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Let X be a nonorientable Klein surface (KS in short), that is a compact nonorientable sur-
face with a dianalytic structure defined on it. A Klein surface X is said to be q-hyperelliptic
if and only if there exists an involution Φ on X (a dianalytic homeomorphism of order
two) such that the quotient X/〈Φ〉 has algebraic genus q. q-hyperelliptic nonorientable
KSs without boundary (nonorientable Riemann surfaces) were characterized by means of
non-Euclidean crystallographic groups. In this paper, using that characterization, we deter-
mine bounds for the order of the automorphism group of a nonorientable q-hyperelliptic
Klein surface X such that X/〈Φ〉 has no boundary and prove that the bounds are at-
tained. Besides, we obtain the dimension of the Teichmüller space associated to this type
of surfaces.

2000 Mathematics Subject Classification: 30F50, 20H10.

1. Introduction. A Klein surface X (KS in short) is a compact surface with a di-

analytic structure defined on it [1]. Nonorientable KSs without boundary are also

called nonorientable Riemann surfaces. A dianalytic homeomorphism of X onto it-

self is called an automorphism of X. We say that a Klein surface X is q-hyperelliptic

if and only if there exists an involution Φ on X such that the quotient X/〈Φ〉 has

algebraic genus q. (If q = 0, then X is called hyperelliptic, and if q = 1, then X is

elliptic-hyperelliptic.)

Let X be a nonorientable q-hyperelliptic KS without boundary and Aut(x) the full

group of its automorphisms. It is known [11] that |Aut(x)| ≤ 84(p−1), where p is

the algebraic genus of X. This type of surfaces was characterized in [7] by means of

non-Euclidean Crystallographic groups, and there, the bound 84(p−1) was reduced

to 12(p−1) if the quotient X/〈Φ〉 has boundary.

In this paper, we improve the bound 84(p − 1) when X/〈Φ〉 has no boundary.

The new bound will depend on the parity of |Aut(X)|. That is made in Section 3.

In Section 4, we prove that the bounds are attained by showing different examples. In

Section 5, the dimension of the Teichmüller space associated to this type of surfaces

is obtained.

Similar characterizations for compact orientable KS without boundary (i.e., Riemann

surfaces) and compact KS with boundary have been obtained in [2, 3, 4, 10].

2. Preliminaries. Denote by � the hyperbolic plane, and by � its group of isome-

tries. A non-Euclidean crystallographic group Γ (NEC group in short) is a discrete sub-

group of � with compact quotient space X = �/Γ . NEC groups were introduced by
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Wilkie [14] and Macbeath [9] associated to each NEC group a symbol, called signature,

that determines its algebraic structure and has the following form:

σ =
(
g;±;

[
m1, . . . ,mr

]
;
{(
ni1, . . . ,nisi

)
, i= 1, . . . ,k

})
, (2.1)

where g, mi, and nij are integers satisfying g ≥ 0, mi ≥ 2, and nij ≥ 2; g is the

topological genus ofX. The sign determines the orientability ofX. The numbersmi are

the proper periods corresponding to cone points in X. The brackets (ni1, . . . ,nisi ) are

the period-cycles. The number k of period-cycles is equal to the number of boundary

components of X. The numbers nij are the periods of the period-cycle (ni1, . . . ,nisi )
also called link-periods, corresponding to corner points in the boundary of X. The

number p =αg+k−1 is called the algebraic genus of X, where α= 1 or 2, if the sign

of σ(Γ) is “−” or “+”, respectively. If the sign of σ is “+” and k= 0, then Γ is a Fuchsian

group.

An NEC group Γ with signature σ has the following presentation:

Generators:

xi, i= 1, . . . ,r ;

ei, i= 1, . . . ,k;

cij, i= 1, . . . ,k; j = 0, . . . ,si;

ai, bi, i= 1, . . . ,g, (if σ has sign +);
di, i= 1, . . . ,g, (if σ has sign −).

(2.2)

Relations:

ximi , i= 1, . . . ,r ;

cij−1
2 = cij2 = (cij−1cij

)nij , i= 1, . . . ,k; j = 1, . . . ,si;

ei−1ci0eicisi = 1, i= 1, . . . ,k;

x1 ···xre1 ···eka1b1a−1
1 b−1

1 ···agbga−1
g b−1

g = 1 (if σ has sign +),

x1 ···xre1 ···ekd2
1 ···d2

g = 1 (if σ has sign −).

(2.3)

It is known [9] that cyclic permutations of periods in period-cycles or arbitrary

permutations of proper periods in the signature τ of an NEC group Γ lead to a signature

τ′ of an NEC group Γ ′ isomorphic to Γ . Every Γ with signature (2.1) has associated a

fundamental region whose area, |Γ |, is also called the area of the group [12]:

|Γ | = 2π


αg+k−2+

r∑
i=1

(
1− 1

mi

)
+ 1

2

k∑
i=1

si∑
j=1

(
1− 1

nij

). (2.4)

An NEC group Γ with signature σ actually exists if and only if the right-hand side

of (2.4) is greater than zero [15]. If Γ ′ is a subgroup of an NEC group Γ of finite index

N, then it is also an NEC group and the following Hurwitz-Riemann formula holds:

∣∣Γ ′∣∣=N|Γ |. (2.5)
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LetX be a nonorientable Klein surface without boundary of topological genus g ≥ 3.

Then by [11], there exists an NEC group Γ with signature

(
g;−;[−];{−}) (2.6)

such that X =�/Γ .
An NEC group with signature (2.6) is said to be a nonorientable surface group. In [11]

it was proved that if G is a group of automorphisms of a nonorientable Klein surface

without boundary X =�/Γ , then G can be presented as a quotient Γ ′/Γ , for some NEC

group Γ ′ such that Γ � Γ ′. The full group of automorphisms of X is Aut(X)=N�(Γ)/Γ ,
where N�(Γ) is the normalizer of Γ in �.

In general, it is very difficult to decide whether a group of automorphisms G = Γ ′/Γ
of a Klein surface X = �/Γ equals Aut(X) or not. This problem is equivalent to the

problem of deciding whether Γ ′ equals the normalizer of Γ in � or not.

From now on, KS is assumed to have algebraic genus not smaller than 2.

The following results, that appear in [7], will be used through this paper.

Theorem 2.1. Let X = D/Γ be a nonorientable KS without boundary of algebraic

genus p. Then,X is q-hyperelliptic if and only if there exists an NEC group Γ1, containing

Γ as a subgroup of index 2 and having the signature of one of the following types:

(a) (h;+;[2, (p+1)−2q. . . ,2];{(−)q−2h+1}), 0≤ h≤ q/2;

(b) (h;−;[2, (p+1)−2q. . . ,2];{(−)q−h+1}), 0≤ h≤ q if p is even, 1≤ h≤ q+1 if p is odd.

Moreover,

(1) for each 0 ≤ h ≤ q/2, there exists a nonorientable q-hyperelliptic KS without

boundary D/Γ whose q-hyperellipticity group has the signature (a);

(2) for each 0 ≤ h ≤ q (if p is even) and for each 1 ≤ h ≤ q + 1 (if p is odd),

there exists a nonorientable q-hyperelliptic KS without boundary D/Γ whose q-

hyperellipticity group has the signature (b).

Theorem 2.2. Let X =D/Γ be a nonorientable q-hyperelliptic KS without boundary

of algebraic genusp > 4q+1, then the q-hyperelliptic involutionΦ is central and unique

in Aut(X).

3. Bounds for the order of the automorphism group. Let X = �/Γ be a nonori-

entable q-hyperelliptic KS without boundary, and let Φ be the q-hyperellipticity invo-

lution. Then 〈Φ〉 � Γ1/Γ for a certain NEC group Γ1 and, by Theorem 2.1, X/〈Φ〉 ��/Γ1
is an orientable KS with boundary, or a nonorientable KS (with or without boundary).

A group of automorphisms of X can be represented as a quotient Γ ′/Γ where Γ � Γ ′.
Since Φ is central and unique, we have Γ � Γ1 � Γ ′.

In the next theorem we prove that the bound 84(g−1), for the order of an auto-

morphism group of a nonorientable KS without boundary X, can be improved when

X is q-hyperelliptic and X/〈Φ〉 has empty boundary.

Theorem 3.1. Let X =D/Γ be a nonorientable q-hyperelliptic KS without boundary

of algebraic genus p > 4q+ 1. Let Φ be the q-hyperelliptic involution and X/〈Φ〉 a

surface without boundary. Then,

(1) if |Aut(X)| = 2N, N is odd, then |Aut(X)| ≤ 6(q−1),
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(2) if |Aut(X)| = 2N, N is even, and

(a) signature of Γ ′ has sign “−”, then |Aut(X)| ≤ 12(q−1),
(b) signature of Γ ′ has sign “+”, then |Aut(X)| ≤ 24(q−1).

Proof. Since σ(Γ)= (p+1;−;[−]{−}), p > 4q+1, and X/〈Φ〉 has no boundary, by

Theorem 2.1 there exists a unique NEC group Γ1 with the signature

σ
(
Γ1
)= (q+1;−;

[
2, (p+1)−2q. . . ,2

])
, p is odd. (3.1)

(I) Suppose [Γ ′ : Γ1] = N is odd. We know by [5, Chapter 2] that the signature of Γ ′

is

σ
(
Γ ′
)= (g′;−;

[
m1, . . . ,mt

])
. (3.2)

Let xi ∈ Γ ′, i = 1, . . . , t, be the generators of proper-periods such that pi is the

smallest integer satisfying xpi ∈ Γ1 (pi ≠ 0). As the only elements of finite order in Γ1
have order two, then (see [5, Section 2.2])

pi = mi

2
or pi =mi. (3.3)

We can suppose, without loss of generality, that for 1 ≤ i ≤ n, pi =mi/2 and for

n+1≤ i≤ t, pi =mi. Thus, by [5, Section 2.2]

p−2q+1=
n∑
i=1

(
N
pi

)
=

n∑
i=1

(
2N
mi

)
. (3.4)

From the Riemann-Hurwitz formula |Γ1| =N|Γ ′|, we have

(q−1)+ (p−2q+1)
2

=N

(g′ −2

)+ n∑
i=1

(
1− 1

mi

)
+

t∑
i=n+1

(
1− 1

mi

). (3.5)

By (3.4) and (3.5),

(q−1)=N

(g′ −2

)+ n∑
i=1

(
1− 1

mi

)
−

n∑
i=1

(
1
mi

)
+

t∑
i=1

(
1− 1

mi

)

=N

(g′ −2

)+ n∑
i=1

(
1− 2

mi

)
+

t∑
i=n+1

(
1− 1

mi

),
(3.6)

therefore,

N =
∣∣Γ1∣∣
|Γ ′| =

(q−1)(
g′ −2

)+∑n
i=1

(
1−2/mi

)+∑t
i=n+1

(
1−1/mi

) . (3.7)
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Since p > 4q+1, then by (3.4) we have

n∑
i=1

(
N
mi

)
> (q+1). (3.8)

We fix q in (3.7) and denote

A= g′ −2+
n∑
i=1

(
1− 2

mi

)
+

t∑
i=n+1

(
1− 1

mi

)
, 2≤mi ≤∞. (3.9)

We will consider several cases to determine the minimum positive value of A (that

makes N maximal). For n and t fix

(i) if g′ ≥ 2, then A(1) ≥∑n
i=1(1−2/mi)+

∑t
i=n+1(1−1/mi) > 0;

(ii) if g′ = 1, then

A(2) =
n∑
i=1

(
1− 2

mi

)
+

t∑
i=n+1

(
1− 1

mi

)
−1> 0,

A(1) > A(2) > 0,

A(2) ≥ k2

(
1− 2

2

)
+k4

(
1− 2

4

)
+k6

(
1− 2

6

)
+k′2

(
1− 1

2

)
+k′3

(
1− 1

3

)
−1

= 1
2

(
k4+k′2

)+ 2
3

(
k6+k′3

)−1;

(3.10)

where k4, k6, k′2, and k′3 are nonnegative integers with k4+k6+k′2+k′3 ≤ t. The values

of ki and k′i, for which the above expression is minimum occurs only for k4+k′2 = 1,

k6+k′3 = 1, but these imply that N is even, a contradiction. Then, the suitable ones

are k4+k′2 = 0 and k6+k′3 = 2, that is,

k6 = 2, k4 = k′2 = k′3 = 0;

k′3 = 2, k4 = k6 = k′2 = 0;

k′3 = k6 = 1, k′2 = k4 = 0;

(3.11)

and N(max) = 3(q−1). Consequently, |Aut(X)| ≤ 6(q−1) and the signature of Γ ′ has

one of the following signatures:

τ1 =
(
1,−,[2, k2. . .,2,6,6

])
, q >

4
3

1
k2
+1, p = (3k2+4

)
(q−1)+1;

τ2 =
(
1,−,[2, k2. . .,2,3,3

])
, q>

(
3k2+2
3k2−2

)
, p = (q−1)

(
3k2+2

)+1;

τ3 =
(
1,−,[2, k2. . .,2,6,3

])
, q >

(
3k2+3
3k2−1

)
, p = (q−1)

(
3k2+3

)+1.

(3.12)

(II) Now, suppose that [Γ ′ : Γ1] = N is even. We know (see [5, 6]) that the signature

of Γ ′ is

σ
(
Γ ′
)= (g′;±;

[
m1, . . . ,mt];

{(
ni1, . . . ,nisi

)
, i= 1, . . . ,k

})
. (3.13)
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The proper-periods of Γ1 may proceed from elliptic elements xi or period-cycles of Γ ′.
If pi is the order of Γ1xi ∈ (Γ ′/Γ1), then xi generates in Γ1,

∑n
1 (N/pi) proper periods,

all of them being equal to 2.

Now consider the periods in Γ1 provided by reflections of Γ ′ not in Γ1. Let qij be the

smallest integer for which (cij,cij−1)qij ∈ Γ1, since the only elements of finite order

are those of order 2, we have (nij/qij)= 2 or 1. Let E = {(i,j) | (nij/qij)= 2}. Clearly,

the only proper-periods in Γ1 induced by reflections of Γ ′ are those provided by pairs

of reflections corresponding to elements of E, and each such pair produces (N/2qij)
periods, all of them being equal to 2. As a result, we obtain

∑
(i,j)∈E(N/2qij) proper-

periods in Γ1. Then by (3.4)

p−2q+1=
n∑
1

(
2N
mi

)
+

∑
(i,j)∈E

(
N

2qij

)
. (3.14)

(A) If the sign in the signature of Γ ′ is minus, by the Riemann-Hurwitz formula, we

hold the expression

N(−) =
∣∣Γ1∣∣
|Γ ′|

= (q−1)

g′+k−2+∑n
i=1

(
1− 2

mi

)
+∑t

n+1

(
1− 1

mi

)
+ 1

2

∑
(i,j)∈E

(
1− 2

nij

)
+ 1

2

∑
(i,j)∉E

(
1− 1

nij

) .
(3.15)

Since p > 4q+1, then by (3.14) we have

n∑
1

(
N(−)

mi

)
+

∑
(i,j)∈E

(
N(−)

2nij

)
> (q+1). (3.16)

As in previous case (N odd), we are looking for the value of parameters in (3.15),

that makes N(−) the maximum possible. Let

A= g′ −2+B1+B2, (3.17)

where

B1 =
n∑
i=1

(
1− 2

mi

)
+

t∑
i=n+1

(
1− 1

mi

)
,

B2 = k+ 1
2

∑
(i,j)∈E

(
1− 2

nij

)
+ 1

2

∑
(i,j)∉E

(
1− 1

nij

)
.

(3.18)

For n, t, k, and E fix, we have the following cases:

(i) if g′ ≥ 2: A(1) ≥ B1+B2;

(ii) if g′ = 1: A(2) = B1+B2−1. (Obviously A(1) ≥A(2).)
As we have seen, in the case where N is odd,

B1 ≥ B∗1 =
1
2

(
k4+k2

′)+ 2
3

(
k6+k3

′)+0k2. (3.19)
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The minimum positive value A∗ of A occurs when k = 0, k4+k′2 = 1, and k6+k′3 = 1

in B∗1 ; so B∗1 = 7/6 and A∗ = 7/6−1= 1/6≤ B1(min)−1≤ B1(min)+B2(min)−1.

Therefore, N(max)= 6(q−1) and

∣∣Aut(X)
∣∣≤ 12(q−1). (3.20)

The possible values of k4, k′2, k6, and k′3, lead us to conclude that Γ ′ has one of the

following signatures:

τ4 =
(
1,−,[2, k2. . .,2,4,6

])
, q >

(
6k2+9
6k2+5

)
, p = (6k2+7

)
(q−1)+1;

τ5 =
(
1,−,[2, k2. . .,2,2,6

])
, q >

(
6k2+2

2k2

)
, p = (6k2+4

)
(q−1)+1;

τ6 =
(
1,−,[2, k2. . .,2,4,3

])
, q >

(
6k2+5
6k2+1

)
, p = (6k2+5

)
(q−1)+1;

τ7 =
(
1,−,[2, k2. . .,2,2,3

])
, q >

(
3k2+1
3k2−1

)
, p = (6k2+2

)
(q−1)+1.

(3.21)

(B) If the sign in the signature of Γ ′ is positive, we have, by the Riemann-Hurwitz

formula, the following expression:

N(+) =
∣∣Γ1∣∣
|Γ | =

(q−1)
2g′ −2+B1+B2

, (3.22)

where B1 and B2 are as in (3.18).

Let A = 2g′ −2+B1+B2. As in the previous case we are going to minimize A. We

have for n, t, k, and E fix the following cases.

Case 1. If g ≥ 1, then A≥ B1+B2.

Case 2. If g = 0, then A≥A∗ = B1+B2−2.

Since the sign in the signature of Γ1 is negative, then Γ ′ must have some period-cycle,

that is, k≠ 0.

If t = 0, then A∗ = B2−2 and

B2 = 1+ 1
2

∑
(i,j)∈E

(
1− 2

nij

)
+ 1

2

∑
(i,j)∉E

(
1− 1

nij

)

≥ 1+ 1
2
N2

(
1− 2

2

)
+ 1

2
N4

(
1− 2

4

)
+ 1

2
N6

(
1− 2

6

)
+ 1

2
N′2
(

1− 1
2

)
+ 1

2
N′3
(

1− 1
3

)

= 1+ 1
4

(
N4+N′2

)+ 1
3

(
N6+N′3

)
,

(3.23)
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then

A∗ ≥ 1
4

(
N4+N′2

)+ 1
3

(
N6+N′3

)+0N2−1> 0, (3.24)

where the nonnegative integers Ni are the number of nij = i, (i,j)∈ E, and N′i is the

number of nij = i, (i,j) ∉ E. The value of (3.24) will be minimum for

N4+N ′
2 = 3, N6+N ′

3 = 1, (3.25)

so, N(max)= 12(q−1) and

∣∣Aut(X)
∣∣≤ 24(q−1). (3.26)

From conditions (3.25), we obtain the following signatures for Γ ′:

τ8 =
(
0,+,[−],{(2, N2. . .,2,2,4,4,6

)})
,

τ9 =
(
0,+,[−],{(2, N2. . .,2,2,4,4,3

)})
,

τ10 =
(
0,+,[−],{(2, N2. . .,2,2,2,4,6

)})
,

τ11 =
(
0,+,[−],{(2, N2. . .,2,2,2,4,3

)})
,

τ12 =
(
0,+,[−],{(2, N2. . .,2,2,2,2,6

)})
,

τ13 =
(
0,+,[−],{(2, N2. . .,2,2,2,2,3

)})
,

τ14 =
(
0,+,[−],{(2, N2. . .,2,4,4,4,6

)})
,

τ15 =
(
0,+,[−],{(2, N2. . .,2,4,4,4,3

)})
.

(3.27)

Now, if t ≠ 0, then A∗ = B1+B2−2 and

A∗ = 1
2

(
k4+k′2)+

2
3

(
k6+k′3

)+ 1
4

(
N4+N′2

)+ 1
3

(
N6+N′3

)−1> 0. (3.28)

The smallest value of A appears under the following conditions:

k6+k′3 = 0, N6+N′3 = 1, N4+N′2 = 3, k4+k′2 = 0 (3.29)

or

k6+k′3 = 0, N6+N′3 = 1, N4+N′2 = 1, k4+k′2 = 1. (3.30)

Then N(max) = 12(q−1) and

∣∣Aut(X)
∣∣≤ 24(q−1). (3.31)
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By elementary combinatorial methods, we obtain 16 solutions for the signature of Γ ′

τ16 =
(
0,+,[2, k2. . .,2

]
,
{(

2, N2. . .,2,2,2,2,6
)})
,

τ17 =
(
0,+,[2, k2. . .,2

]
,
{(

2, N2. . .,2,2,2,4,6
)})
,

τ18 =
(
0,+,[2, k2. . .,2

]
,
{(

2, N2. . .,2,2,4,4,6
)})
,

τ19 =
(
0,+,[2, k2. . .,2

]
,
{(

2, N2. . .,2,4,4,4,6
)})
,

τ20 =
(
0,+,[2, k2. . .,2,2

]
,
{
(2, N2. . .,2,2,6

)})
,

τ21 =
(
0,+,[2, k2. . .,2,2

]
,
{(

2, N2. . .,2,4,6
)})
,

τ22 =
(
0,+,[2, k2. . .,2,4

]
,
{(

2, N2. . .,2,2,6
)})
,

τ23 =
(
0,+,[2, k2. . .,2,4

]
,
{(

2, N2. . .,2,4,6
)})
,

τ24 =
(
0,+,[2, k2. . .,2

]
,
{(

2, N2. . .,2,2,2,2,3
)})
,

τ25 =
(
0,+,[2, k2. . .,2

]
,
{(

2, N2. . .,2,2,2,4,3
)})
,

τ26 =
(
0,+,[2, k2. . .,2

]
,
{(

2, N2. . .,2,2,4,4,3
)})
,

τ27 =
(
0,+,[2, k2. . .,2

]
,
{(

2, N2. . .,2,4,4,4,3
)})
,

τ28 =
(
0,+,[2, k2. . .,2,2

]
,
{(

2, N2. . .,2,2,3
)})
,

τ29 =
(
0,+,[2, k2. . .,2,2

]
,
{
(2, N2. . .,2,4,3

)})
,

τ30 =
(
0,+,[2, k2. . .,2,4

]
,
{(

2, N2. . .,2,2,3
)})
,

τ31 =
(
0,+,[2, k2. . .,2,4

]
,
{
(2, N2. . .,2,4,3

)})
.

(3.32)

Corollary 3.2. Let X =D/Γ be a nonorientable q-hyperelliptic KS without bound-

ary of algebraic genus p > 4q+1 and |Aut(X)| = Γ ′/Γ . Let Φ be the q-hyperelliptic

involution such that X/〈Φ〉 has no boundary. Then,

(1) if |Aut(X)| = 2N, N is odd, then |Aut(X)| ≤ (3/2)(p−6);
(2) if |Aut(X)| = 2N, N is even, and

(a) signature of Γ ′ has sign “−”, then |Aut(X)| ≤ 3(p−6),
(b) signature of Γ ′ has sign “+”, then |Aut(X)| ≤ 6(p−6).

4. Examples. It is natural to ask for what values of q the bounds of Theorem 3.1 are

attained. We have found examples for low values of q. Here we present some examples

of surfaces with maximal automorphism group for the three different bounds.

In the remainder of this section, θ denotes the canonical epimorphism from Γ ′

onto G � Γ ′/Γ , where Γ ′ has one of the signatures obtained in Section 3 τ1, . . . ,τ31. We

denote by Φ the q-hyperelliptic involution, π : G → G/〈Φ〉 the natural epimorphism

and θ̄ =πθ.

The procedure we are going to follow in these examples is as follows:

(a) to prove the existence of epimorphisms θ and θ̄ as above, such that ker θ̄ � Γ1,

ker(θ)� Γ , and θ̄ =πθ;

(b) consequently, we obtain the realization (fulfillment) of the automorphism group

G � Γ ′/Γ which attains the bound.
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Example 4.1. If N is odd, σ(Γ ′) = (1,−,[2,2,6,6]), and q = 2, then |Aut(X)| ≤ 6.

Let θ̄ : Γ ′ → Ḡ � Γ ′/Γ1 be the canonical epimorphism defined as follows:

θ̄
(
d1
)= 1, θ̄

(
x1
)= ȳ, θ̄

(
x2
)= ȳ−1, θ̄

(
x3
)= θ̄(x4

)= 1̄, (4.1)

where d1, x1, x2, x3, and x4 are the generators of Γ ′, and ȳ is an element of order three

in Γ ′/Γ1. As |Γ ′/Γ1| = 3 and it is a group generated by ȳ , with the relation ȳ3 = 1, we

have Γ ′/Γ1 � C3; so that G � (Γ ′/Γ) would have order 6 and its quotient by a subgroup

generated by a central element must be C3. Then Γ ′/Γ is C6.

Finally, we need to prove that there exists a nonorientable 2-hyperelliptic KS without

boundary of topological genus p = 11 whose automorphism group is C6.

Let θ be the epimorphism θ : Γ ′ → C6 � 〈y :y6 = 1〉 defined by

θ
(
d1
)= 1, θ

(
x1
)=y, θ

(
x2
)=y−1, θ

(
x3
)= θ(x4

)=y3. (4.2)

We chooseΦ =y3 as the central element, thus kerθ � Γ . Moreover, it is straightforward

to prove ker θ̄ � θ−1(〈y3〉)� Γ1.

Example 4.2. Let N be even, σ(Γ ′) = (1,−,[2,2,2,3]), and q = 3. Let θ and θ̄ be

the canonical epimorphisms over

G � 〈x,y,z : x2,y3,z2,(xy)3,[xz],[yz]
〉�A4×C2,

Ḡ � 〈x,y : x2,y3,(xy)3
〉�A4,

(4.3)

respectively,

θ
(
d1
)= xy, θ

(
x1
)= Φ, θ

(
x2
)= Φ, θ

(
x3
)= x, θ

(
x4
)=y ;

θ̄
(
d1
)= x̄ȳ, θ̄

(
x1
)= 1̄, θ̄

(
x2
)= 1̄, θ̄

(
x3
)= x̄, θ̄

(
x4
)= ȳ.

(4.4)

It is easy to see that Ker(θ̄) � (4,−,[2,2,2,2],{−}) and X = �/Ker(θ) is a nonori-

entable surface without boundary of algebraic genus p = 29. Now, consider Φ = z.

Since z is central in G we have G/〈Φ〉 = Ḡ and X/〈Φ〉 has algebraic genus 3, therefore,

X is a 3-hyperelliptic Klein surface such that |Aut(X)| = 12(q−1)= 24.

Example 4.3. Let N be even, σ(Γ ′)= (0,+,[2],{(2,2,2,6)}), and q = 2. Let G, θ, Ḡ,

and θ̄ be defined as follows:

G = 〈x,y,z : x2,y2,z2,(xy)2,(yz)2,(zx)6
〉�D6×C2;

θ
(
x1
)= θ(e1

)= Φ, θ
(
c1,0

)= θ(c1,4
)= x, θ

(
c1,1

)= Φxy,
θ
(
c1,2

)=y, θ
(
c1,3

)= z;

Ḡ =
〈
x̄, ȳ, z̄ : x̄2, ȳ2, z̄2,

(
x̄ȳ

)2,
(
ȳz̄

)2,
(
z̄x̄
)3
〉
�D3×C2,

θ̄
(
x1
)= θ̄(e1

)= 1̄, θ̄
(
c1,0

)= θ̄(c1,4
)= x̄, θ̄

(
c1,1

)= x̄ȳ,
θ̄
(
c1,2

)= ȳ, θ̄
(
c1,2

)= z̄.

(4.5)
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We can see that Ker(θ̄) has signature τ = (3,−,[2, 14. . .,2],{−}) and X = �/Ker(θ) is

a nonorientable surface without boundary and algebraic genus p = 17. Consider Φ =
(zx)3 an order-two central element in G, we have G/Φ = Ḡ and X〈Φ〉 has signature τ .

In particular, X/〈Φ〉 has algebraic genus 2, then by Theorem 2.1 X is a 2-hyperelliptic

Klein surface. Furthermore, G is an automorphism group of X. Now, by Theorem 3.1,

we have Aut(X)≤ 24(q−1), then G =Aut(X) attaining the upper bound.

It remains as an open problem to determine topological types of nonorientable

q-hyperelliptic Klein surfaces without boundary admitting maximal automorphism

group for arbitrary q.

5. Teichmüller space. In this section, we are going to study the dimension of the

Teichmüller space associated to nonorientable q-hyperelliptic Klein surfaces without

boundary of algebraic genus p > 4q+ 1 such that X/〈Φ〉 has empty boundary. We

denote this space by T−pq .

Let Γ be an NEC group. We define the Weil space associated to Γ , R(Γ), as the set of

monomorphisms r : Γ → � such that r(Γ) is discrete and �/r(Γ) is compact.

We say that two elements r1, r2 ∈ R(Γ) are equivalents if there exists g ∈ � such

that r1(Γ) = gr2(Γ)g−1. The quotient space by this relation is called the Teichmüller

space of Γ and denoted by T(Γ). When Γ is a Fuchsian group (only orientation pre-

serving elements) with signature (g,+,[m1, . . . ,mr ]), it is known that T(Γ) is a cell

of dimension d(Γ) = 6(g−1)+2r . Singerman [13] proved that if Γ is a proper NEC

group, then d(Γ) = (1/2)d(Γ+) where Γ+ is the canonical Fuchsian group associated

to Γ . The Teichmüller Modular group of Γ , M(Γ), is the quotient group Aut(Γ)/I(Γ)
where Aut(Γ) is the full group of automorphisms of Γ and I(Γ) the set of inner au-

tomorphisms. The Modular group M(Γ) acts on T(Γ) as follows: if [τ] ∈ T(Γ) and

ᾱ∈M(Γ), then ᾱ[τ]= [τ ·α].
Let X =�/Γ be a nonorientable q-hyperelliptic Klein surfaces without boundary of

algebraic genus p > 4q+1 such that X/〈Φ〉 has empty boundary. Following Harvey [8],

T−pq =
⋃

ᾱ∈M(Γ)
ᾱ


 ⋃
Φ∈Φ(Γ ,Γ1,Γ1/Γ)

Im ı̂φ


, (5.1)

where Γ1 is the group of the q-hyperellipticity of X with signature

(
q+1,−,[2,p+1−2q. . . ,2

]
,{−}), Φ

(
Γ ,Γ1,Γ1/Γ

)
(5.2)

is the set of all equivalence classes of surjections φ : Γ1 → Z2 with Ker(φ)= Γ modulo

the action of Aut(Γ1) and Aut(Z2), and Im ı̂φ is the image set ı̂φ(T(Γ1)) under the

isometry ı̂φ induced by the inclusion iφ : Kerφ→ Γ1.

Here the family Φ(Γ ,Γ1,Γ1/Γ) consists of q+2 classes each of them characterized

by the number of glide reflections between the canonical generators of Γ1 in Kerφ (to

know d1, . . . ,dq+1). If we call these classes [φi], i= 0, . . . ,q+1; a representative of each
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class is defined by

φi
(
dj
)= 0̄ for j = 1, . . . , i;

φi
(
dj
)= 1̄ for j = i+1, . . . ,q+1;

φi
(
xj
)= 1̄ for j = 1, . . . ,p+1−2q.

(5.3)

Then,

T−pq =
⋃

ᾱ∈M(Γ)
ᾱ
(
Im ı̂0∪···∪ Im ı̂q+1

)
, (5.4)

where ı̂j : T(Γ1)↩ T(Γ), τ ∈ R(Γ1) [τ] � �→ [τ ·ij] is the real analytic homeomorphism

(see [8]) induced by the inclusion ij : Kerφj → Γ1.

The situation allows us to use Maclachlan’s method (see [10, Lemma 3]), to prove

that (5.4) is a disjoint union.

Suppose that there exist l,m∈ {0, . . . ,q+1}, such that

ᾱı̂l
(
T
(
Γ1
))∩ ı̂m(T(Γ1))≠∅. (5.5)

Therefore, there exist τ1,τ2 ∈ R(Γ1) satisfying

[
τ1 ·il ·α

]= [τ2 ·im
]

(5.6)

if and only if there exists t ∈ � such that

τ1 ·il ·α(f)= t
(
τ2 ·im

)
(f )t−1, ∀f ∈ Γ1. (5.7)

Consider τ3 : τ3(f )= tτ2(f )t−1, for all f ∈ Γ1; then τ1 ·il ·α= τ3 ·im. Now, as Γ1 is

unique we can consider the inverse image of τ3 to obtain

(
τ3
−1 ·τ1

)·il ·α= im (5.8)

being τ3
−1 ·τ1 an automorphism of Γ1. This leads us to conclude that l =m. Thus,

T−pq is a disjoint union of copies ı̂l(T(Γ1)), that is, T−pq is a submanifold of T(Γ) of

dimension

d
(
Γ1
)= 2p−q−1. (5.9)
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