ASYMPTOTIC HÖLDER ABSOLUTE VALUES

E. MUÑOZ GARCIA

Received 12 October 2001

Abstract

We prove that asymptotic Hölder absolute values are Hölder equivalent to classical absolute values. As a corollary we obtain a generalization of Ostrowski's theorem and a classical theorem by E. Artin. The theorem presented implies a new, more flexible, definition of classical absolute value.

2000 Mathematics Subject Classification: 12J20, 12J10, 16W80, 13J99.

1. Introduction. Asymptotic Hölder absolute values generalize the notions of classical absolute value and of Hölder absolute value. A Hölder absolute value (HAV) satisfies an approximate triangle inequality and multiplicative property. More precisely, let $C_{1} \geq 1$ and $C_{2} \geq 1$. A (C_{1}, C_{2})-Hölder absolute value on a ring R is a mapping $\|\cdot\|: R \rightarrow \mathbb{R}_{+}$satisfying:
(HAV1) for $x \in R,\|x\|=0 \Leftrightarrow x=0$;
(HAV2) for $x, y \in R,\|x+y\| \leq C_{2}(\|x\|+\|y\|)$;
(HAV3) for $x, y \in R, C_{1}^{-1}\|x\|\|y\| \leq\|x y\| \leq C_{1}\|x\|\|y\|$.
It is known that HAV on a ring are Hölder equivalent to a classical ones. More precisely, we have the following theorem (see [2]).

Theorem 1.1 (Hölder rigidity). Let $\|\cdot\|: R \rightarrow \mathbb{R}_{+}$be a $\left(C_{1}, C_{2}\right)$-Hölder absolute value on a commutative ring R with unit element. There exists an absolute value on $R,|\cdot|$: $R \rightarrow \mathbb{R}_{+}$, which is $\left(C_{1}^{\alpha}, \alpha\right)$-Hölder equivalent to $\|\cdot\|$ with $\alpha=\log _{2}\left(2 C_{2}\right)$, that is, for $x \in R$,

$$
\begin{equation*}
C_{1}^{-\alpha}|x|^{\alpha} \leq\|x\| \leq C_{1}^{\alpha}|x|^{\alpha} . \tag{1.1}
\end{equation*}
$$

Moreover, | $\cdot \mid$ can be defined by

$$
\begin{equation*}
|x|=\lim _{n \rightarrow+\infty}\left\|x^{n}\right\|^{1 / n a} . \tag{1.2}
\end{equation*}
$$

For a ring R with unity, a real constant $C_{2} \geq 1$, and a function $C_{1}(\cdot, \cdot)$ defined on $] 1,+\infty\left[\times \mathbb{N}\right.$ taking values in $\left[1,+\infty\left[\right.\right.$, we define a $\left(C_{1}, C_{2}\right)$-asymptotic Hölder absolute value (AHAV) on R,

$$
\begin{equation*}
|\cdot|: R \rightarrow \mathbb{R}_{+} \tag{1.3}
\end{equation*}
$$

satisfying the three following axioms:
(AHAV1) $|x|=0$ if and only if $x=0$;
(AHAV2) for $x, y \in R,|x+y| \leq C_{2}(|x|+|y|)$;
(AHAV3) for $\gamma>1$ and $n \geq 2$ there is a constant $C_{1}(\gamma, n)>1$ such that for x_{1}, \ldots, $x_{n} \in R$,

$$
\begin{equation*}
C_{1}(\gamma, n)^{-1}\left|x_{1}\right|^{\gamma^{-1}} \cdots\left|x_{n}\right|^{\gamma^{-1}} \leq\left|x_{1} \cdots x_{n}\right| \leq C_{1}(\gamma, n)\left|x_{1}\right|^{\gamma} \cdots\left|x_{n}\right|^{\gamma} \tag{1.4}
\end{equation*}
$$

and $L=\varlimsup_{n \rightarrow \infty}(1 / n) \log C_{1}(\gamma, n)<+\infty$.
We prove the following theorem.
Theorem 1.2. Let R be a commutative ring with unity. Let $C_{2} \geq 1$ be a real constant, $\alpha=1 / \log _{2}\left(2 C_{2}\right)$, and $\|\cdot\| a\left(C_{1}, C_{2}\right)-A H A V$ on R. We have the following dichotomy:
(i) if

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{1}{n} \log C_{1}(\gamma, n)=0 \tag{1.5}
\end{equation*}
$$

then $\|\cdot\|^{\alpha}$ is a classical absolute value on R;
(ii) if

$$
\begin{equation*}
0<L=\varlimsup_{n \rightarrow \infty} \frac{1}{n} \log C_{1}(\gamma, n)<+\infty, \tag{1.6}
\end{equation*}
$$

then $\|\cdot\|^{\alpha}$ is a Hölder absolute value on R, more precisely, it is $\left(e^{L \alpha}, \alpha\right)$-Hölder equivalent to an absolute value on R.

As a result of Theorem 1.2(i), we can define classical absolute values as AHAV with $C_{2}=1$ having a sequence of constants $\left(C_{1}(\gamma, n)\right)_{n}$ growing sub-exponentially, that is,

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{1}{n} \log C_{1}(\gamma, n)=0 \tag{1.7}
\end{equation*}
$$

This is far more flexible than the classical definition.
Note that, in general, Hölder equivalence is a metric property which is stronger than the usual topological equivalence, for example, $\{0\} \cup\{1 / n ; n \geq 1\}$ and $\{0\} \cup\left\{1 / 2^{n}\right.$; $n \geq 1\}$ are homeomorphic, but not Hölder equivalent.

Corollary 1.3. Consider $|\cdot|: R \rightarrow \mathbb{R}^{+}$satisfying
(AV1) $|x|=0$ if and only if $x=0$,
(AV2) for $x, y \in R,|x+y| \leq|x|+|y|$ then,
(AV3) for $x, y \in R,|x y|=|x||y|$ is equivalent to:
(AV3') for $\gamma>1$ and $n \geq 2$ there is a constant $C_{1}(\gamma, n)>1$ such that for $x_{1}, \ldots, x_{n} \in$ R,

$$
\begin{align*}
& C_{1}(\gamma, n)^{-1}\left|x_{1}\right|^{\gamma^{-1}} \cdots\left|x_{n}\right|^{\gamma^{-1}} \leq\left|x_{1} \cdots x_{n}\right| \leq C_{1}(\gamma, n)\left|x_{1}\right|^{\gamma} \cdots\left|x_{n}\right|^{\gamma} \tag{1.8}\\
& \quad \text { with } \overline{\lim }_{n \rightarrow \infty}(1 / n) \log C_{1}(\gamma, n)=0 .
\end{align*}
$$

Our theorem gives a generalization for discrete rings of Artin's theorem [1].
Corollary 1.4. If $\|\cdot\|$ is a $\left(1, C_{2}\right)$-AHAV over a discrete field F, there exists an absolute value $|\cdot|$ and an exponent α, such that for all x in $F,\|x\|^{\alpha}=|x|$.

Also, our theorem implies a generalization of Ostrowski's theorem [3] for classical absolute values ($C_{1}=C_{2}=\gamma=1$) over \mathbb{Z}.

COROLLARY 1.5. If $\|\cdot\|$ is a $\left(C_{1}, C_{2}\right)$-AHAV over \mathbb{Z} normalized, so that $\|1\|=1$, then $\|\cdot\|$ is $\left(e^{L \alpha}, \alpha\right)$-Hölder equivalent to a p-adic absolute value $|\cdot|_{p}$ or to $|\cdot|_{\infty}$ or to the trivial absolute value, with $\alpha=1 / \log _{2}\left(2 C_{2}\right)$.

REMARKS. (1) The constant $C_{1}(\gamma, n)$ in the definition of AHAV can be chosen to satisfy the inequality

$$
\begin{equation*}
C_{1}(\gamma, n) \leq C_{1}\left(\gamma^{1 /\left(\left[\log _{2} n\right]+1\right)}, 2\right)^{n} \tag{1.9}
\end{equation*}
$$

where $[a]$ denotes the integer part of a.
(2) Let $C_{2} \geq 1$ and let $|\cdot|: R \rightarrow \mathbb{R}_{+}$be a $\left(C_{1}, C_{2}\right)$-AHAV on R. If $\overline{\lim }_{\gamma \rightarrow 1} C_{1}(\gamma, 2)=C_{1}<$ $+\infty$, then $|\cdot|$ is a $\left(C_{1}, C_{2}\right)$-Hölder absolute value.
(3) If R is a ring on which a $\left(C_{1}, C_{2}\right)$-AHAV $|\cdot|$ is defined, then R is a discrete ring for the topology defined by $|\cdot|$.
1.1. Weak subadditive lemma. We prove a generalization of a classical lemma on subadditive sequences (which might be of independent interest).

DEFINITION 1.6. The real sequence $\left(b_{m}\right)_{m \in \mathbb{N}}$ is weakly subadditive if
(i) for $\gamma>1$ and $k \geq 1$, there is a constant $K(\gamma, k)>0$ such that for $m_{1}, \ldots, m_{k} \in \mathbb{N}$,

$$
\begin{equation*}
b_{m_{1}+\cdots+m_{k}} \leq \gamma \sum_{i=1}^{k} b_{m_{i}}+K(\gamma, k) \tag{1.10}
\end{equation*}
$$

(ii) for $\gamma>1$, we have $K^{*}(\gamma)=\overline{\lim }_{k \rightarrow \infty}(1 / k) K(\gamma, k)<+\infty$.

LEMMA 1.7. If $\left(b_{m}\right)_{m \in \mathbb{N}}$ is weakly subadditive, then

$$
\begin{equation*}
\varliminf_{m \rightarrow \infty} \frac{b_{m}}{m}=\varlimsup_{m \rightarrow \infty} \frac{b_{m}}{m} \tag{1.11}
\end{equation*}
$$

Proof. Fix $n \geq 1$. For any $m \in \mathbb{Z}$, we consider the Euclidean division

$$
\begin{equation*}
m=n q+r, \quad 0 \leq r<n \tag{1.12}
\end{equation*}
$$

Now,

$$
\begin{equation*}
b_{m}=b_{n q+r} \leq \gamma\left(q b_{n}+b_{r}\right)+K(\gamma, q+1) \tag{1.13}
\end{equation*}
$$

Dividing by m,

$$
\begin{equation*}
\frac{b_{m}}{m}=\frac{b_{n q+r}}{n q+r} \leq \gamma\left(\frac{q}{n q+r} b_{n}+\frac{b_{r}}{n q+r}\right)+\left(\frac{q+1}{n q+r}\right) \frac{K(\gamma, q+1)}{q+1} \tag{1.14}
\end{equation*}
$$

Taking the upper limit when $m \rightarrow \infty$,

$$
\begin{equation*}
\varlimsup_{m \rightarrow \infty} \frac{b_{m}}{m} \leq \gamma\left(\frac{b_{n}}{n}+0\right)+\frac{1}{n} K^{*}(\gamma) \tag{1.15}
\end{equation*}
$$

That is, for all $q \geq 1$,

$$
\begin{equation*}
\varlimsup_{m \rightarrow \infty} \frac{b_{m}}{m} \leq \gamma \frac{b_{n}}{n}+\frac{1}{n} K^{*}(\gamma) \tag{1.16}
\end{equation*}
$$

Now, taking the lower limit on the right side when $n \rightarrow \infty$,

$$
\begin{equation*}
\varlimsup_{m \rightarrow \infty} \frac{b_{m}}{m} \leq \gamma \varliminf_{n \rightarrow \infty} \frac{b_{n}}{n} . \tag{1.17}
\end{equation*}
$$

This holds for all $\gamma>1$, thus making $\gamma \rightarrow 1$,

$$
\begin{equation*}
\varlimsup_{m \rightarrow \infty} \frac{b_{m}}{m} \leq \lim _{m \rightarrow \infty} \frac{b_{m}}{m}, \quad \varlimsup_{m \rightarrow \infty} \frac{b_{m}}{m}=\lim _{m \rightarrow \infty} \frac{b_{m}}{m} \tag{1.18}
\end{equation*}
$$

1.2. Proof of Theorem 1.1

Lemma 1.8. Define $|\|\cdot\||: R \rightarrow \mathbb{R}_{+}$by $\mid\|x\|\|=\| x \|^{\alpha}$. Then, $|\|\cdot\||$ is a $\left(C_{1}^{\alpha}, 2\right)-A H A V$ on R.

Proof. (AHAV1) $\mid\|x\| \|=0$ if and only if $\|x\|=0$ if and only if $x=0$.
(AHAV2) $\mid\|x+y\|\|=\| x+y \|^{\alpha} \leq\left(2 C_{2}\right)^{\alpha}(\max (\|x\|,\|y\|))^{\alpha} \leq 2\left(\|x\|^{\alpha}+\|y\|^{\alpha}\right)=$ $2(|\|x\||+|\|y\||)$.
(AHAV3) For all $\gamma>1$ and for all $n \geq 2$ there is a constant $C_{1}(\gamma, n)^{\alpha}>1$ such that for all x_{1}, \ldots, x_{n} in R,

$$
\begin{align*}
&\left(C_{1}(\gamma, n)\right)^{-\alpha}\left|\left\|x_{1}\right\|\right|^{\gamma^{-1}} \cdots\left|\left\|x_{n}\right\|\right|^{\gamma^{-1}} \tag{1.19}\\
& \leq\left|\left\|x_{1} \cdots x_{n}\right\|\right| \leq C_{1}(\gamma, n)^{\alpha}\left|\left\|x _ { 1 } \left|\left\|\left.\right|^{\gamma} \cdots\left|\left\|x_{n}\right\|\right|^{\gamma} .\right.\right.\right.\right.
\end{align*}
$$

Lemma 1.9. Let $x \in R$ and define the real sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ by $a_{n}=\| \| x^{n} \| \mid$. The sequence ($a_{n}^{1 / n}$) is converging and

$$
\begin{equation*}
e^{-L}|\|x\|| \leq \lim _{n \rightarrow \infty} a_{n}^{1 / n} \leq e^{L}|\|x\||, \tag{1.20}
\end{equation*}
$$

where $L=\varlimsup_{n \rightarrow \infty}(1 / n) \log C_{1}(\gamma, n)<+\infty$.
Proof. Let $b_{m}=\log a_{m}$. The sequence $\left\{b_{m}\right\}$ is weakly subadditive, since for all $\gamma>1$ and for all $k \geq 1$ there is a constant $K(\gamma, k)=\left(C_{1}(\gamma, k)\right)^{\alpha}$, such that

$$
\begin{equation*}
b_{m_{1}+\cdots+m_{k}} \leq \gamma \sum_{i=1}^{k} b_{m_{i}}+\log K(\gamma, k) \tag{1.21}
\end{equation*}
$$

and for all $\gamma>1$,

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \frac{1}{k} \log K(\gamma, k)<+\infty . \tag{1.22}
\end{equation*}
$$

Therefore, by Lemma 1.7,

$$
\begin{equation*}
\varliminf_{m \rightarrow \infty} \frac{b_{m}}{m}=\varlimsup_{m \rightarrow \infty} \frac{b_{m}}{m} . \tag{1.23}
\end{equation*}
$$

Thus, to prove the convergence of $\left\{a_{n}^{1 / n}\right\}$, we only have to prove that $\left\{a_{n}^{1 / n}\right\}$ is bounded.

Let $\gamma>1$, for $n \in \mathbb{N}$ there is $C_{1}(\gamma, n)^{\alpha}$ satisfying

$$
\begin{equation*}
C_{1}(\gamma, n)^{-\alpha}|\|x\||^{n / \gamma} \leq\left|\| x ^ { n } \| \left\|\leq C_{1}(\gamma, n)^{\alpha}|\|x\||^{n \gamma} .\right.\right. \tag{1.24}
\end{equation*}
$$

Taking nth roots,

$$
\begin{equation*}
\left.C_{1}(\gamma, n)^{-\alpha / n}\left|\|x\|^{1 / \gamma} \leq a_{n}^{1 / n} \leq C_{1}(\gamma, n)^{\alpha / n}\right|\|x\|\right|^{\gamma} . \tag{1.25}
\end{equation*}
$$

Since $L=\varlimsup_{n \rightarrow \infty}(1 / n) \log C_{1}(\gamma, n)<+\infty$, we obtain

$$
\begin{equation*}
e^{-\alpha L}\left|\| x \| \left\|^{1 / \gamma} \leq \lim _{n \rightarrow \infty} a_{n}^{1 / n} \leq e^{\alpha L}|\|x\||^{\gamma} .\right.\right. \tag{1.26}
\end{equation*}
$$

This inequality holds for any $\gamma>1$. Taking the limit when $\gamma \rightarrow 1$,

$$
\begin{equation*}
e^{-\alpha L}|\|x\|| \leq a_{n}^{1 / n} \leq e^{\alpha L}|\|x\|| \tag{1.27}
\end{equation*}
$$

Now we define that $|\cdot|: R \rightarrow \mathbb{R}_{+}$by $|0|=0$ and that $|x|=\lim _{n \rightarrow \infty}\left|\left\|x^{n}\right\|\right|^{1 / n}$ for $x \neq 0$.
Lemma 1.10. The function $|\cdot|: R \rightarrow \mathbb{R}_{+}$defined as above is an absolute value on R. Moreover, if $\overline{\lim }_{n \rightarrow+\infty}(1 / n) \log C_{1}(\gamma, n)=0$, then $|x|=\|x\|^{\alpha}$ for all $x \in R$.
Proof. From Lemma 1.9, if $\varlimsup_{n \rightarrow \infty}(1 / n) \log C_{1}(\gamma, n)=0$, we obtain

$$
\begin{equation*}
|\|x\|| \leq|x| \leq|\|x\|| . \tag{1.28}
\end{equation*}
$$

That is, $|x|=\|x\|^{\alpha}$.
It is clear that, $|x|=0$ if and only if $x=0$. Next we check the multiplicative property. For $\gamma>1$ and for $n \geq 2$ there exists $C_{1}(\gamma, 2)^{\alpha}>1$, such that for $n \in \mathbb{N}$ and x, y in R,

$$
\begin{align*}
& C_{1}(\gamma, 2)^{-\alpha}\left|\left\|x^{n}\right\|\right|^{\gamma^{-1}}\left|\left\|y^{n}\right\|\right|^{\gamma^{-1}} \\
& \quad \leq\| \| x^{n}\left\|\left|\left\|\left|\left\|y^{n}\right\|\right| \leq C_{1}(\gamma, n)^{\alpha}\left|\left\|x^{n}\right\|\right|^{\gamma}\left|\left\|y^{n}\right\|\right|^{\gamma} .\right.\right.\right. \tag{1.29}
\end{align*}
$$

Taking nth roots and passing to the limit when $n \rightarrow+\infty$, we obtain

$$
\begin{equation*}
|x|^{\gamma^{-1}}|y|^{\gamma^{-1}} \leq|x y| \leq|x|^{\gamma}|y|^{\gamma} . \tag{1.30}
\end{equation*}
$$

Taking the limit when $\gamma \rightarrow 1$, we have the desired multiplicative property.
Finally, we have to check the triangle inequality. This is a corollary of the following general proposition that gives an equivalent, apparently weaker, definition of absolute value.

Proposition 1.11. Let R be a commutative ring with unity. Let $|\cdot|: R \rightarrow \mathbb{R}_{+}$be a function satisfying the following three properties:
(A1) $|x|=0$ if and only if $x=0$;
(A2) (approximate triangle inequality) there exists a real constant $B>0$, such that for all x, y in $R,|x+y| \leq B(|x|+|y|) ;$
(A3) for x, y in $R,|x y|=|x||y|$.
Then, $|\cdot|$ is an absolute value on R, that is, $|\cdot|$ satisfies the triangle inequality.
Lemma 1.12. For $x, y \in R$,

$$
\begin{equation*}
|x+y| \leq B(|x|+|y|) \leq 2 B \max (|x|,|y|) . \tag{1.31}
\end{equation*}
$$

LEMMA 1.13. Let $|\cdot|^{\prime}: R \rightarrow \mathbb{R}_{+}$, such that for $x, y \in R$,

$$
\begin{equation*}
|x+y|^{\prime} \leq M \max \left(|x|^{\prime},|y|^{\prime}\right) \tag{1.32}
\end{equation*}
$$

for some positive constant M. Then for $x_{1}, x_{2}, \ldots, x_{n} \in R$,

$$
\begin{equation*}
\left|\sum_{i=1}^{n} x_{i}\right|^{\prime} \leq M^{\left[\log _{2} n\right]+1} \max _{1 \leq i \leq n}\left(\left|x_{i}\right|^{\prime}\right) \tag{1.33}
\end{equation*}
$$

where $[a]$ denotes the integer part of a.
Proof. Let $m=\left[\log _{2} n\right]+1$ and complete the sequence $\left(x_{i}\right)_{1 \leq i \leq n}$ into $\left(x_{i}\right)_{1 \leq i \leq 2^{m}}$ adjoining 0 elements.

$$
\begin{align*}
\left|\sum_{i=1}^{2^{m}} x_{i}\right|^{\prime} & \leq M \max \left(\left|\sum_{i=1}^{2^{m-1}} x_{i}\right|^{\prime},\left|\sum_{i=2^{m-1}+1}^{2^{m}} x_{i}\right|^{\prime}\right) \\
& \leq M^{2} \max \left(\left|\sum_{i=1}^{2^{m-2}} x_{i}\right|^{\prime},\left|\sum_{i=2^{m-2}+1}^{2^{m-1}} x_{i}\right|^{\prime},\left|\sum_{i=2^{m-1}+1}^{3 \cdot 2^{m-2}} x_{i}\right|^{\prime},\left|\sum_{i=3 \cdot 2^{m-2}+1}^{2^{m}} x_{i}\right|^{\prime}\right) \tag{1.34}\\
& \leq \cdots \leq M^{m} \max _{1 \leq i \leq 2^{m}}\left|x_{i}\right|^{\prime} .
\end{align*}
$$

LEMMA 1.14. Let $\overline{\mathbb{Z}}$ be the image of \mathbb{Z} in R. For $n \in \mathbb{N}$,

$$
\begin{equation*}
|\bar{n}| \leq 2 n|1| \tag{1.35}
\end{equation*}
$$

Proof. We use Lemma 1.13 with $M=2$ and $|\cdot|^{\prime}=|\cdot|$. Take $m=\left[\log _{2} n\right]+1$, $n \leq 2^{m} \leq 2 n$, and $x_{i}=1$ for $1 \leq i \leq n$. We have

$$
\begin{equation*}
|n|=\left|\sum_{i=1}^{n} x_{i}\right| \leq 2^{m}|1| \leq 2 n|1| \tag{1.36}
\end{equation*}
$$

LEMMA 1.15. Let $\overline{\mathbb{Z}}$ be the image of \mathbb{Z} in R. For $n \in \mathbb{N}$,

$$
\begin{equation*}
|\bar{n}| \leq n \tag{1.37}
\end{equation*}
$$

Proof. Using Lemma 1.14,

$$
\begin{equation*}
\left|\overline{n^{k}}\right|=\left|\bar{n}^{k}\right| \leq 2 n^{k}|1| \tag{1.38}
\end{equation*}
$$

and $\left|\bar{n}^{k}\right|^{1 / k} \leq 2^{1 / k} n|1|^{1 / k}$. Taking $k \rightarrow+\infty$, we have $|\bar{n}| \leq n$.
Proof of Proposition 1.11. Let $x, y \in R$ and $n \geq 1$. Let $m=\left[\log _{2} n\right]+1$. Using Lemmas 1.12 and 1.14, we have

$$
\begin{align*}
\left|(x+y)^{n}\right| & =\left|\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}\right| \tag{1.39}\\
& \leq(B)^{m} \max _{0 \leq i \leq n}\left|\binom{n}{i} x^{i} y^{n-i}\right|
\end{align*}
$$

Now using Lemma 1.14,

$$
\begin{align*}
\left|(x+y)^{n}\right| & \leq(2 B)^{m} \max _{0 \leq i \leq n}\left|\binom{n}{i}\right||x|^{i}|y|^{n-i} \\
& \leq(2 B)^{m} \max _{0 \leq i \leq n}\binom{n}{i}|x|^{i}|y|^{n-i} \tag{1.40}\\
& \leq(2 B)^{m} \sum_{i=0}^{n}\binom{n}{i}|x|^{i}|y|^{n-i} \\
& \leq(2 B)^{m}(|x|+|y|)^{n} .
\end{align*}
$$

Finally,

$$
\begin{equation*}
|x+y|=\left|(x+y)^{n}\right|^{1 / n} \leq(2 B)^{(1 / n)\left(\left[\log _{2} n\right]+1\right)}(|x|+|y|), \tag{1.41}
\end{equation*}
$$

and passing to the limit $n \rightarrow+\infty$ we get the sharp triangle inequality $|x+y| \leq|x|+|y|$.

Proof of Theorem 1.2.

CASE 1. Assume $\overline{\lim }_{n \rightarrow \infty}(1 / n) \log C_{1}(\gamma, n)=0$. By Lemma 1.8, for all x, y in R we have

$$
\begin{equation*}
|x+y|=\mid\|x+y\| \| \leq 2(|\|x\||+|\|y\||) \leq 4 \max (|\|x\||,|\|y\||)=4 \max (|x|,|y|) . \tag{1.42}
\end{equation*}
$$

Therefore, by Proposition 1.11, the function $|\cdot|$ satisfies the triangle inequality.
CASE 2. Assume $0<L=\varlimsup_{n \rightarrow \infty}(1 / n) \log C_{1}(\gamma, n)<+\infty$. From Lemma 1.9, for any x in R,

$$
\begin{equation*}
e^{-\alpha L}|\|x\|| \leq|x| \leq e^{\alpha L}|\|x\|| . \tag{1.43}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
|x+y| \leq e^{\alpha L}|\|x+y\|| \leq 2 e^{\alpha L}(|\|x\||+|\|y\||) \leq 2 e^{2 \alpha L}(|x|+|y|) . \tag{1.44}
\end{equation*}
$$

Thus by Proposition 1.11, the function $|\cdot|$ satisfies the triangle inequality, it is an absolute value, and $\|\cdot\|^{\alpha}$ is $\left(e^{L \alpha}, \alpha\right)$-equivalent to $|\cdot|$.

References

[1] E. Artin, Theory of Algebraic Numbers, George Striker, Göttingen, 1959.
[2] E. Muñoz Garcia, Hölder absolute values are equivalent to classical ones, Proc. Amer. Math. Soc. 127 (1999), no. 7, 1967-1971.
[3] A. Ostrowski, Über einige Lösungen der Funktionalgleichung $\phi(x) \cdot \phi(y)=\phi(x \cdot y)$, Acta Math. 41 (1914), 271-284 (German).
E. Muñoz Garcia: Department of Mathematics, University of California, los Angeles, 405 Hilgard Avenue, los Angeles, CA 90095-1555, USA

E-mail address: munoz@math.ucla.edu

