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1. Introduction. Let Top denote the category of topological spaces and continuous

functions. Let R denote the real line with the usual topology, and for each topological

space X, let C(X,R) be the set of continuous real-valued functions from X to R. Con-

sider the contravariant hom-functor Cp : Top → Topop defined by assigning to each

space X the space of continuous real-valued functions with the topology of point-

wise convergence. We denote this space by CpX. The space CpX has been extensively

studied. A fundamental reference on CpX is Arkhangel’skĭı [2]. We recall that the sub-

basic open sets of CpX are sets of the form [f ,V], where [x,V]= {f ∈ CpX : f(x)∈
V, V open in R}.

2. The monad induced by the hom-functor in Top and the associatedM-algebras.

We now consider the composite functor Cop
p Cp : Top→ Topop → Top where Cop

p is the

dual functor. LetM = Cop
p Cp . Ifx ∈X, then the function x̂ : CpX →R defined by x̂(f )=

f(x) is called the evaluation map at x. The following propositions are important since

they ensure that our morphisms are continuous. The proofs are straightforward and

will be omitted.

Proposition 2.1. (i) For all x ∈X, x̂ : CpX →R is continuous.

(ii) For all g ∈ CpX, ĝ :MCpX →R is continuous.

Proposition 2.2. Let X be any topological space. Then

(i) ηX :X →MX, where ηX(x)= x̂ is continuous.

(ii) µX :MMX →MX, where µX(γ)[g]= γ(ĝ) is continuous.

We recall from [1] that a monad on a category A is a tripletM= (M,η,µ) consisting

of a functor M :A→A and natural transformations η : idA→M and µ :MM →M such

that µ◦Mµ = µ◦µM , µ◦Mη= id, and µ◦ηM = id.

Proposition 2.3. The triplet (M,η,µ), where η : idTop → M and µ : MM → M are

defined by ηX(x) = x̂ and µX(γ)[g] = γ(ĝ), respectively, where x ∈ X, g ∈ CpX, is a

monad.
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Proof. We first check that η : idTop → M and µ : MM → M are natural transfor-

mations. Let f : X → Y be a continuous function. We show that M(f)◦ηX = ηY ◦f .

We define ηX and M(f) by ηX(x) = x̂ and M(f)(γ)[g] = γ(g ◦f) where g : Y → R
is continuous, γ ∈M(X), and ̂ denotes evaluation, for example, x̂(g) = g(x). Then

M(f) ◦ηX(x) = M(f)(x̂). Let g ∈ CpX. Then M(f)(x̂)[g] = x̂(g ◦ f) = g ◦ f(x) =
g(f(x)) = f̂ (x)[g]. Hence M(f)(x̂) = f̂ (x). Now ηY ◦ f(x) = ηY (f(x)) = f̂ (x).
Let g ∈ CpX. Then f̂ (x)[g] = g(f(x)). Hence M(f) ◦ηX = ηY ◦f . We define µX by

µX(γ)[g]= γ(ĝ) where γ ∈MM(X), g ∈ CpX, and ĝ denotes the evaluation function

at g, that is, ĝ :M(X)→R. We now show that µ :MM →M is a natural transformation,

that is, M(f)◦µX = µY ◦M2(f ). Let h∈ CpY . Then

(
M(f)◦µX

)
(γ)[h]=M(f)(µX(γ)

)
[h]= µX(γ)(h◦f)= γ

(
ĥ◦f ). (2.1)

On the other hand,

µY ◦M2(f )(γ)[h]= µY
(
M2(f )(γ)

)
[h]

=M2(f )(γ)
(
ĥ
)

=M(M(f))(γ)(ĥ)

= γ(ĥ◦M(f)).

(2.2)

Let λ : CpX → R. Then (ĥ ◦M(f))(λ) = ĥ(M(f)(λ)) = M(f)(λ)[h] = λ(h ◦ f) =
ĥ◦f(λ). Therefore, ĥ◦M(f)= ĥ◦f . From the equations

M(f)◦µX(γ)[h]= γ
(
ĥ◦f ),

µY ◦M2(f )(γ)[h]= γ(ĥ◦M(f)),
(
ĥ◦M(f))(λ)= ĥ◦f(λ),

(2.3)

we get M(f) ◦ µX = µY ◦M2(f ). Therefore µ : MM → M is a natural transforma-

tion. We now show that the other monad conditions are satisfied. First, we show

that µX ◦Mη = id. We prove that µX ◦Mη = id and µX ◦ηM = id. Let γ ∈ M(X) and

f ∈ CpX. Then f̂ : M(X) → R and (µX ◦Mη)(γ) ∈ M(X). Then (µX ◦Mη)(γ)[f] =
µX(Mη(γ))[f ] =Mη(γ)(f̂ ) = γ(f̂ ◦η) = γ[f]. Therefore µX ◦Mη = id. On the other

hand (µX ◦ηM)(γ)[f] = µX(ηM)(γ)[f] = ηM(γ)[f̂ ] = γ̂(f̂ ) = f̂ (γ) = γ(f). Therefore

µX ◦ ηM = id. Second, we show that µX ◦ µM = µX ◦MµX . We prove that µX ◦ µM =
µX ◦MµX . Let γ ∈ MMM(X). Then µX ◦MµX(γ) ∈ M(X). Let f ∈ CpX. Then (µX ◦
MµX)(γ)[f]= µX(MµX(γ))[f ]=MµX(γ)[f̂ ]= γ(f̂ ◦µX)= γ( ̂̂f). On the other hand,

(µX ◦µM)(γ)[f] = µX(µM(γ))[f ] = µM(γ)(f̂ ) = γ( ̂̂f). Therefore µX ◦µM = µX ◦MµX .

Therefore (M,η,µ) is a monad.

If M= (M,η,µ) is a monad on A, then (A,hA) is called an Eilenberg-Moore algebra

or simply an M-algebra if the algebra map hA : MA → A satisfies hA ◦ηA = idA and

hA ◦MhA = hA ◦µA.

We now look at examples of the M-algebras of the monad (M,η,µ).
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Proposition 2.4. The real line R is an M-algebra.

Proof. We define hR : MR → R as 1̂R, that is, the identity map with respect to

R, and show that the M-algebra conditions are satisfied. It is obvious that the map

hR is continuous. Let x ∈ R. Then hR ◦ηR(x) = hR(x̂) = x̂(1R) = 1R(x). Therefore

hR◦ηR = 1R. Now let γ ∈MM(R). Then hR◦µR(γ)= 1̂R(µR(γ))= µR(γ)(1R)= γ(1̂R).
On the other hand, hR ◦MhR(γ) = 1̂R(M1̂R(γ)) = 1̂R(γ ◦Cp(1̂R)) = γ ◦Cp(1̂R)(1R) =
γ(Cp(1̂R)(1R))= γ(1R ◦ 1̂R)= γ(1̂R). Therefore hR ◦µR = hR ◦MhR.

Proposition 2.5. For each X ∈ Top, CpX is an M-algebra with hCpX = Cp(ηX).
Proof. We first define hCpX : MCpX → CpX. Let ϕ ∈ MCpX. We define hCpX by

hCpX(ϕ) =ϕ◦ηX = CpηX(ϕ). Then the map hCpX is continuous, since it is the com-

posite of continuous functions ϕ and ηX . We now show that the conditions for an

M-algebra are satisfied. Thus, we must show that hCpX ◦ηCpX = idCpX . Let f ∈ CpX.

Then hCpX ◦ ηCpX(f) = hCpX(ηCpX(f)) = CpηX(f̂ ) = f̂ ◦ ηX = f = idCpX(f ), since

f̂ ◦ηX(x)= f̂ (ηX(x))= x̂(f )= f(x). Therefore hCpX ◦ηCpX = idCpX .

We must now show that hCpX ◦µCpX = hCpX ◦MhCpX . Let γ ∈MMCpX. Then hCpX ◦
µCpX(γ) = hCpX(µCpX(γ)) = CpηX(µCpX(γ)) = µCpX(γ) ◦ ηX . Now let x ∈ X. Then

µCpX(γ)◦ηX(x)= µCpX(γ)(x̂)= γ( ̂̂x). On the other hand, hCpX ◦MhCpX(γ)= CpηX ◦
MCpηX(γ)= Cp(MηX ◦ηX)(γ)= γ◦MηX ◦ηX . Let x ∈X. ThenMηX ◦ηX(x)=MηX(x̂)
= x̂ ◦CpηX = ̂̂x. Therefore hCpX ◦µCpX = hCpX ◦MhCpX . Hence CpX is an M-algebra.

Proposition 2.6. Retracts of CpX are M-algebras.

Proof. Let g : CpY → X be a retraction. Then there is a continuous function f :

X → CpY such that g◦f = idX . The following diagram will help us define the algebra

map hX :MX →X:

X
ηX

MX
Mf

idMX

MCpY
CpηY

Mg

CpY

g

MX

X

idX
hX

(2.4)

Define

hX = g◦Cpη◦Mf = g◦Cp
(
Cpf ◦ηY

)
. (2.5)

Since hX is the composite of continuous functions, then it is continuous.
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Now,

hX ◦ηX(x)= hX
(
x̂
)= g(C(Cf ◦ηY

)(
x̂
))= g(x̂◦Cf ◦ηY

)

= g(f̂ (x)◦ηY
)= g(f(x))= idX(x),

(2.6)

since g is a retraction.

We now show that hX ◦µX = hX ◦MhX . Let γ ∈MMX. Then

hX ◦µX(γ)= hX
(
µX(γ)

)= g◦Cp
(
Cpf ◦ηY

)(
µX(γ)

)

= g(Cp
(
Cpf ◦ηY

)(
µX(γ)

))= g(µX(γ)◦Cpf ◦ηY
)
.

(2.7)

If k∈ CpX, then

µX(γ)(k)= γ
(
k̂
)
. (2.8)

On the other hand,

hX ◦MhX = g◦Cp
(
Cpf ◦ηY

)◦M(g◦Cp
(
Cpf ◦ηY

))

= g◦CpηY ◦Mf ◦Mg◦MCp
(
Cpf ◦ηY

)

= g◦CpηY ◦M(f ◦g)◦MCp
(
Cpf ◦ηY

)

= g◦CpηY ◦M
(
idX

)◦MCp
(
Cpf ◦ηY

)

= g◦CpηY ◦MCp
(
Cpf ◦ηY

)

= g◦Cp
(
M
(
Cpf ◦ηY

)◦ηY
)

= g◦Cp
(
ηCpX ◦Cpf ◦ηY

)
.

(2.9)

Now,

hX ◦MhX(γ)= g
(
Cp
(
ηCpX ◦Cpf ◦ηY

)
(γ)

)

= g(γ ◦ηCpX ◦Cpf ◦ηY
)
.

(2.10)

We only need to show thatγ◦ηCpX = µX . Let k∈ CpX. Thenγ◦ηCpX(k)= γ(ηCpX(k))
= γ(k̂). From (2.8), we have γ ◦ηCpX = µX and therefore hX ◦µX = hX ◦MhX . Hence

retracts of CpX are M-algebras.

3. The algebra morphisms and the transfer of ring structure from MX to X for

an M-algebra (X,hX). For an M-algebra (X,hX) the ring structure on MX can be

transferred to X, via hX , in such a way that X becomes a ring with respect to the

induced operations.

Definition 3.1. On an M-algebra (X,hX) define

(i) x1+x2 to be hX(ηX(x1)+ηX(x2)),
(ii) x1 ·x2 to be hX(ηX(x1)·ηX(x2)).

In addition to the ring structure defined above we also define the scalar multiplica-

tion in the following way: define tx to be hX(tηX(x)), where t is a scalar.

According to Definition 3.1, CpX (being anM-algebra, Proposition 2.5) has now two

concepts of the operations “+” and “·”, the natural one defined pointwise

(
hX(x+y)= hX(x)+hX(y),hX(xy)= hx(x)hX(y)

)
(3.1)
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and Definition 3.1. The same applies toMX. We omit the straightforward proof of the

following proposition.

Proposition 3.2. The natural operations on MX defined pointwise coincide with

the corresponding ones defined above.

Lemma 3.3. The topology on X is initial with respect to ηX , that is, X has the weak

topology induced by ηX into CpCpX =MX.

Proof. Basic neighborhoods of ηX(x) have inverse images of ηX of the form

∩ni=1f
−1
i [Wi].

Lemma 3.4 [2]. Let ϕ ∈ CpCpX such that ϕ : (CpX,hCpX) → (R,hR) is a linear

functional. Then there are x1, . . . ,xn ∈X, λ1, . . . ,λn ∈R such that ϕ =∑ni=1λix̂i.

Proposition 3.5. If ϕ : (CpX,hCpX) → (R,hR) is a nontrivial continuous multi-

plicative linear functional, then there is x ∈ X such that ϕ = x̂, that is, ϕ is a point

evaluation.

Proof. By Lemma 3.4, there are points x1, . . . ,xn ∈ X, and scalars λ1, . . . ,λn ∈ R
such that ϕ = ∑ni=1λix̂i where λi = ϕ(gi), gi ∈ CpX being such that gi(xi) = 1,

gi(xj)= 0 for i≠ j, 0≤ gi ≤ 1. Nowϕ(g2
k)=ϕ(gk)2 = λk. Alsoϕ(g2

k)=
∑n
i=1λix̂i(g

2
k)

=∑ni=1λig
2
k(xi)= λk.

Thus λk = λ2
k, so that λk = 0 or λk = 1 for k= 1,2, . . . ,n. Moreover, λk = gk(xk)≥ 0.

Furthermore,ϕ(1)= 1 gives 1=ϕ(1)=∑ni=1λix̂i(1)=
∑n
i=1λi. Consequently, all λi’s

except one are zero, the exceptional one being one 1. Let x = xl, where λl = 1. Then

λi = 0 for i≠ l, so that ϕ = λlx̂l = x̂l.
Proposition 3.6. Let ϕ : (CpX,hCpX) → (R,hR) be an algebra map. Then ϕ is a

continuous ring homomorphism.

Proof. Given f ,g ∈ CpX, consider ηCpX(f)+ηCpX(g) in MCpX. We have

hR ◦C2ϕ
(
ηCpX(f)+ηCpX(g)

)= hR ◦Mϕ
(
ηCpX(f)

)+hR ◦Mϕ
(
ηCpX(g)

)
(3.2)

by Lemma 3.4.

Hence ϕ ◦hX(ηCpX(f)+ ηCpX(g)) = ϕ ◦hX(ηCpX(f))+ϕ ◦hX(ηCpX(g)), so that

ϕ(f +g) =ϕ(f)+ϕ(g), since hX preserves the ring structure. Similarly, ϕ(f ·g) =
ϕ(f)·ϕ(g). We also haveϕ(tf)= tϕ(f), t ∈R. Moreoverϕ(1)= 1, where 1 denotes

the constant function with value equal to 1.

Proposition 3.7. Every algebra map ϕ : (CpX,hCpX)→ (R,hR) is a point evalua-

tion map.

Proof. By the above proposition, ϕ is a continuous ring homomorphism, that is,

a continuous multiplicative linear functional. Thus, there is some x ∈ X such that

ϕ(f)= f(x) for all f in CpX, by the above proposition.

Theorem 3.8. The algebra morphisms ϕ : (CpX,hCpX)→ (R,hR) are precisely the

morphisms x̂, where x ∈X, that is, the point evaluation map.
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Proof. Suppose ϕ = x̂, for some x ∈ X. Let γ ∈ MCpX. Take hX = CpηCpX and

hR = 1̂R. Then ϕ◦hX(γ)= x̂◦CpηCpX(γ)= x̂(CpηCpX(γ))= γ ◦ηX(x)= γ(x̂). On the

other hand, hR ◦M(ϕ)(γ) = hR(M(ϕ)(γ)) = 1̂R(M(ϕ)(γ)) =M(ϕ)(γ)(1R) = γ(1R ◦
ϕ) = γ(ϕ) = γ(x̂). Therefore, ϕ ◦hX = hR ◦M(ϕ) and thus ϕ = x̂ is an algebra

morphism. The converse follows from Proposition 3.7.

Proposition 3.9. The algebra morphisms ϕ : (CpX,hCpX)→ (CpY ,hCpY ) are the

maps Cp(f), where f : Y →X is continuous.

Proof. Suppose that ϕ : (CpX,hCpX)→ (CpY ,hCpY ) is an algebra map. Given y ∈
Y , ŷ ◦ϕ : (CpX,hCpX) → (R,hR) is an algebra map, since the composition of two

algebra maps is an algebra map. Thus the following diagram is commutative:

MCpX
Mϕ

hCpX

MCp(Y)
Mŷ

hCpY

MR

hR

CpX ϕ
CpY

ŷ
R

(3.3)

By Theorem 3.8, ŷ ◦ϕ = x̂ for some x ∈ X. Put x = f(y). Thus f maps Y into

X. Since X has the initial topology induced by ηX , f will be continuous if ηX ◦f is

continuous. Now ηX ◦ f(y) = x̂ = ŷ ◦ϕ = Cϕ(ηY (y)). Thus ηX ◦ f = Cϕ ◦ ηY , so

that ηX ◦f is continuous, hence f is continuous, as required. It remains to prove that

ϕ = Cf . Since the functions ŷ distinguish the points of CpY , it suffices to prove that

ŷ ◦ϕ = ŷ ◦Cf for every y ∈ Y . Now ŷ(Cf(g)) = ŷ(g ◦f) = g ◦f(y) = g(f(y)) =
g(x). Also ŷ(ϕ(g))= ŷ ◦ϕ(g)= x̂(g)= g(x). Hence ŷ ◦ϕ = ŷ ◦Cf for all y ∈ Y , so

that ϕ = Cf .

Conversely suppose the morphism ϕ : (CpX,hCpX)→ (CpY ,hCpY ) is such that ϕ =
Cf . Then by Proposition 3.9, ϕ is an algebra morphism.

Proposition 3.10. The map hCpX : MCpX → CpX preserves the ring structure of

the function spaces, operations being defined pointwise.

Proof. Let ϕ,ψ ∈MCpX, so that ϕ,ψ :MX → R. The maps ϕ+ψ, ϕ ·ψ, and tϕ
(where t ∈R) are both defined pointwise, so that (ϕ+ψ)(λ)=ϕ(λ)+ψ(λ),ϕ·ψ(λ)=
ϕ(λ)·ψ(λ), and (tϕ)(λ)= tϕ(λ), for all λ∈ CpX. Now hCpX(ϕ)= CηX(ϕ)=ϕ◦ηX ,

hence hCpX(ϕ+ψ)= (ϕ+ψ)◦ηX . Thus

(ϕ+ψ)◦ηX(x)= (ϕ+ψ)
(
ηX(x)

)=ϕ(ηX(x)
)+ψ(ηX(x)

)

= hCpX(ϕ)(x)+hCpX(ψ)(x)=
(
hCpX(ϕ)+hCpX(ψ)

)
(x).

(3.4)

Since this holds for every x ∈X, we have hCpX(ϕ+ψ)= hCpX(ϕ)+hCpX(ψ).
The proof that hCpX(ϕ·ψ)= hCpX(ϕ)·hCpX(ψ) is similar. We also have hCpX(tϕ)

= thCpX(ϕ), where t is a scalar.

Proposition 3.11. For any f : Y →X, the map Cpf : CpX → CpY preserves the ring

structure.
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Proof. Since Cpf acts by composition on the right, the result is clear. We will

verify one case only: Cpf(ϕ+ψ)= Cpf(ϕ)+Cpf(ψ). Then

Cpf(ϕ+ψ)(y)= (ϕ+ψ)
(
f(y)

)=ϕ(f(y))+ψ(f(y))

= Cpf(ϕ)(y)+Cpf(ψ)(y)=
(
Cpf(ϕ)+Cpf(ψ)

)
(y).

(3.5)

Since the equality holds for every y ∈ Y , Cpf(ϕ+ψ)= Cpf(ϕ)+Cpf(ψ).
Problem 3.12. Characterize fully the Eilenberg-Moore category of M-algebras.
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