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1. Introduction. Consider the positive integral operator

(Kf)(x)=
∫∞

0
k(x,y)f(y)dy, x ≥ 0, f ≥ 0, k≥ 0, (1.1)

where the kernel k satisfies

k(λx,λy)= λ−1k(x,y), λ > 0, (1.2)∫∞
0
k(1, t)dt = 1, (1.3)

exp
(
−
∫∞

0
k(1, t) logtdt

)
= C0 <∞, (1.4)

k(t,x)≤ C1 exp
(∫∞

0
k(x,y) logk(t,y)dy

)
, (1.5)

s−1k(s,x)≤ C2

∫∞
0
y−1k(y,s)k(y,x)dy, (1.6)

for some constants Ci > 0, i = 0,1,2, and all s,t,x,y . It is further assumed that the

right-hand sides of (1.5) and (1.6) exist a.e. and are finite.

Let (Ekf)(x) = exp(K logf)(x), then it is well known (cf. [1, 2, 3, 4], and the ref-

erences therein) that for operators K whose kernel satisfies (1.2), (1.3), and (1.4), the

condition

sup
y>0

∫∞
0

[
y
x
k(x,y)

]
w(x)dx = C3 <∞, (1.7)

where w(x) = u(x)exp(K log(1/v))(x), u,v weight functions, implies that the in-

equality

∫∞
0
u(x)

(
Ekf

)
(x)dx ≤ C4

∫∞
0
v(x)f(x)dx (1.8)

is satisfied.
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For specific operators, largely of Hardy type, it was shown in [1, 3, 4] that (1.7) is

also necessary for (1.8). However, in these studies, it was implicitly assumed that Ekf
(and Eu(1/v)) exists a.e. and is measurable whenever vf is integrable. Note, however,

(cf. [2]) that logf(t) may be two signed, or it may be undefined whenever f(t) = 0.

Moreover, Ekf may fail to exist even though vf is integrable. For example, if K is the

Hardy averaging operator

(Kf)(x)= x−1
∫ x

0
f(y)dy, x ≥ 0, f ≥ 0, (1.9)

that is, k(x,y)=x−1χ(0,x)(y), then with f(y)= e−1/y , (K lnf)(x) and hence (Ekf)(x)
fails to exist, although the right-hand side of (1.8) is finite if v(x)= x−2.

These pathological situations may be avoided by a slight extension of the Lebesgue

integral, so that in these cases Ekf takes the value zero.

In this paper, we give conditions on f (and v) which insures the measurability

and existence a.e. of Ekf . Moreover, we give necessary and sufficient conditions on

the weight functions u and v—namely (1.7)—for which the exponential-logarithmic

inequality (1.8) is satisfied. The novelty here is that (1.8) implies (1.7) for all operators

K whose kernel satisfy the easily verifiable conditions (1.2), (1.3), (1.4), (1.5), and (1.6).

These main results are proved in the next section. In Section 3, we illustrate the main

result by proving weight characterizations for the Riemann-Liouville operator with

index not less than one, and a Laplace transform type operator. These results seem

to be new.

As usual, we will take exp(−∞) = 0, log0 = −∞, and expressions of the form 0·∞
are taken to be zero.

2. Main results. Following the arguments in [2], we define for real x

|x|+ =max{0,x}, |x|− =max{0,−x} (2.1)

and agree that for the real measurable function f(x), the (extended) Lebesgue integral∫
f(x)dx =

∫ ∣∣f(x)∣∣+dx−
∫ ∣∣f(x)∣∣−dx (2.2)

exists, even if the second integral on the right is +∞. In this case, the integral on the

left-hand side has assigned value −∞. The first integral on the right-hand side is not

permitted to have value +∞, so that under these conventions the integral exists if and

only if |f(x)|+ is integrable.

In the next result, we establish the measurability and existence of Ekf for general

kernel k. The argument is similar to [2, Lemma 1] and is given here for completeness.

Lemma 2.1. Assume that the kernel k satisfies (1.2) and (1.3). If f is a nonnegative

measurable function, such that | logf(t)|+/t is integrable on (0,∞), then Ekf(x) exists

a.e. in [0,∞) and is measurable.

Proof. For t ∈ (−∞,∞), let g(t) = | logf(et)|+ and h(t) = e−tk(1,e−t). Then by

hypotheses∫∞
−∞

∣∣g(t)∣∣dt =
∫∞
−∞

∣∣ logf
(
et
)∣∣+dt =

∫∞
0

∣∣ logf(y)
∣∣+dyy <∞, (2.3)
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where y = et , and by (1.3)∫∞
−∞

∣∣h(t)∣∣dt =
∫∞
−∞
e−tk

(
1,e−t

)
dt =

∫∞
0
k(1,y)dy = 1, (2.4)

where e−t = y . Since both h and g are integrable on (−∞,∞), its convolution exists

a.e., that is, ∫∞
−∞
g(s−t)h(t)dt =

∫∞
−∞

∣∣ logf
(
es−t

)∣∣+e−tk(1,e−t)dt
=
∫∞

0

∣∣ logf
(
esy

)∣∣+k(1,y)dy
=
∫∞

0

∣∣ logf(xy)
∣∣+k(1,y)dy

=
∫∞

0

∣∣ logf(t)
∣∣+k

(
1,
t
x

)
dt
x

=
∫∞

0
k(x,t)

∣∣ logf(t)
∣∣+dt

(2.5)

via obvious changes of variables and (1.2). Hence the last integral exists a.e. for

x ∈ (0,∞) and is measurable. Thus

(K logf)(x)=
∫∞

0
k(x,t) logf(t)dt x > 0 (2.6)

exists a.e. with values in [−∞,∞) and is measurable. Hence Ekf(x) exists a.e. in [0,∞)
as asserted.

Remark 2.2. In the same way, we show that∫∞
0
k(x,t) logk(y,t)dt (2.7)

exists a.e. for fixed x andy , and is measurable, whenever | logk(y,t)|+/t is integrable.

Only now we define

gy(t)=
∣∣ logk

(
y,et

)∣∣+, hx(t)= e−tk
(
x,e−t

)
, t ∈ (−∞,∞). (2.8)

The weight characterization for which (1.8) is satisfied is the following.

Theorem 2.3. Suppose that u and v are positive measurable functions and that

| log(1/v(t))|+/t is integrable. Let w(x) = u(x)exp(K log(1/v))(x), where K is the

operator (1.1) (with k satisfying (1.2), (1.3), (1.4), (1.5), and (1.6)). If f is nonnegative,

measurable on (0,∞) such that | logf(t)|+/t is integrable, then (1.8) is satisfied if

and only if (1.7) holds. Moreover, if C4 is the smallest constant satisfying (1.8), then

C3/(C1C2)≤ C4 ≤ C0C3.

Proof. Since t−1| log(1/v)|+ and t−1| logf |+ are integrable,w(x) and (K logf)(x)
exist a.e. by Lemma 2.1. Moreover, since∫∞

0
u(x)exp(K logf)(x)dx =

∫∞
0
u(x)exp

[
(K logfv)+

(
K log

1
v

)]
(x)dx

=
∫∞

0
w(x)exp(K logfv)(x)dx

(2.9)
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and (K logfv)(x) exists a.e., (1.8) has the equivalent form
∫∞

0
w(x)exp(K logg)(x)dx ≤ C4

∫∞
0
g(x)dx (2.10)

on setting g = vf . Now by (1.2) and (1.4),
∫∞

0
w(x)exp

(∫∞
0
k(x,y) logg(y)dy

)
dx

=
∫∞

0
w(x)exp

(∫∞
0
k(x,xt)

(
logg(xt)

)
xdt

)
dx

=
∫∞

0
w(x)exp

(∫∞
0
k(1, t)

[
log

(
tg(xt)

)− logt
]
dt
)
dx

= C0

∫∞
0
w(x)exp

(∫∞
0
k(1, t) log

(
tg(xt)

)
dt
)
dx

≤ C0

∫∞
0
w(x)

∫∞
0
k(1, t)tg(xt)dtdx

= C0

∫∞
0
w(x)

∫∞
0
k
(

1,
y
x

)
y
x
g(y)

dy
x
dx

= C0

∫∞
0
g(y)

∫∞
0

[
y
x
k(x,y)

]
w(x)dxdy

≤ C0C3

∫∞
0
g(y)dy,

(2.11)

via obvious changes of variables, Jensen’s inequality, and an interchange of order of

integration. Thus, (2.10), or equivalently (1.8), holds with C4 ≥ C0C3.

To prove the converse, define for fixed t > 0, gt(x) = k(t,x). Since (1.5) is satis-

fied and the right-hand side of (1.5) exist, it follows that (K loggt)(x) exists a.e. Also

applying (1.2) and (1.3) shows that
∫∞

0
gt(x)dx =

∫∞
0
k(t,x)dx = 1. (2.12)

Hence by (2.10) with g replaced by gt ,∫∞
0
w(x)exp

(
K loggt

)
(x)dx ≤ C4. (2.13)

Applying (1.5) and (2.13) yields

(Kw)(t)=
∫∞

0
k(t,x)w(x)dx

≤ C1

∫∞
0
w(x)

(
exp

∫∞
0
k(x,y) logk(t,y)dy

)
dx

= C1

∫∞
0
w(x)exp

(
K loggt

)
(x)dx ≤ C1C4.

(2.14)

Now define K1 by

(
K1h

)
(x)= x

∫∞
0
y−1k(y,x)h(y)dy, (2.15)
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then by (1.7) the result follows if (K1w)(x) ≤ C for some constant C and all x > 0.

But by (1.2) and (1.3),

(
K11

)
(x)=

∫∞
0
k(y,x)

x
y
dy =

∫∞
0
k
(

1,
x
y

)
xy−2dy =

∫∞
0
k(1,s)ds = 1 (2.16)

with s = x/y , and since we have seen that (Kw)(t)≤ C1C4, it suffices to show that

(
K1w

)
(x)≤ C1(K1(Kw)

)
(x) (2.17)

is satisfied for some C1. For then, (K1w)(x)≤ C1C1C4. But by (1.6)

(
K1(Kw)

)
(x)= x

∫∞
0
k(y,x)y−1(Kw)(y)dy

= x
∫∞

0
y−1k(y,x)

∫∞
0
k(y,s)w(s)dsdy

=
∫∞

0
w(s)

[
x
∫∞

0
y−1k(y,x)k(y,s)dy

]
ds

≥ 1
C2

∫∞
0
w(s)

x
s
k(s,x)ds = 1

C2

(
K1w

)
(x),

(2.18)

so that (2.17) is satisfied with C1 = C2. Hence (1.7) is satisfied with C3 ≤ C1C2C4, and

the result follows.

3. Applications. If f and v satisfy the conditions of Theorem 2.3 and Pβ is the op-

erator defined by

(
Pβf

)
(x)= βx−β

∫ x
0
tβ−1f(t)dt, β > 0, x > 0, (3.1)

then

∫∞
0
u(x)exp

(
Pβ logf

)
(x)dx ≤ C

∫∞
0
v(x)f(x)dx (3.2)

if and only if

sup
y>0

∫∞
y

[
yβ

xβ+1

]
w(x)dx <∞, (3.3)

where w(x)=u(x)exp[Pβ log(1/v)](x).
This follows from Theorem 2.3 provided that k(x,y) = βx−βyβ−1χ(0,x)(y) satis-

fies conditions (1.2), (1.3), (1.4), (1.5), and (1.6). However, straightforward calculations

show that these conditions are indeed satisfied. Since this result follows also from [1,

Theorem 2.2], we omit the details.

The next application concerns the Riemann-Liouville operator

(
Iαf

)
(x)= α

xα

∫ x
0
(x−y)α−1f(y)dy, α≥ 1, x > 0, (3.4)
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Corollary 3.1. Suppose thatu and v are positive functions and t−1| log(1/v(t))|+
is integrable. If f is nonnegative, measurable, and t−1| logf(t)|+ is integrable, then

∫∞
0
u(x)exp

(
Iα logf

)
(x)dx ≤ C

∫∞
0
v(x)f(x)dx (3.5)

is satisfied if and only if

sup
y>0

αy
∫∞
y
x−α−1(x−y)α−1w(x)dx = C3 <∞, (3.6)

where w(x)=u(x)exp(Iα log(1/v))(x).

Proof. We need to show that the kernel k(x,y) = α/xα(x−y)α−1χ(0,x)(y) sat-

isfies (1.2), (1.3), (1.4), (1.5), and (1.6), for then the result follows from Theorem 2.3.

Clearly (1.2) and (1.3) are satisfied and since

∫∞
0
k(1, t) log(t)dt =α

∫ 1

0
(1−t)α−1 logtdt, α≥ 1, (3.7)

converges, (1.4) also holds. To show that (1.5) is satisfied, we must show that for some

C1 > 0

α
tα
(t−x)α−1χ(0,t)(x)≤C1 exp

∫ x
0

α
xα
(x−y)α−1 log

(
α
tα
(t−y)α−1χ(0,t)(y)

)
dy (3.8)

holds. If y ≥ t, log((α/tα)(t−y)α−1χ(0,t)(y))=−∞, so the right-hand side of (3.8) is

zero. But since y ≤ x, it follows that t ≤ x so the left-hand side of (3.8) is also zero

and the inequality holds in this case trivially. Now if 0 < y < t, then the right-hand

side of (3.8) is

C1 exp
{
α
xα

∫ x
0
(x−y)α−1

[
log

α
tα
+ log(t−y)α−1

]
dy

}

= C1 exp
[
α
xα

(
log

α
tα

)
xα

α

]
exp

α(α−1)
xα

∫ x
0
(x−y)α−1 log(t−y)dy

= C1α
tα

exp
α(α−1)
xα

J,

(3.9)

where

J =
∫ x

0
(x−y)α−1 log(t−y)dy = x

α

α
log(t)− 1

α

∫ x
0
(x−y)α 1

t−y dy

≥ x
α

α
logt− x

α

α

∫ x
0

dy
t−y = x

α

α
logt+ x

α

α
[
log(t−x)− logt

]

= x
α

α
log(t−x).

(3.10)

Substituting into (3.9) shows that (3.9) is not smaller than

C1α
tα

exp
α(α−1)
xα

(
xα

α
log(t−x)

)
= C1α

tα
(t−x)α−1 (3.11)

so that (3.8) and hence (1.5) is satisfied with C1 = 1.
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Finally, we will show that (1.6) holds, that is, for some C2 > 0

α
xα+1

(s−x)α−1χ(0,s)(x)

≤ C2

∫∞
0

α
yα

(y−s)α−1χ(0,y)(s)
α
yα

(y−x)α−1χ(0,y)(x)
dy
y

(3.12)

is satisfied. But sinceχ(0,y)(s)=χ(s,∞)(y),χ(0,y)(x)=χ(x,∞)(y), andχ(s,∞)(y)χ(x,∞)(y)
= χ(max(s,x),∞)(y), the term on the right-hand side in (3.12) is

C2α2
∫∞

0
y−2α−1(y−s)α−1(y−x)α−1χ(max(s,x),∞)(y)dy. (3.13)

If x < s this is

C2α2
∫∞
s
y−2α−1(y−s)α−1(y−x)α−1dy

≥ C2α2(s−x)α−1
∫∞
s
y−2α−1(y−s)α−1dy

= C2α2(s−x)α−1s−α−1
∫∞

1
t−2α−1(t−1)α−1dt (y = st),

(3.14)

so that (3.12) and hence (1.6) holds with C2 = (α
∫∞
1 t−2α−1(t−1)α−1dt)−1. If x ≥ s,

(3.12) holds trivially. This proves the corollary.

In the final result, we consider the operator

(
Laf

)
(x)= 1

xΓ(1+1/a)

∫∞
0
e−(y/x)

a
f (y)dy, a≥ 1, x ≥ 0, (3.15)

where Γ is the Gamma function.

Corollary 3.2. Suppose that u,v,w, and f satisfy the conditions of Corollary 3.1.

Then ∫∞
0
u(x)exp

(
La logf

)
(x)dx ≤ C

∫∞
0
v(x)f(x)dx, a≥ 1, (3.16)

is satisfied if and only if

sup
y>0

y
Γ(1+1/a)

∫∞
0

e−(y/x)a

x2
w(x)dx <∞. (3.17)

Proof. The result follows from Theorem 2.3 if one shows that the kernel

k(x,y)= 1
xΓ(1+1/a)

e−(y/x)
a

(3.18)

satisfies conditions (1.2), (1.3), (1.4), (1.5), and (1.6). Clearly, (1.2) is satisfied and so is

(1.3) since by definition of the Gamma function∫∞
0
k(1,y)dy = 1

Γ(1+1/a)

∫∞
0
e−y

a
dy

= 1
aΓ(1+1/a)

∫∞
0
e−tt1/a−1dt

= (1/a)Γ(1/a)
Γ(1+1/a)

= 1.

(3.19)
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Moreover, since

∫∞
0
k(1, t) logtdt = 1

Γ(1+1/a)

∫∞
0
e−t

a
logtdt (3.20)

converges, then (1.4) holds.

To show that (1.5) is satisfied, we must show that for some C1 > 0

1
tΓ(1+1/a)

e−(x/t)
a ≤ C1 exp

(∫∞
0

e−(y/x)a

xΓ(1+1/a)
log

(
e−(y/t)a

tΓ(1+1/a)

)
dy

)
(3.21)

holds. But the integral on the right-hand side is

1
xΓ(1+1/a)


 log

(
1

tΓ(1+1/a)

)∫∞
0
e−(y/x)

a
dy−

∫∞
0
e−(y/x)

a
(
y
t

)a
dy




= 1
xΓ(1+1/a)

[
log

(
1

tΓ(1+1/a)

)
xΓ
(

1+ 1
a

)
− x

a+1

taa
Γ
(

1+ 1
a

)]

= log

(
1

tΓ(1+1/a)

)
−
(
x
t

)a
· 1
a
≥ log

(
1

tΓ(1+1/a)

)
−
(
x
t

)a
,

(3.22)

and taking exponents, we obtain (3.21) with C1 = 1.

Finally,

∫∞
0
y−1k(y,s)k(y,x)dy ≥ 1[

Γ(1+1/a)
]2

∫∞
s
y−3e−(s/y)

2−(x/y)2 dy

≥ e−1e−(x/s)a[
Γ(1+1/a)

]2

∫∞
s
y−3dy = e−1

2Γ(1+1/a)
k(s,x)
s

,
(3.23)

so that (1.6) is also satisfied. This proves the result.

Note that for a= 1, Corollary 3.2 is [1, Theorem 2.6].
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