥∥2

0

=
∥∥∥∥∥∥

∞∑
n=0

(n+1)1/2
〈

: ·⊗n :,fn
〉∥∥∥∥∥∥

2

0

=
∞∑
n=0

n!(n+1)
∣∣fn∣∣2

0

=
∞∑
n=0

n!
∣∣fn∣∣2

0+
∞∑
n=0

n!n
∣∣fn∣∣2

0

= ‖ϕ‖2
0+

∥∥N1/2ϕ
∥∥2

0.

(4.6)

Now ifϕ is given with the property thatN1/2ϕ ∈ (L2), and t ∈ [a,b], then ‖N1/2ϕ‖2
0 =∫ b

a ‖∂tϕ‖2
0dt. Hence,

‖ϕ‖2
1/2 = ‖ϕ‖2

0+
∫ b
a

∥∥∂tϕ∥∥2
0dt, (4.7)

and so

�1/2 ≡ {
ϕ ∈ (

L2); ‖ϕ‖1/2 <∞
}
. (4.8)

For more information on Sobolev spaces and the Number operator, see [7].

The following theorem gives a condition on the function ϕ(t) in order for∫ b
a ∂

∗
t ϕ(t)dt to be a Hitsuda-Skorokhod integral. This condition is determined by the

number operator N and the space �1/2 plays a major role. The proof for this con-

dition can be found in [6, Theorem 13.16]. We first identify the space L2([a,b];(L2))
with the space L2([a,b]×�′).
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Theorem 4.5. Let ϕ ∈ L2([a,b];�1/2), then
∫ b
a ∂

∗
t ϕ(t)dt is a Hitsuda-Skorokhod

integral and

∥∥∥∥
∫ b
a
∂∗t ϕ(t)dt

∥∥∥∥
2

0
=
∫ b
a

∥∥ϕ(t)∥∥2
0dt+

∫ b
a

∫ b
a

((
∂tϕ(s),∂sϕ(t)

))
0dsdt, (4.9)

where ((·,·))0 is the inner product on (L2). Moreover,

∣∣∣∣∣
∫ b
a

∫ b
a

((
∂tϕ(s),∂sϕ(t)

))
0dsdt

∣∣∣∣∣≤
∫ b
a

∥∥N1/2ϕ(t)
∥∥2

0dt. (4.10)

As a remark, when ϕ ∈ L2([a,b];(L2)) is nonanticipating, then the inner product

((∂tϕ(s),∂sϕ(t)))0 = 0 for almost all (s,t) ∈ [a,b]2. Therefore, when attempting to

compute the L2-norm for the integral by using (4.9), we obtain the following very

useful result that relates the norms:

∥∥∥∥
∫ b
a
∂∗t ϕ(t)dt

∥∥∥∥
2

0
=
∫ b
a

∥∥ϕ(t)∥∥2
0dt =

∥∥∥∥
∫ b
a
ϕ(t)dB(t)

∥∥∥∥
2

0
. (4.11)

The Hitsuda-Skorokhod integral is related to two other extensions of the Itô integral:

the forward and backward integrals. Forϕ ∈ L2([a,b];�1/2), let ∂t+ϕ(t) and ∂t−ϕ(t)
be the right-hand white noise derivative and left-hand white noise derivative of ϕ,

respectively (see [6, Definition 13.25]). The forward integral of ϕ is defined as

∫ b
a
ϕ(t)dB

(
t+
)≡

∫ b
a
∂t+ϕ(t)dt+

∫ b
a
∂∗t ϕ(t)dt, (4.12)

provided that both integrals on the right-hand side are random variables in (L2). In

particular,

∫ 1

0
B(1)dB

(
t+
)= B(1)2 (4.13)

which agrees with
∫ 1
0 B(1)dB(t) = B(1)2 as shown by Itô’s in [4]. Similarly, the back-

ward integral of ϕ is defined as

∫ b
a
ϕ(t)dB

(
t−
)≡

∫ b
a
∂t−ϕ(t)dt+

∫ b
a
∂∗t ϕ(t)dt. (4.14)

5. An anticipating Itô formula. In this section, the main result is presented. It is

about a particular generalization of the ordinary Itô formula to a class of functions

that are anticipating.

Let B(t) be a Brownian motion given by B(t) = 〈·,1[0,t)〉. For a �2-function θ, a

simple case of the Itô formula is given by

θ
(
B(t)

)= θ(B(a))+
∫ t
a
θ′
(
B(s)

)
dB(s)+ 1

2

∫ t
a
θ′′

(
B(s)

)
ds, (5.1)

where 0≤ a≤ t.
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If we assume that θ(B(·)),θ′(B(·)),θ′′(B(·)) ∈ L2([a,b];(L2)), then Theorem 4.2

enables us to write the above equality as

θ
(
B(t)

)= θ(B(a))+
∫ t
a
∂∗s θ′

(
B(s)

)
ds+ 1

2

∫ t
a
θ′′

(
B(s)

)
ds, (5.2)

where
∫ t
0 ∂∗s θ′(B(s))ds is a Hitsuda-Skorokhod integral. In [6], the following two gen-

eralizations of the white noise version of the Itô formula in (5.2) were considered:

(a) θ(X(t),B(c)) for a �2-function θ and a Wiener integral X(t), t ≤ c;
(b) θ(B(t)) with a generalized function θ in �′(R).
The main tool for the proofs of the formulas obtained for the above two general-

izations is the S-transform. The result for the generalization of (a) is stated below

as a theorem and as earlier explained, my new formula will be using this particular

generalization. (See [6, Theorem 13.21] for a complete proof.)

Theorem 5.1. Let 0 ≤ a ≤ c ≤ b, let X(t) = ∫ t
a f (s)dB(s) be a Wiener integral with

f ∈ L∞([a,b]) and let θ(x,y) be a �2-function on R2 such that

θ
(
X(·),B(c)), ∂2θ

∂x2

(
X(·),B(c)), ∂2θ

∂x∂y
(
X(·),B(c)) (5.3)

are all in L2([a,b];(L2)). Then for any a≤ t ≤ b, the integral

∫ t
a
∂∗s

(
f(s)

∂θ
∂x

(
X(s),B(c)

))
ds (5.4)

is a Hitsuda-Skorokhod integral and the following equalities hold in (L2):
(1) for a≤ t ≤ c,

θ
(
X(t),B(c)

)= θ(X(a),B(c))+
∫ t
a
∂∗s

(
f(s)

∂θ
∂x

(
X(s),B(c)

))
ds

+
∫ t
a

(
1
2
f(s)2

∂2θ
∂x2

(
X(s),B(c)

)+f(s) ∂2θ
∂x∂y

(
X(s),B(c)

))
ds,

(5.5)

(2) for c < t ≤ b,

θ
(
X(t),B(c)

)= θ(X(a),B(c))+
∫ t
a
∂∗s

(
f(s)

∂θ
∂x

(
X(s),B(c)

))
ds

+ 1
2

∫ t
a
f (s)2

∂2θ
∂x2

(
X(s),B(c)

)
ds+

∫ c
a
f (s)

∂2θ
∂x∂y

(
X(s),B(c)

)
ds.

(5.6)

As hinted earlier, the proof of the main result in this paper is a limiting process of

the above theorem. The following is the main result.

Theorem 5.2. Let f ∈ L∞([a,b]) and X(t)= ∫ t
a f (s)dB(s) be a Wiener integral. Let

F ∈�1/2 and θ ∈�2
b(R2) such that

θ
(
X
(
(·),F)), ∂2θ

∂x2

(
X(·),F), ∂2θ

∂x∂y
(
X(·),F) (5.7)
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are all in L2([a,b];(L2)). Then for any a≤ t ≤ b, the integral

∫ t
a
∂∗s

(
f(s)

∂θ
∂x

(
X(s),F

))
ds (5.8)

is a Hitsuda-Skorokhod integral and the following equality holds in (L2):

θ
(
X(t),F

)= θ(X(a),F)+
∫ t
a
∂∗s

(
f(s)

∂θ
∂x

(
X(s),F

))
ds

+ 1
2

∫ t
a
f (s)2

∂2θ
∂x2

(
X(s),F

)
ds+

∫ t
a
f (s)

(
∂sF

) ∂2θ
∂x∂y

(
X(s),F

)
ds.

(5.9)

The proof is presented in the following steps. First it will be shown that for F =
B(c), 0 ≤ a ≤ c ≤ b the above formula holds and that it coincides with the formula

in Theorem 3.1. Secondly a special choice of F will be taken in the following way:

we know that the span of the set {: e〈·,g〉 :; g ∈ L2(R)} is dense in (L2). If we let

g1,g2, . . . ,gk ∈ L2(R) and

FN = λ1

N∑
m=1

1
m!

〈
: ·⊗m :,g⊗m1

〉

+λ2

N∑
m=1

1
m!

〈
: ·⊗m :,g⊗m2

〉
...

+λk
N∑
m=1

1
m!

〈
: ·⊗m :,g⊗mk

〉
,

(5.10)

then, as N →∞, FN → F in (L2) where F = λ1 : e〈·,g1〉 :+λ2 : e〈·,g2〉 :+···+λk : e〈·,gk〉 :. In

our proof we will assume that FN → F in �1/2. Also, g will be taking on the form g =∑k
j=1αj1[0,cj), k ∈ N, αj,cj ∈ R. The formula will then be generalized to θ(X(t),FN)

with FN chosen as above. An extension to θ(X(t),F) with general F ∈ �1/2 will be

achieved via a limiting process.

Proof of Theorem 5.2. In the proof of [6, Theorem 1] which uses the S-trans-

form, there are two components that were treated separately: (1) when a≤ t ≤ c, and

(2) when c < t ≤ b.

Now suppose that F = B(c), 0 ≤ a ≤ c ≤ b. We claim that our new formula in the

above theorem is correct when we replace F with B(c). To see that this is correct, it is

enough to show that B(c)∈�1/2. We proceed by computing the norm for B(c) in the

space �1/2. Indeed, since B(c)= 〈·,1[0,c)〉, we have

∂sB(c)= 1[0,c)(s),∥∥B(c)∥∥2
0 =

∥∥〈·,1[0,c)〉∥∥2
0 =

∣∣1[0,c)
∣∣2

0

=
∫
R

1[0,c)(s)ds =
∫ c

0
ds = c.

(5.11)
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Therefore,

∥∥B(c)∥∥�1/2 =
∥∥B(c)∥∥2

0+
∫ b
a

∥∥∂sB(c)∥∥2
0ds = c+(b−a). (5.12)

Hence, B(c)∈�1/2. Now since ∂sB(c)= 1[0,c)(s), we then have

∫ t
a
f (s)

(
∂sB(c)

) ∂2θ
∂x∂y

(
X(s),B(c)

)
ds =




∫ t
a
f (s)

∂2θ
∂x∂y

(
X(s),B(c)

)
ds if a≤ c,

∫ c
a
f (s)

∂2θ
∂x∂y

(
X(s),B(c)

)
ds if c < t ≤ b.

(5.13)

Thus, the two components (1) and (2) above in Theorem 3.1 are put together as one

piece so as to satisfy the above theorem.

In general, suppose a ≤ c1 ≤ c2 ≤ ··· ≤ cp ≤ b. Let θ̃(x,y1, . . . ,yp) be a function

defined on Rp+1 and of class �2. Then we have the following formula which is simply

a generalization of the one above:

θ̃
(
X(t),B

(
c1
)
, . . . ,B

(
cp
))= θ̃(X(a),B(c1

)
, . . . ,B

(
cp
))

+
∫ t
a
∂∗s

(
f(s)

∂θ̃
∂x

(
X(s),B

(
c1
)
, . . . ,B

(
cp
)))
ds

+ 1
2

∫ t
a
f (s)2

∂2θ̃
∂x2

(
X(s),B

(
c1
)
, . . . ,B

(
cp
))
ds

+
∫ t
a
f (s)

p∑
j=1

(
∂sB

(
cj
)) ∂2θ̃
∂x∂yj

(
X(s),B

(
c1
)
, . . . ,B

(
cp
))
ds.

(5.14)

For a suitable function G :Rp →R and of class �2, we can transform the function θ̃
to coincide with θ as a function defined on R2 in the following way:

θ̃
(
X(t),B

(
c1
)
, . . . ,B

(
cp
))= θ(X(t),G(B(c1

)
, . . . ,B

(
cp
)))= θ(x,y). (5.15)

With this transformation and using the chain rule, the above integral equation then

takes on the following form:

θ
(
X(t),G

(
B
(
c1
)
, . . . ,B

(
cp
)))

= θ(X(a),G(B(c1
)
, . . . ,B

(
cp
)))

+
∫ t
a
∂∗s

(
f(s)

∂θ
∂x

(
X(s),G

(
B
(
c1
)
, . . . ,B

(
cp
))))

ds

+ 1
2

∫ t
a
f (s)2

∂2θ
∂x2

(
X(s),G

(
B
(
c1
)
, . . . ,B

(
cp
)))
ds

+
∫ t
a
f (s)

p∑
j=1

(
∂sB

(
cj
)) ∂2θ
∂x∂y

(
X(s),G

(
B
(
c1
)
, . . . ,B

(
cp
)))

× ∂
∂yj

G
(
B
(
c1
)
, . . . ,B

(
cp
))
ds.

(5.16)
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Now let

FN = λ1

N∑
m=1

1
m!

〈
: ·⊗m :,

(p(1)∑
j=1

α(1)j 1[0,c(1)j )

)⊗m〉

+λ2

N∑
m=1

1
m!

〈
: ·⊗m :,

(p(2)∑
j=1

α(2)j 1[0,c(2)j )

)⊗m〉

...

+λk−1

N∑
m=1

1
m!

〈
: ·⊗m :,

(p(k−1)∑
j=1

α(k−1)
j 1[0,c(k−1)

j )

)⊗m〉

+λk
N∑
m=1

1
m!

〈
: ·⊗m :,

(p(k)∑
j=1

α(k)j 1[0,c(k)j )

)⊗m〉
.

(5.17)

We know that for any n∈N,

〈
: ·⊗n :,1⊗n[0,c)

〉
=
[n/2]∑
k=0

(
n
2k

)
(2k−1)!!(−c)kB(c)n−2k =

m∑
i=1

aiB(c)i (5.18)

for some constants ai and m. Some summands could as well be zero. This then be-

comes a polynomial in B(c). We can similarly write FN as a polynomial in Brownian

motion as follows:

FN = λ1

∑
m(1)1 ···m(1)p

am(1)1 ···m(1)p B
(
c(1)1

)m(1)1 ···B
(
c(1)p

)m(1)p

+λ2

∑
m(2)1 ···m(2)p

am(2)1 ···m(2)p B
(
c(2)1

)m(2)1 ···B
(
c(2)p

)m(2)p

...

+λk
∑

m(k)1 ···m(k)p
am(k)1 ···m(k)p B

(
c(k)1

)m(k)1 ···B
(
c(k)p

)m(k)p
,

(5.19)

where again some coefficients a
m(j)1 ···m(j)p could be zero for some j. Suppose FN is

restricted to only one summand out of the k summands above, that is, suppose that

FN = λ1

∑
m(1)1 ···m(1)p

am(1)1 ···m(1)p B
(
c(1)1

)m(1)1 ···B
(
c(1)p

)m(1)p
. (5.20)

Then we see that the function FN is a good choice for our composition. That is, we let

FN =G(B(c(1)1 ), . . . ,B(c(1)p )) so that the following ensues:

θ
(
X(t),G

(
B
(
c(1)1

)
, . . . ,B

(
c(1)p

)))

= θ
(
X(t),λ1

∑
m(1)1 ···m(1)p

am(1)1 ···m(1)p B
(
c(1)1

)m(1)1 ···B
(
c(1)p

)m(1)p )
.

(5.21)
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Moreover,

∂
∂yj

G
(
B
(
c(1)1

)
, . . . ,B

(
c(1)p

))

= λ1

∑
m(1)1 ···m(1)p

am(1)1 ···m(1)p B
(
c(1)1

)m(1)1 ···m(1)
j B

(
c(1)j

)m(1)j −1 ···B
(
c(1)p

)m(1)p
.

(5.22)

Therefore,

θ
(
X(t),FN

)= θ(X(a),FN)+
∫ t
a
∂∗s

(
f(s)

∂θ
∂x

(
X(s),FN

))
ds

+ 1
2

∫ t
a
f (s)2

∂2θ
∂x2

(
X(s),FN

)
ds

+
∫ t
a

p∑
j=1

f(s)
(
∂sB

(
c(1)j

)) ∂2θ
∂x∂y

(
X(s),FN

)
λ1

×
∑

m(1)1 ···m(1)p
am(1)1 ···m(1)p B

(
c(1)1

)m(1)1 ···m(1)
j

×B
(
c(1)j

)m(1)j −1 ···B
(
c(1)p

)m(1)p
ds.

(5.23)

Now, by the product rule,

∂s(ϕψ)=
(
∂sϕ

)
ψ+ϕ(

∂sψ
)
. (5.24)

We then incorporate this rule into the last summand of the most recent equation (5.23)

above to obtain

p∑
j=1

f(s)
∂2θ
∂x∂y

(
X(s),FN

)
λ1

∑
m(1)1 ···m(1)p

am(1)1 ···m(1)p B
(
c(1)1

)m(1)1 ···m(1)
j

×B
(
c(1)j

)m(1)j −1 ···B
(
c(1)p

)(1)
∂sB

(
c(1)j

)

= f(s) ∂
2θ

∂x∂y
(
X(s),FN

)(
∂sFN

)
.

(5.25)

Then, by linearity, the above result can be extended to all the k summands in the

original expression for FN . Hence for FN ∈�1/2, the formula in our theorem is true;

that is,

θ
(
X(t),FN

)= θ(X(a),FN)+
∫ t
a
∂∗s

(
f(s)

∂θ
∂x

(
X(s),FN

))
ds

+ 1
2

∫ t
a
f (s)2

∂2θ
∂x2

(
X(s),FN

)
ds+

∫ t
a
f (s)

(
∂sFN

) ∂2θ
∂x∂y

(
X(s),FN

)
ds.

(5.26)

As stated earlier, by assumption, FN → F as N →∞ in the �1/2-norm, where

F = λ1 : e〈·,g1〉 :+λ2 : e〈·,g2〉 :+···+λk : e〈·,gk〉 : (5.27)
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with

gn =

p(n)∑
j=1

α(n)j 1[0,c(n)j )



⊗m

, 1≤n≤ k. (5.28)

Therefore, there exists a subsequence {FNk}k≥1 ⊂ {FN}N≥1 such that FNk → F as

k→∞ almost surely. For such a subsequence, the following is true:

θ
(
X(t),FNk

)
= θ

(
X(a),FNk

)
+
∫ t
a
∂∗s

(
f(s)

∂θ
∂x

(
X(s),FNk

))
ds

+ 1
2

∫ t
a
f (s)2

∂2θ
∂x2

(
X(s),FNk

)
ds+

∫ t
a
f (s)

(
∂sFNk

) ∂2θ
∂x∂y

(
X(s),FNk

)
ds.

(5.29)

We claim that the following convergences hold almost surely as k→∞:

θ
(
X(t),FNk

)
�→ θ(X(t),F), (5.30)

θ
(
X(a),FNk

)
�→ θ(X(a),F), (5.31)

1
2

∫ t
a
f (s)2

∂2θ
∂x2

(
X(s),FNk

)
ds �→ 1

2

∫ t
a
f (s)2

∂2θ
∂x2

(
X(s),F

)
ds, (5.32)

∫ t
a
f (s)

(
∂sFNk

) ∂2θ
∂x∂y

(
X(s),FNk

)
ds �→

∫ t
a
f (s)

(
∂sF

) ∂2θ
∂x∂y

(
X(s),F

)
ds, (5.33)

∫ t
a
∂∗s

(
f(s)

∂θ
∂x

(
X(s),FNk

))
ds �→

∫ t
a
∂∗s

(
f(s)

∂θ
∂x

(
X(s),F

))
ds. (5.34)

Proof of (5.30) and (5.31). Because of continuity of θ, since FNk → F almost

surely, those two convergences also hold almost surely.

Proof of (5.32). Let ω ∈ �′(R) be fixed. Since FNk converges, it is a bounded se-

quence, that is, there exists M > 0 such that |FNk(ω)| ≤ M for all k. Therefore, the

function given by ∂2θ/∂x2 : [a,b]×[−M,M]→ R is continuous on compact sets and

hence uniformly continuous. Thus given ε > 0, there exists δ > 0 such that whenever

|x1−x2|2+|y1−y2|2 < δ, we have

∣∣∣∣ ∂2θ
∂x2

(
x1,y1

)− ∂2θ
∂x2

(
x2,y2

)∣∣∣∣< 2ε
‖f‖2∞(t−a)

. (5.35)

Also, by the convergence of {FNk}k≥1, there exists a number N(ε) depending on ε
such that

k≥N(ε) �⇒ ∣∣FNk(ω)−F(ω)∣∣< δ, (5.36)
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which implies that

1
2

∣∣∣∣
∫ t
a
f (s)2

(
∂2θ
∂x2

(
X(s),FNk(ω)

)− ∂2θ
∂x2

(
X(s),F(ω)

))
ds

∣∣∣∣
≤ ‖f‖

2∞
2

∫ t
a

∣∣∣∣ ∂2θ
∂x2

(
X(s),FNk(ω)

)− ∂2θ
∂x2

(
X(s),F(ω)

)∣∣∣∣ds
<
‖f‖2∞

2
2ε

‖f‖2∞(t−a)
(t−a)

= ε

(5.37)

and so (5.32) is proved.

Proof of (5.33). It is known that in a Hilbert space H, if xn→ x and yn→y , then

〈xn,yn〉 → 〈x,y〉 where 〈·,·〉 is the inner product on H. By taking H = L2([a,t]) with

the Lebesgue measure it follows then that

∫ t
a
f (s)

(
∂sFNk(ω)

) ∂2θ
∂x∂y

(
X(s),FNk(ω)

)
ds ≡

〈
∂·FNk(ω),f (·)

∂2θ
∂x∂y

(
X(·),FNk(ω)

)�
,

∫ t
a
f (s)

(
∂sF(ω)

) ∂2θ
∂x∂y

(
X(s),F(ω)

)
ds ≡

〈
∂·F(ω),f (·) ∂

2θ
∂x∂y

(
X(·),F(ω))�.

(5.38)

By the same uniform continuity argument used above in proving (5.33), as k→∞,

we see that

f(·) ∂
2θ

∂x∂y
(
X(·),FNk(ω)

)
�→ f(·) ∂

2θ
∂x∂y

(
X(·),F(ω)) (5.39)

in L2([a,t]).
Now FNk → F in �1/2. Hence FNk → F in (L2) and

∫ t
a ‖∂sFNk−∂sF‖2

0ds → 0 as k→∞.

Therefore a change of integrals is justified and the following is true:

∫
�′(R)

∫ t
a

∣∣∂sFN(ω)−∂sF(ω)∣∣2dsdµ(ω)

=
∫ t
a

∫
�′(R)

∣∣∂sFN(ω)−∂sF(ω)∣∣2dµ(ω)ds

=
∫ t
a

∥∥∂sFN−∂sF∥∥2
(L2) ds �→ 0.

(5.40)

Let

∫ t
a

∣∣∂sFNk(ω)−∂sF(ω)∣∣2ds =HNk(ω). (5.41)

Then, {HNk(ω)}k≥1 is a sequence of positive functions and by the above result,

HNk(ω)→ 0 in L1(µ). Therefore,

∂·FNk(ω) �→ ∂·F(ω) (5.42)

in L2([a,t]) and so (5.33) is true.
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Proof of (5.34). We approximate the (L2)-norm of the difference of the two in-

tegrals. We claim the norm of this difference goes to zero. For convenience, use the

following notation. Let

f(s)
∂θ
∂x

(
X(s),FNk(ω)

)=ϕNk(s),
f (s)

∂θ
∂x

(
X(s),F(ω)

)=ϕ(s).
(5.43)

Then by Theorem 4.5, we have

∥∥∥∥
∫ t
a
∂∗s ϕNk ds−

∫ t
a
∂∗s ϕds

∥∥∥∥
2

0

=
∫ t
a

∥∥ϕNk−ϕ∥∥2
0ds+

∫ t
a

∫ t
a

((
∂sϕNk(u)−∂sϕ(u),∂uϕNk(s)−∂uϕ(s)

))
0duds,

(5.44)

where ((·,·))0 is the inner product on (L2).
Since FNk(ω)→ F(ω) in (L2), we can choose a subsequence so that the convergence

is almost surely. Thus for such a subsequence, there exists Ω0 such that P{Ω0} = 1

and forω fixed, we have FNk(ω)→ F(ω). Then, by the mean value theorem, for each s,

∣∣∣∣ ∂θ∂x
(
X(s),FNk(ω)

)− ∂θ
∂x

(
X(s),F(ω)

)∣∣∣∣
=
∣∣∣∣ ∂2θ
∂x∂y

(
X(s),ξ(ω)

)∣∣∣∣·∣∣FNk(ω)−F(ω)∣∣,
(5.45)

where ξ(ω) is between FNk(ω) and F(ω). Sinceθ∈�2
b(R2), |(∂2θ/∂x∂y)(X(s),ξ(ω))|

<C for some constant C . So,

∥∥∥∥ ∂θ∂x
(
X(s),FNk(ω)

)− ∂θ
∂x

(
X(s),F(ω)

)∥∥∥∥
0
≤ C∥∥FNk(ω)−F(ω)∥∥0. (5.46)

As earlier noted, the convergence of the subsequence {FNk}k≥1 of numbers implies

that for some fixed constant M > 0, the quantity ‖FNk(ω)− F(ω)‖0 ≤ M , for all k.

Therefore, using the fact that FNk(ω)→ F(ω) in (L2), we have

∥∥ϕNk−ϕ∥∥
0 ≤ ‖f‖∞C

∥∥FNk−F∥∥0 �→ 0, (5.47)

and also

∥∥ϕNk−ϕ∥∥
0 ≤ ‖f‖∞C

∥∥FNk−F∥∥0 ≤ ‖f‖∞CM. (5.48)

Since this bound is independent of both s and k, by the bounded convergence theorem,

as k→∞,

∫ t
a

∥∥ϕNk−ϕ∥∥2
0ds �→ 0. (5.49)
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The convergence of the second summand of the right-hand side of (5.44) goes as

follows:

∣∣∣∣
∫ t
a

∫ t
a

((
∂sϕNk(u)−∂sϕ(u),∂uϕNk(s)−∂uϕ(s)

))
0duds

∣∣∣∣
≤
∫ t
a

∫ t
a

∥∥∂sϕNk(u)−∂sϕ(u)∥∥0

∥∥∂uϕNk(s)−∂uϕ(s)∥∥0duds

≤ 1
2

∫ t
a

∫ t
a

(∥∥∂sϕNk(u)−∂sϕ(u)∥∥2
0+

∥∥∂uϕNk(s)−∂uϕ(s)∥∥2
0

)
duds

=
∫ t
a

∫ t
a

∥∥∂uϕNk(s)−∂uϕ(s)∥∥2
0duds

≤
∫ t
a

(∫
R

∥∥∂uϕNk(s)−∂uϕ(s)∥∥2
0du

)
ds.

(5.50)

The number operator, N can also be expressed as N = ∫
R ∂∗s ∂s ds (see [6]). Hence, for

any ϕ ∈ L2([a,b];�1/2), we have

∥∥N1/2ϕ
∥∥2

0 =
(
(Nϕ,ϕ)

)
0 =

∫
R

((
∂∗s ∂sϕ,ϕ

))
0ds

=
∫
R

((
∂sϕ,∂sϕ

))
0ds =

∫
R

∥∥∂sϕ∥∥2
0ds.

(5.51)

Therefore, by this result,

∫ t
a

(∫
R

∥∥∂uϕNk(s)−∂uϕ(s)∥∥2
0du

)
ds =

∫ t
a

∥∥N1/2∂uϕNk(s)−∂uϕ(s)
∥∥2

0ds. (5.52)

But N1/2 is a bounded operator from �1/2 into (L2). Therefore, by the same mean

value theorem argument, since FNk → F also in �1/2 by our original assumption, we

have

∣∣∣∣
∫ t
a

∫ t
a

((
∂sϕNk(u)−∂sϕ(u),∂uϕNk(s)−∂uϕ(s)

))
0duds

∣∣∣∣ �→ 0 (5.53)

as k→∞.

Therefore, it has been shown that the convergence in (5.34) is true in the (L2)-
norm. We then pick a further subsequence of the subsequence {FNk}k≥1 also denoted

by {FNk}k≥1 such that convergence hold almost surely. This then proves all the con-

vergences necessary and completes the proof of the theorem.
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