ASYMPTOTIC HÖLDER ABSOLUTE VALUES

E. MUÑOZ GARCIA

Received 12 October 2001

We prove that asymptotic Hölder absolute values are Hölder equivalent to classical absolute values. As a corollary we obtain a generalization of Ostrowski's theorem and a classical theorem by E. Artin. The theorem presented implies a new, more flexible, definition of classical absolute value.

2000 Mathematics Subject Classification: 12J20, 12J10, 16W80, 13J99.

1. Introduction. Asymptotic Hölder absolute values generalize the notions of classical absolute value and of Hölder absolute value. A Hölder absolute value (HAV) satisfies an approximate triangle inequality and multiplicative property. More precisely, let $C_1 \ge 1$ and $C_2 \ge 1$. A (C_1, C_2) -Hölder absolute value on a ring R is a mapping $\|\cdot\| : R \to \mathbb{R}_+$ satisfying:

(HAV1) for $x \in R$, $||x|| = 0 \Leftrightarrow x = 0$;

(HAV2) for $x, y \in R$, $||x + y|| \le C_2(||x|| + ||y||)$;

(HAV3) for $x, y \in R$, $C_1^{-1} ||x|| ||y|| \le ||xy|| \le C_1 ||x|| ||y||$.

It is known that HAV on a ring are Hölder equivalent to a classical ones. More precisely, we have the following theorem (see [2]).

THEOREM 1.1 (Hölder rigidity). Let $\|\cdot\| : R \to \mathbb{R}_+$ be a (C_1, C_2) -Hölder absolute value on a commutative ring R with unit element. There exists an absolute value on R, $|\cdot| : R \to \mathbb{R}_+$, which is (C_1^{α}, α) -Hölder equivalent to $\|\cdot\|$ with $\alpha = \log_2(2C_2)$, that is, for $x \in R$,

$$C_1^{-\alpha} |x|^{\alpha} \le ||x|| \le C_1^{\alpha} |x|^{\alpha}.$$
(1.1)

Moreover, $| \cdot |$ *can be defined by*

$$|x| = \lim_{n \to +\infty} ||x^n||^{1/na}.$$
(1.2)

For a ring *R* with unity, a real constant $C_2 \ge 1$, and a function $C_1(\cdot, \cdot)$ defined on $]1, +\infty[\times\mathbb{N}]$ taking values in $[1, +\infty[$, we define a (C_1, C_2) -asymptotic Hölder absolute value (AHAV) on *R*,

$$|\cdot|: R \longrightarrow \mathbb{R}_+, \tag{1.3}$$

satisfying the three following axioms: (AHAV1) |x| = 0 if and only if x = 0; (AHAV2) for $x, y \in R$, $|x + y| \le C_2(|x| + |y|)$; (AHAV3) for $\gamma > 1$ and $n \ge 2$ there is a constant $C_1(\gamma, n) > 1$ such that for $x_1, ..., x_n \in R$,

$$C_{1}(y,n)^{-1}|x_{1}|^{y^{-1}}\cdots|x_{n}|^{y^{-1}} \leq |x_{1}\cdots x_{n}| \leq C_{1}(y,n)|x_{1}|^{y}\cdots|x_{n}|^{y}, \quad (1.4)$$

and $L = \overline{\lim}_{n \to \infty} (1/n) \log C_1(\gamma, n) < +\infty$. We prove the following theorem.

THEOREM 1.2. Let *R* be a commutative ring with unity. Let $C_2 \ge 1$ be a real constant, $\alpha = 1/\log_2(2C_2)$, and $\|\cdot\| = \alpha(C_1, C_2)$ -AHAV on *R*. We have the following dichotomy: (i) if

$$\overline{\lim_{n\to\infty}}\frac{1}{n}\log C_1(\gamma,n) = 0, \tag{1.5}$$

then $\|\cdot\|^{\alpha}$ is a classical absolute value on R; (ii) if

$$0 < L = \overline{\lim_{n \to \infty} \frac{1}{n}} \log C_1(\gamma, n) < +\infty,$$
(1.6)

then $\|\cdot\|^{\alpha}$ is a Hölder absolute value on *R*, more precisely, it is $(e^{L\alpha}, \alpha)$ -Hölder equivalent to an absolute value on *R*.

As a result of Theorem 1.2(i), we can define classical absolute values as AHAV with $C_2 = 1$ having a sequence of constants $(C_1(\gamma, n))_n$ growing sub-exponentially, that is,

$$\overline{\lim_{n \to \infty}} \frac{1}{n} \log C_1(\gamma, n) = 0.$$
(1.7)

This is far more flexible than the classical definition.

Note that, in general, Hölder equivalence is a metric property which is stronger than the usual topological equivalence, for example, $\{0\} \cup \{1/n; n \ge 1\}$ and $\{0\} \cup \{1/2^n; n \ge 1\}$ are homeomorphic, but not Hölder equivalent.

COROLLARY 1.3. Consider $|\cdot|: R \to \mathbb{R}^+$ satisfying

(AV1) |x| = 0 if and only if x = 0,

(AV2) for $x, y \in R$, $|x + y| \le |x| + |y|$ then,

(AV3) for $x, y \in R$, |xy| = |x||y| is equivalent to:

(AV3') for $\gamma > 1$ and $n \ge 2$ there is a constant $C_1(\gamma, n) > 1$ such that for $x_1, \dots, x_n \in R$,

$$C_{1}(y,n)^{-1} |x_{1}|^{\gamma^{-1}} \cdots |x_{n}|^{\gamma^{-1}} \le |x_{1} \cdots x_{n}| \le C_{1}(y,n) |x_{1}|^{\gamma} \cdots |x_{n}|^{\gamma}$$
(1.8)

with $\lim_{n\to\infty} (1/n) \log C_1(\gamma, n) = 0$.

Our theorem gives a generalization for discrete rings of Artin's theorem [1].

COROLLARY 1.4. If $\|\cdot\|$ is a $(1, C_2)$ -AHAV over a discrete field F, there exists an absolute value $|\cdot|$ and an exponent α , such that for all x in F, $||x||^{\alpha} = |x|$.

Also, our theorem implies a generalization of Ostrowski's theorem [3] for classical absolute values ($C_1 = C_2 = \gamma = 1$) over \mathbb{Z} .

COROLLARY 1.5. If $\|\cdot\|$ is a (C_1, C_2) -AHAV over \mathbb{Z} normalized, so that $\|1\| = 1$, then $\|\cdot\|$ is $(e^{L\alpha}, \alpha)$ -Hölder equivalent to a *p*-adic absolute value $|\cdot|_p$ or to $|\cdot|_{\infty}$ or to the trivial absolute value, with $\alpha = 1/\log_2(2C_2)$.

REMARKS. (1) The constant $C_1(\gamma, n)$ in the definition of AHAV can be chosen to satisfy the inequality

$$C_1(\gamma, n) \le C_1(\gamma^{1/(\lceil \log_2 n \rceil + 1)}, 2)^n,$$
(1.9)

where [*a*] denotes the integer part of *a*.

(2) Let $C_2 \ge 1$ and let $|\cdot|: R \to \mathbb{R}_+$ be a (C_1, C_2) -AHAV on R. If $\overline{\lim}_{y \to 1} C_1(y, 2) = C_1 < +\infty$, then $|\cdot|$ is a (C_1, C_2) -Hölder absolute value.

(3) If *R* is a ring on which a (C_1, C_2) -AHAV $|\cdot|$ is defined, then *R* is a discrete ring for the topology defined by $|\cdot|$.

1.1. Weak subadditive lemma. We prove a generalization of a classical lemma on subadditive sequences (which might be of independent interest).

DEFINITION 1.6. The real sequence $(b_m)_{m \in \mathbb{N}}$ is weakly subadditive if

(i) for $\gamma > 1$ and $k \ge 1$, there is a constant $K(\gamma, k) > 0$ such that for $m_1, \ldots, m_k \in \mathbb{N}$,

$$b_{m_1+\dots+m_k} \le \gamma \sum_{i=1}^k b_{m_i} + K(\gamma, k);$$
 (1.10)

(ii) for $\gamma > 1$, we have $K^*(\gamma) = \overline{\lim}_{k \to \infty} (1/k) K(\gamma, k) < +\infty$.

LEMMA 1.7. If $(b_m)_{m \in \mathbb{N}}$ is weakly subadditive, then

$$\underline{\lim_{m \to \infty} \frac{b_m}{m}} = \underline{\lim_{m \to \infty} \frac{b_m}{m}}.$$
(1.11)

PROOF. Fix $n \ge 1$. For any $m \in \mathbb{Z}$, we consider the Euclidean division

$$m = nq + r, \quad 0 \le r < n. \tag{1.12}$$

Now,

$$b_m = b_{nq+r} \le \gamma (qb_n + b_r) + K(\gamma, q+1).$$
(1.13)

Dividing by *m*,

$$\frac{b_m}{m} = \frac{b_{nq+r}}{nq+r} \le \gamma \left(\frac{q}{nq+r}b_n + \frac{b_r}{nq+r}\right) + \left(\frac{q+1}{nq+r}\right)\frac{K(\gamma, q+1)}{q+1}.$$
 (1.14)

Taking the upper limit when $m \to \infty$,

$$\overline{\lim_{m \to \infty}} \frac{b_m}{m} \le \gamma \left(\frac{b_n}{n} + 0\right) + \frac{1}{n} K^*(\gamma).$$
(1.15)

That is, for all $q \ge 1$,

$$\overline{\lim_{m \to \infty}} \frac{b_m}{m} \le \gamma \frac{b_n}{n} + \frac{1}{n} K^*(\gamma).$$
(1.16)

Now, taking the lower limit on the right side when $n \rightarrow \infty$,

$$\overline{\lim_{m \to \infty}} \frac{b_m}{m} \le \gamma \underline{\lim_{n \to \infty}} \frac{b_n}{n}.$$
(1.17)

This holds for all $\gamma > 1$, thus making $\gamma \rightarrow 1$,

$$\overline{\lim_{m \to \infty}} \frac{b_m}{m} \le \underline{\lim_{m \to \infty}} \frac{b_m}{m}, \qquad \overline{\lim_{m \to \infty}} \frac{b_m}{m} = \underline{\lim_{m \to \infty}} \frac{b_m}{m}.$$
(1.18)

1.2. Proof of Theorem 1.1

LEMMA 1.8. Define $|\| \cdot \|| : R \to \mathbb{R}_+$ by $|\| x \|| = \| x \|^{\alpha}$. Then, $|\| \cdot \||$ is a $(C_1^{\alpha}, 2)$ -AHAV on R.

PROOF. (AHAV1) |||x||| = 0 if and only if ||x|| = 0 if and only if x = 0.

 $(\text{AHAV2}) |||x + y||| = ||x + y||^{\alpha} \le (2C_2)^{\alpha} (\max(||x||, ||y||))^{\alpha} \le 2(||x||^{\alpha} + ||y||^{\alpha}) = 2(||x|| + ||y|||).$

(AHAV3) For all $\gamma > 1$ and for all $n \ge 2$ there is a constant $C_1(\gamma, n)^{\alpha} > 1$ such that for all x_1, \ldots, x_n in R,

$$(C_{1}(y,n))^{-\alpha} |||x_{1}|||^{\gamma^{-1}} \cdots |||x_{n}|||^{\gamma^{-1}}$$

$$\leq |||x_{1}\cdots x_{n}||| \leq C_{1}(y,n)^{\alpha} |||x_{1}|||^{\gamma} \cdots |||x_{n}|||^{\gamma}.$$

$$(1.19)$$

LEMMA 1.9. Let $x \in R$ and define the real sequence $(a_n)_{n \in \mathbb{N}}$ by $a_n = |||x^n|||$. The sequence $(a_n^{1/n})$ is converging and

$$e^{-L}|\|x\|| \le \lim_{n \to \infty} a_n^{1/n} \le e^L |\|x\||, \tag{1.20}$$

where $L = \overline{\lim}_{n \to \infty} (1/n) \log C_1(\gamma, n) < +\infty$.

PROOF. Let $b_m = \log a_m$. The sequence $\{b_m\}$ is weakly subadditive, since for all $\gamma > 1$ and for all $k \ge 1$ there is a constant $K(\gamma, k) = (C_1(\gamma, k))^{\alpha}$, such that

$$b_{m_1+\dots+m_k} \le \gamma \sum_{i=1}^k b_{m_i} + \log K(\gamma, k),$$
 (1.21)

and for all $\gamma > 1$,

$$\lim_{k \to +\infty} \frac{1}{k} \log K(\gamma, k) < +\infty.$$
(1.22)

Therefore, by Lemma 1.7,

$$\underline{\lim_{m \to \infty} \frac{b_m}{m}} = \overline{\lim_{m \to \infty} \frac{b_m}{m}}.$$
(1.23)

Thus, to prove the convergence of $\{a_n^{1/n}\}$, we only have to prove that $\{a_n^{1/n}\}$ is bounded.

Let $\gamma > 1$, for $n \in \mathbb{N}$ there is $C_1(\gamma, n)^{\alpha}$ satisfying

$$C_1(\gamma, n)^{-\alpha} ||x||^{n/\gamma} \le ||x^n|| \le C_1(\gamma, n)^{\alpha} ||x||^{n\gamma}.$$
(1.24)

Taking *n*th roots,

$$C_1(\gamma, n)^{-\alpha/n} |\|x\||^{1/\gamma} \le a_n^{1/n} \le C_1(\gamma, n)^{\alpha/n} |\|x\||^{\gamma}.$$
(1.25)

Since $L = \overline{\lim}_{n \to \infty} (1/n) \log C_1(\gamma, n) < +\infty$, we obtain

$$e^{-\alpha L} |||x|||^{1/\gamma} \le \lim_{n \to \infty} a_n^{1/n} \le e^{\alpha L} |||x|||^{\gamma}.$$
(1.26)

This inequality holds for any $\gamma > 1$. Taking the limit when $\gamma \rightarrow 1$,

$$e^{-\alpha L} ||x||| \le a_n^{1/n} \le e^{\alpha L} ||x|||.$$
 (1.27)

Now we define that $|\cdot|: R \to \mathbb{R}_+$ by |0| = 0 and that $|x| = \lim_{n \to \infty} ||x^n||^{1/n}$ for $x \neq 0$.

LEMMA 1.10. The function $|\cdot|: R \to \mathbb{R}_+$ defined as above is an absolute value on R. Moreover, if $\overline{\lim}_{n\to+\infty} (1/n) \log C_1(\gamma, n) = 0$, then $|x| = ||x||^{\alpha}$ for all $x \in R$.

PROOF. From Lemma 1.9, if $\overline{\lim}_{n\to\infty}(1/n)\log C_1(\gamma, n) = 0$, we obtain

$$|||x||| \le |x| \le ||x||. \tag{1.28}$$

That is, $|x| = ||x||^{\alpha}$.

It is clear that, |x| = 0 if and only if x = 0. Next we check the multiplicative property. For y > 1 and for $n \ge 2$ there exists $C_1(y, 2)^{\alpha} > 1$, such that for $n \in \mathbb{N}$ and x, y in R,

$$C_{1}(\gamma,2)^{-\alpha}|||x^{n}|||^{\gamma^{-1}}|||y^{n}|||^{\gamma^{-1}} \leq |||x^{n}||| |||y^{n}||| \leq C_{1}(\gamma,n)^{\alpha}|||x^{n}|||^{\gamma}|||y^{n}|||^{\gamma}.$$
(1.29)

Taking *n*th roots and passing to the limit when $n \rightarrow +\infty$, we obtain

$$|x|^{\gamma^{-1}}|y|^{\gamma^{-1}} \le |xy| \le |x|^{\gamma}|y|^{\gamma}.$$
(1.30)

Taking the limit when $\gamma \rightarrow 1$, we have the desired multiplicative property.

Finally, we have to check the triangle inequality. This is a corollary of the following general proposition that gives an equivalent, apparently weaker, definition of absolute value.

PROPOSITION 1.11. Let *R* be a commutative ring with unity. Let $|\cdot| : R \to \mathbb{R}_+$ be a function satisfying the following three properties:

- (A1) |x| = 0 if and only if x = 0;
- (A2) (approximate triangle inequality) there exists a real constant B > 0, such that for all x, y in R, $|x + y| \le B(|x| + |y|)$;
- (A3) for x, y in R, |xy| = |x||y|. Then, $|\cdot|$ is an absolute value on R, that is, $|\cdot|$ satisfies the triangle inequality.

LEMMA 1.12. For $x, y \in R$,

$$|x + y| \le B(|x| + |y|) \le 2B\max(|x|, |y|).$$
(1.31)

LEMMA 1.13. Let $|\cdot|' : R \to \mathbb{R}_+$, such that for $x, y \in R$,

$$|x + y|' \le M \max(|x|', |y|'), \tag{1.32}$$

for some positive constant *M*. Then for $x_1, x_2, ..., x_n \in R$,

$$\left|\sum_{i=1}^{n} x_{i}\right|' \le M^{[\log_{2} n]+1} \max_{1 \le i \le n} (|x_{i}|'),$$
(1.33)

where [*a*] *denotes the integer part of a.*

PROOF. Let $m = \lfloor \log_2 n \rfloor + 1$ and complete the sequence $(x_i)_{1 \le i \le n}$ into $(x_i)_{1 \le i \le 2^m}$ adjoining 0 elements.

$$\left|\sum_{i=1}^{2^{m}} x_{i}\right|' \leq M \max\left(\left|\sum_{i=1}^{2^{m-1}} x_{i}\right|', \left|\sum_{i=2^{m-1}+1}^{2^{m}} x_{i}\right|'\right)$$
$$\leq M^{2} \max\left(\left|\sum_{i=1}^{2^{m-2}} x_{i}\right|', \left|\sum_{i=2^{m-2}+1}^{2^{m-1}} x_{i}\right|', \left|\sum_{i=2^{m-1}+1}^{3 \cdot 2^{m-2}} x_{i}\right|', \left|\sum_{i=3 \cdot 2^{m-2}+1}^{2^{m}} x_{i}\right|'\right) (1.34)$$
$$\leq \cdots \leq M^{m} \max_{1 \leq i \leq 2^{m}} |x_{i}|'.$$

LEMMA 1.14. Let $\overline{\mathbb{Z}}$ be the image of \mathbb{Z} in \mathbb{R} . For $n \in \mathbb{N}$,

$$|\bar{n}| \le 2n|1|. \tag{1.35}$$

PROOF. We use Lemma 1.13 with M = 2 and $|\cdot|' = |\cdot|$. Take $m = \lfloor \log_2 n \rfloor + 1$, $n \le 2^m \le 2n$, and $x_i = 1$ for $1 \le i \le n$. We have

$$|n| = \left| \sum_{i=1}^{n} x_i \right| \le 2^m |1| \le 2n |1|.$$
(1.36)

LEMMA 1.15. Let $\overline{\mathbb{Z}}$ be the image of \mathbb{Z} in \mathbb{R} . For $n \in \mathbb{N}$,

$$|\bar{n}| \le n. \tag{1.37}$$

PROOF. Using Lemma 1.14,

$$\left|\overline{n^{k}}\right| = \left|\bar{n}^{k}\right| \le 2n^{k}|1|, \tag{1.38}$$

and $|\bar{n}^k|^{1/k} \leq 2^{1/k} n |1|^{1/k}$. Taking $k \to +\infty$, we have $|\bar{n}| \leq n$.

PROOF OF PROPOSITION 1.11. Let $x, y \in R$ and $n \ge 1$. Let $m = \lfloor \log_2 n \rfloor + 1$. Using Lemmas 1.12 and 1.14, we have

$$|(x+y)^{n}| = \left|\sum_{i=0}^{n} {n \choose i} x^{i} y^{n-i}\right|$$

$$\leq (B)^{m} \max_{0 \leq i \leq n} \left| {n \choose i} x^{i} y^{n-i} \right|.$$
(1.39)

28

Now using Lemma 1.14,

$$\begin{split} \left| (x+y)^{n} \right| &\leq (2B)^{m} \max_{0 \leq i \leq n} \left| \binom{n}{i} \right| |x|^{i} |y|^{n-i} \\ &\leq (2B)^{m} \max_{0 \leq i \leq n} \binom{n}{i} |x|^{i} |y|^{n-i} \\ &\leq (2B)^{m} \sum_{i=0}^{n} \binom{n}{i} |x|^{i} |y|^{n-i} \\ &\leq (2B)^{m} (|x|+|y|)^{n}. \end{split}$$
(1.40)

Finally,

$$|x + y| = |(x + y)^n|^{1/n} \le (2B)^{(1/n)([\log_2 n] + 1)} (|x| + |y|),$$
(1.41)

and passing to the limit $n \to +\infty$ we get the sharp triangle inequality $|x + y| \le |x| + |y|$.

PROOF OF THEOREM 1.2.

CASE 1. Assume $\overline{\lim}_{n\to\infty}(1/n)\log C_1(\gamma,n) = 0$. By Lemma 1.8, for all x, γ in R we have

$$|x + y| = |||x + y||| \le 2(|||x||| + |||y|||) \le 4\max(|||x|||, |||y|||) = 4\max(||x|, |y|).$$
(1.42)

Therefore, by Proposition 1.11, the function $|\cdot|$ satisfies the triangle inequality.

CASE 2. Assume $0 < L = \overline{\lim}_{n \to \infty} (1/n) \log C_1(\gamma, n) < +\infty$. From Lemma 1.9, for any x in R,

$$e^{-\alpha L}|\|x\|| \le |x| \le e^{\alpha L}|\|x\||.$$
(1.43)

Therefore,

$$|x+y| \le e^{\alpha L} ||x+y|| \le 2e^{\alpha L} (||x|| + ||y||) \le 2e^{2\alpha L} (|x|+|y|).$$
(1.44)

Thus by Proposition 1.11, the function $|\cdot|$ satisfies the triangle inequality, it is an absolute value, and $\|\cdot\|^{\alpha}$ is $(e^{L\alpha}, \alpha)$ -equivalent to $|\cdot|$.

REFERENCES

- [1] E. Artin, *Theory of Algebraic Numbers*, George Striker, Göttingen, 1959.
- [2] E. Muñoz Garcia, *Hölder absolute values are equivalent to classical ones*, Proc. Amer. Math. Soc. 127 (1999), no. 7, 1967-1971.
- [3] A. Ostrowski, Über einige Lösungen der Funktionalgleichung $\phi(x) \cdot \phi(y) = \phi(x \cdot y)$, Acta Math. 41 (1914), 271-284 (German).

E . MUÑOZ GARCIA: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGE-LES, 405 HILGARD AVENUE, LOS ANGELES, CA 90095-1555, USA