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ON THE TIME-DEPENDENT PARABOLIC WAVE EQUATION
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One approach to the study of wave propagation in a restricted domain is to approximate
the reduced Helmholtz equation by a parabolic wave equation. Here we consider wave prop-
agation in a restricted domain modelled by a parabolic wave equation whose properties
vary both in space and in time. We develop a Wentzel-Kramers-Brillouin (WKB) formalism
to obtain the asymptotic solution in noncaustic regions and modify the Lagrange manifold
formalism to obtain the asymptotic solution near caustics. Associated wave phenomena
are also considered.
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1. Introduction. One of the most fundamental equations in applied mathematics

and mathematical physics is the wave equation

∂2Ψ(r ,t)
∂x2

+ ∂
2Ψ(r ,t)
∂y2

+ ∂
2Ψ(r ,t)
∂z2

= ε(r ,t)∂
2Ψ(r ,t)
∂t2

. (1.1)

In this equation r = (x,y,z) represents the spatial coordinates, t is the time, Ψ(r ,t)
is the wave function, and ε(r ,t) is a continuous function that characterizes the spatial

and temporal properties of the propagation medium. When the medium may be mod-

elled as time-invariant, ε(r ,t)→ ε(r). Further, if the propagation is monochromatic

and time-harmonic, (1.1) becomes the reduced Helmholtz equation

∂2Ψ(r)
∂x2

+ ∂
2Ψ(r)
∂y2

+ ∂
2Ψ(r)
∂z2

+τ2ε(r)Ψ(r)= 0, (1.2)

where τ is a frequency-related parameter.

Because no general approach exists to solve the reduced Helmholtz equation ex-

actly, often situation-specific techniques are employed to determine approximate so-

lutions. One such technique, originally developed by Leontovich and Fock [11] for

ionospheric propagation, is the parabolic approximation. In the parabolic approxima-

tion, it is assumed that the propagation is restricted to a narrow cone of angles in a

particular direction; for Leontovich and Fock, the propagation was directed along the

surface of the earth. Later Kravtsov [10] formalized their approach within an asymp-

totic Wentzel-Kramers-Brillouin (WKB) structure. In 1973, Tappert and Hardin [14]

adapted the parabolic approximation for use in underwater acoustics, and subse-

quently DeSanto [5] examined the accuracy of the approach in the context of un-

derwater acoustics. More recently, the parabolic approximation has been employed in
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varied geophysical contexts from meteorology to seismology (see [3]). In some atmo-

spheric models, however, the time variation of the medium is significant and cannot

be neglected [15]; consequently, a development based on (1.1) is necessary.

Our purpose here is to provide a parabolic approximation formalism for the full

wave equation analogous to that provided by Kravtsov for the reduced Helmholtz

equation. As in Kravtsov’s development, the basis for this formalism is the multi-

dimensional asymptotic WKB structure. Both caustic and noncaustic regions are con-

sidered. Further, some wave phenomena usually associated with the full asymptotic

wave equation are considered in the context of the parabolic wave equation for both

caustic and noncaustic regions.

2. Formalism. Although the parabolic approximation allows the properties of the

medium to vary in each of the three dimensions, for a better comparison with Leon-

tovich and Fock and with Kravtsov, the specific form of the wave equation we consider

is

∂2Ψ(r ,t)
∂x2

+ ∂
2Ψ(r ,t)
∂y2

+ ∂
2Ψ(r ,t)
∂z2

= ε(x,y,t)∂
2Ψ(r ,t)
∂t2

, (2.1)

that is, the medium profile ε is cyclic in one variable. To parallel Kravtsov, we assume

a solution of the form

Ψ(r ,t)=W(r ,t)eiτz. (2.2)

Then, substituting (2.2) into (2.1) leads to

∂2W
∂x2

+ ∂
2W
∂y2

+ ∂
2W
∂z2

+2iτ
∂W
∂z

+(iτ)2W = ε(x,y,t)∂
2W
∂t2

. (2.3)

Next, the principal assumption of the parabolic approximation is applied, namely,

that propagation is restricted to a narrow region in a given direction, taken here to be

along the z-axis. This restriction can also serve as justification for the cyclicity of ε in

the z-direction, that is, the properties of the medium are constant in the z-direction

over the considered range of propagation. Mathematically, this is modelled as

∣∣∣∣∂2W
∂z2

∣∣∣∣�
∣∣∣∣2iτ ∂W∂z

∣∣∣∣, (2.4)

turning (2.3) into

∂2W
∂x2

+ ∂
2W
∂y2

+2iτ
∂W
∂z

+(iτ)2W = ε(x,y,t)∂
2W
∂t2

. (2.5)

Then analogous to Kravtsov, away from caustics, we seek an asymptotic solution

of the form

W(x,y,z,t)∼
∞∑
n=0

An(x,y,z,t)(iτ)−n exp
{
iτφ(x,y,z,t)

}=O(τ−n), (2.6)
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where φ(x,y,z,t) is regarded as a phase and the An’s are amplitudes. Then, substi-

tuting (2.6) into (2.5) and regrouping by powers of iτ leads to

∑
n=0

{
(iτ)2

[(
∂φ
∂x

)2

+
(
∂φ
∂y

)2

+2
∂φ
∂z

+1−ε(x,y,t)
(
∂φ
∂t

)2
]
An

+(iτ)
[

2
∂φ
∂x
∂An
∂x

+2
∂φ
∂y
∂An
∂y

+2
∂An
∂z

−2ε(x,y,t)
∂φ
∂t
∂An
∂t

+
(
∂2φ
∂x2

+ ∂
2φ
∂y2

−ε(x,y,t)∂
2φ
∂t2

)
An
]

+(iτ)0
[
∂2An
∂x2

+ ∂
2An
∂y2

−ε(x,y,t)∂
2An
∂t2

]}
exp{iτφ} ∼ 0.

(2.7)

Next, introducing the wave vectors and frequency

p =∇φ, ω=−∂φ
∂t
, (2.8)

respectively, turns the coefficient of the (iτ)2 into an equation analogous to the

eikonal equation of geometrical optics

p2
x+p2

y+2pz+1−ε(x,y,t)ω2 = 0, (2.9)

which may be regarded as a Hamiltonian

H = p2
x+p2

y+2pz+1−ε(x,y,t)ω2. (2.10)

Then, the phase φ may be determined from the Hamilton equations

dr
dγ

=∇pH, dp
dγ

=−∇rH,
dt
dγ

=− ∂H
∂ω
,

dω
dγ

= ∂H
∂t
,

(2.11)

where γ is a ray-path parameter. Specifically, the Hamilton equations lead to the tra-

jectories

r = r(γ,σ), p = p(γ,σ),
t = t(γ,σ), ω=ω(γ,σ), (2.12)

where σ is a parametrized initial condition. Then, inversion of the time and coordi-

nate transformations yields γ = γ(t,r) and σ = σ(t,r). After substituting for γ and

σ in the wave vector and frequency equations, an integration along the trajectories

determines the phase

φ(x,y,z,t)=
∫
p ·dr −ωdt, (2.13)

(see [6, pages 125–128]). Upon determination of the phase, the transport equation for

the amplitudes proceeds from the iτ and (iτ)0 terms in (2.7). Specifically, introducing
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the wavevectors and frequency, (2.8), determines the transport equation

dAn
dt

+
(
∂2φ
∂x2

+ ∂
2φ
∂y2

−ε(x,y,t)∂
2φ
∂t2

)
An+ ∂

2An−1

∂x2
+ ∂

2An−1

∂y2
−ε(x,y,t)∂

2An−1

∂t2
= 0,

(2.14)

see [9, equation (14)] for the corresponding equation in autonomous media. With the

phase and transport equation determined, the complete off-caustic solution now fol-

lows from (2.2).

This procedure applies at most field points. At those space-time points where the

coordinate map becomes singular, that is, on the caustic curve where

det
(
∂(r)
∂(µ)

)
= 0, (2.15)

with µ = (γ,σ), however, the procedure predicts unbounded wave amplitudes. A re-

lated approach that is valid on the caustic curve is the Lagrange manifold formalism

developed by Maslov [12] and Arnol’d [2]. This approach has been adapted to the

parabolic approximation to the reduced wave equation [9] and to wave propagation

in time-dependent media [1, 7]. Here we adapt the procedure to consider caustics

associated with the time-dependent parabolic wave equation.

Near caustics, we assume that (2.5), that is, the parabolic wave equation, has a

solution of the form

W(x,y,z,t)−
∫
A(r ,p,t,τ)exp

{
iτφ(r ,p,t)

}
dp⊥ =O

(
τ−∞

)
, (2.16)

where p⊥ = (px,py). The amplitude A(r ,p,t,τ) = ∑
n=0An(r ,p,t)(iτ)−n and its

derivatives are assumed bounded and the phase φ(r ,p,t) has the form

φ(r ,p,t)= xpx+ypy+zpz−S
(
px,py,t

)
. (2.17)

Then, carrying the differentiation in (2.1) across the integral in (2.17) and introducing

the wavevectors and frequency from (2.8) leads to

∫
dp
{
(iτ)2

[
p2
x+p2

y+2pz+1−ε(x,y,t)ω2]An
+(iτ)

[
2px

∂An
∂x

+2py
∂An
∂y

+2
∂An
∂z

+2ω
∂An
∂t
ε(x,y,t)

]

+(iτ)0
[
∂2An
∂x2

+ ∂
2An
∂y2

−ε(x,y,t)∂
2An
∂t2

]
exp{iτφ}

}
∼O(τ−n).

(2.18)

The coefficient of the (iτ)2 term is Maslov’s Hamiltonian which is identical with (2.10),

H = p2
x+p2

y+2pz+1−ε(x,y,t)ω2. (2.19)

The integral in (2.18) may be evaluated at any caustic point (r ,t) using the stationary

phase technique

∇p⊥φ= 0, where ∇p⊥ = î
∂
∂px

+ ĵ ∂
∂py

, (2.20)



ON THE TIME-DEPENDENT PARABOLIC WAVE EQUATION 295

which turns the Hamiltonian on the caustic into the off-caustic eikonal equation of

geometrical optics and determines the time-parametrized Lagrange manifold

r⊥ =∇pS
(
p⊥, t

)
, (2.21)

where r⊥ = (x,y). A Lagrange manifold may be regarded as a coordinate transforma-

tion between configuration space and wavevector space specified by the generating

function S(p⊥, t). To determine S(p⊥, t), we again employ the Hamilton equations

(2.11) for r⊥ and p⊥ to find the trajectories (maps)

r⊥ = r⊥(γ,σ), p⊥ = p⊥(γ,σ),
t = t(γ,σ), ω=ω(γ,σ), (2.22)

where σ is again a parametrized initial condition. Next, the map (γ,σ) → (t,p⊥) is

inverted to obtain γ and σ as functions of t and p⊥. Then, substituting into the

coordinate space map determines the Lagrange manifold explicitly

r⊥ = r⊥
(
γ
(
p⊥, t

)
,σ
(
p⊥, t

))=∇p⊥S(p⊥, t), (2.23)

where time appears as a parameter [1, 7]. Finally, an integration along the trajectories

gives

S
(
p⊥, t

)=
∫ p
p0

r⊥ ·dp⊥, (2.24)

and hence the phase

φ(r ,p,t)= r ·p−S(p⊥, t). (2.25)

To determine a transport equation for the amplitudes, we form the Taylor expansion

of the Hamiltonian near the Lagrange manifold

p2
x+p2

y+2pz+1−ε(x,y,t)ω2 = p2
x+p2

y+2pz+1−ε
(
∂S
∂px

,
∂S
∂py

,t
)
ω2

+(r⊥−∇p⊥S)·D⊥ = (r⊥−∇p⊥S)·D⊥,
(2.26)

where

D⊥ =
∫ 1

0
∇r⊥H

[
ξ
(
r⊥−∇p⊥S

)+(r⊥−∇p⊥S),p,ω,t]dξ, (2.27)

that is, the remainder of the Taylor series. Then, substituting (2.26) into the integral

in (2.18) and performing a partial integration leads to

∫
dp⊥

{
(iτ)

[
p⊥ ·∇r⊥A+ω(x,y,t)

∂A
∂t
+(1)∂A

∂z
−∇p⊥ ·D⊥A−D⊥ ·∇p⊥A

]

+(iτ)0
[
∂2A
∂x2

+ ∂
2A
∂y2

−ε(x,y,t)∂
2A
∂t2

]}
exp{iτφ} ∼O(τ−n).

(2.28)
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Finally, introducing the non-Hamiltonian flow

ṙ⊥ = p⊥, ṗ⊥ = −D⊥,
ż = 1, ω̇= t, (2.29)

where · � d/dγ, into the integral leads to a transport equation for the amplitudes

dAn
dγ

−∇p⊥ ·DAn+
∂2An−1

∂x2
+ ∂

2An−1

∂y2
−ε(x,y,t)∂

2An−1

∂t2
= 0. (2.30)

With the phase and transport equation determined, the complete solution on the caus-

tic curve now follows from (2.2). Because explicit examples of the application of the

parabolic approximation to the reduced Helmholtz equation [7] and of related prop-

agation problems in time-varying media have already been detailed elsewhere [1, 7],

for brevity, we do not include others here.

3. Analysis. The parabolic approximation prevents a Hamiltonian analysis of the

ray-path in the direction of the approximation, here the z direction. In those direc-

tions unaffected by the approximation, however, the usual analysis stemming from

the Hamilton equations yields information corresponding to that obtained without

the approximation.

Since the WKB and Lagrange manifold algorithms determines identical Hamiltoni-

ans and eikonal equations on and off the caustic, the dispersion relation both on and

off the caustic becomes

ω2 = p
2
x+p2

y+pz+1

ε(x,y,t)
. (3.1)

Consequently, both off and on the caustic the phase velocities in thex andy directions

are

vpx = ω
px

=
√√√√p2

x+p2
y+2pz+1

ε(x,y,t)p2
x

,

vpy = ω
py

=
√√√√p2

x+p2
y+2pz+1

ε(x,y,t)p2
y

.

(3.2)

Further, from the dispersion relation, the group velocities are given by

Cgx = ∂ω
∂px

= px
ε(x,y,t)ω

,

Cgy = ∂ω
∂py

= py
ε(x,y,t)ω

.
(3.3)

We also note that Cgx and Cgy may also be determined from the Hamilton equations

if we replace the ray-path parameter γ with t (see [4]). In the x and y directions,
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the Hamilton equations then become as follows:

dx
dt

= ∂H/∂px
−∂H/∂ω = Cgx, (3.4a)

dy
dt

= ∂H/∂py
−∂H/∂ω = Cgy, (3.4b)

dt
dt
= −∂H/∂ω−∂H/∂ω = 1, (3.4c)

dpx
dt

=− ∂H/∂x
−∂H/∂ω =ω2 ∂ε

∂x
, (3.4d)

dpy
dt

=− ∂H/∂y
−∂H/∂ω =ω2 ∂ε

∂y
, (3.4e)

dω
dt

= ∂H/∂t
−∂H/∂ω =ω2 ∂ε

∂t
. (3.4f)

These equations apply both on and off the caustic curve. Consequently, in the direc-

tions in which the parabolic approximation is not applied, we observe the following

phenomenological prediction apply both on and off the caustic curve:

(1) the direction of propagation coincides with the group velocity, (3.4a) and (3.4b);

(2) any change in the local momentum (wavevector) in a given direction must be

the result of a spatial inhomogeneity acting in that direction. If the medium

is cyclic in a given direction, the momentum (wavevector) is conserved in that

direction, (3.4d) and (3.4e);

(3) any change in the frequency must be the result of a temporal inhomogeneity

in the medium. If the medium is autonomous, then the frequency is conserved,

(3.4f).

With regard to the location of the caustic curve, we note that the Lagrange manifold

approach allows the determination of the caustic directly from the phase. For any fixed

value of time, t, setting the Hessian determinant of the phase to zero, that is,

det
{
∂2φ

∂px∂py

}
= 0, (3.5)

yields sets of ordered pairs (px,py). Substitution of these sets into the Lagrange

manifold, (2.22), determines the caustic in coordinate space at a particular time. The

time evolution of the caustic proceeds by considering (3.5) for several values of time.

Corresponding to each value of time is a different set of ordered pairs which, when

substituted into the Lagrange manifold, traces the evolution of the caustic [1, 7].

4. Cylindrical coordinates. Because the parabolic approximation is often used with

wave propagation in cylindrical coordinates, for completeness, we include a synopsis

of the approach in cylindrical geometry. In cylindrical coordinates, the wave equation

becomes

1
r
∂
∂r

(
r
∂ψ
∂r

)
+ 1
r 2

∂2ψ
∂θ2

+ ∂
2ψ
∂z2

= ε(r ,θ,z,t)∂
2ψ
∂t2

. (4.1)
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In (4.1), r is regarded as a horizontal range, θ as an azimuthal angle, and z as a dis-

tance (depth or height) measured from the horizontal. In many such applications, r is

considered the “primary” direction of the propagation and the spatial inhomogeneity

appears in the z-direction, that is, ε is modelled as cyclic in r , see [13] for a thorough

exposition.

Analogous to (2.2), we assume a solution of the form

ψ(r ,θ,z,t)= r−1/2W(r ,θ,z,t)eiτr . (4.2)

Substitution of (4.2) into (4.1) yields

∂2W
∂r 2

+2iτ
∂W
∂r

+ ∂
2W
∂z2

+ 1
r 2

∂2W
∂θ2

+ 1
4r 2

W −(iτ)2W = ε(z,θ,t)∂
2W
∂t2

. (4.3)

In cylindrical coordinates the parabolic approximation, analogous to (2.4), is modelled

as

∣∣∣∣∂2W
∂r 2

∣∣∣∣�
∣∣∣∣2iτ ∂W∂r

∣∣∣∣. (4.4)

Further, for ranges far from the source, the term (1/4r 2)W may be neglected. Conse-

quently, the analysis begins with an equation of the form

2iτ
∂W
∂r

+ ∂
2W
∂z2

+ 1
r 2

∂2W
∂θ2

−(iτ)2W = ε(z,θ,t)∂
2W
∂t2

. (4.5)

Often, some situation-specific assumptions are employed to simplify this equation

further. At great ranges from a source the curvature of the wave front can be neglected,

allowing the variable change r dθ = dy , transforming (4.5) into

2iτ
∂W
∂r

+ ∂
2W
∂z2

+ ∂
2W
∂y2

−τ2W = ε(z,t)∂
2W
∂t2

, (4.6)

where the azimuthal variation of the medium is assumed small compared to the vari-

ations in depth/height and time. Equation (4.6) is of the same form as (2.5); conse-

quently, the algorithm above applies directly.

Another simplification of (4.5) arises from the assumption of azimuthal symmetry

leading to

2iτ
∂W
∂r

+ ∂
2W
∂z2

−(iτ)2W = ε(z,t)∂
2W
∂t2

. (4.7)

With the specification of a particular r and t coordinate pair, this becomes essentially

a one-dimensional problem, see [13] for a thorough analysis for the related reduced

Helmholtz equation and [8] for a simplified algorithm applicable at caustics.
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