THE GALOIS ALGEBRAS AND THE AZUMAYA GALOIS EXTENSIONS

GEORGE SZETO and LIANYONG XUE

Received 26 October 2001

Let B be a Galois algebra over a commutative ring R with Galois group G, C the center of B, $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\}$, $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ for each $g \in K$, and $B_K = (\bigoplus \sum_{g \in K} J_g)$. Then B_K is a central weakly Galois algebra with Galois group induced by K. Moreover, an Azumaya Galois extension B with Galois group K is characterized by using B_K .

2000 Mathematics Subject Classification: 16S35, 16W20.

- **1. Introduction.** Let *B* be a Galois algebra over a commutative ring *R* with Galois group G and C the center of B. The class of Galois algebras has been investigated by DeMeyer [2], Kanzaki [6], Harada [4, 5], and the authors [7]. In [2], it was shown that if R contains no idempotents but 0 and 1, then B is a central Galois algebra with Galois group K and C is a commutative Galois algebra with Galois group G/Kwhere $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\}$ [2, Theorem 1]. This fact was extended to the Galois algebra B over R containing more than two idempotents [6, Proposition 3], and generalized to any Galois algebra B [7, Theorem 3.8] by using the Boolean algebra B_a generated by $\{0, e_g \mid g \in G \text{ for a central idempotent } e_g\}$ where $BJ_g = Be_g$ and $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ for each $g \in G$ [6]. The purpose of this paper is to show that there exists a subalgebra B_K of B such that B_K is a central weakly Galois algebra with Galois group $K|_{B_K}$ induced by K where a weakly Galois algebra was defined in [8] and that $B_K B^K$ is an Azumaya weakly Galois extension with Galois group $K|_{B_KB^K}$ where an Azumaya Galois extension was studied in [1]. Thus some characterizations of an Azumaya Galois extension B of B^K with Galois group Kare obtained, and the results as given in [2, 6] are generalized.
- **2. Definitions and notations.** Throughout, let B be a Galois algebra over a commutative ring R with Galois group G, C the center of B, and $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\}$. We keep the definitions of a Galois extension, a Galois algebra, a central Galois algebra, a separable extension, and an Azumaya algebra as defined in [7]. An Azumaya Galois extension A with Galois group G is a Galois extension A of A^G which is a C^G -Azumaya algebra where C the center of A [1]. A weakly Galois extension A with Galois group G is a finitely generated projective left module A over A^G such that $A_lG \cong \operatorname{Hom}_{AG}(A,A)$ where $A_l = \{a_l, \text{ a left multiplication map by } a \in A\}$ [8]. We call that A is a weakly Galois algebra with Galois group G if A is a weakly Galois extension with Galois group G such that G is contained in the center of G and that

A is a central weakly Galois algebra with Galois group G if A is a weakly Galois extension with Galois group G such that A^G is the center of A. An Azumaya weakly Galois extension A with Galois group G is a weakly Galois extension A of A^G which is a C^G -Azumaya algebra where C the center of A.

3. A weakly Galois algebra. In this section, let B be a Galois algebra over R with Galois group G, C the center of B, $B^G = \{b \in B \mid g(b) = b \text{ for all } g \in G\}$, and $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\}$. Then, $B = \bigoplus \sum_{g \in G} J_g = (\bigoplus \sum_{g \in K} J_g) \oplus (\bigoplus \sum_{g \notin K} J_g)$ where $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ [6, Theorem 1] . We denote $\bigoplus \sum_{g \in K} J_g$ by B_K and the center of B_K by Z. Clearly, K is a normal subgroup of G. We show that B_K is an Azumaya algebra over Z and a central weakly Galois algebra with Galois group $K|_{B_K}$.

THEOREM 3.1. The algebra B_K is an Azumaya algebra over Z.

PROOF. By the definition of B_K , $B_K = \bigoplus \sum_{g \in K} J_g$, so $C(= J_1) \subset B_K$. Since B is a Galois algebra with Galois group G and $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\}$, the order of K is a unit in C by [6, Proposition 5]. Moreover, K is an C-automorphism group of B, so B_K is a C-separable algebra by [5, Proposition 5]. Thus B_K is an Azumaya algebra over Z.

In order to show that B_K is a central weakly Galois algebra with Galois group $K|_{B_K}$, we need two lemmas.

LEMMA 3.2. Let $L = \{g \in K \mid g(a) = a \text{ for all } a \in B_K\}$. Then, L is a normal subgroup of K such that $\overline{K}(=K/L)$ is an automorphism group of B_K induced by K (i.e., $K|_{B_K} \cong \overline{K}$).

PROOF. Clearly, *L* is a normal subgroup of *K*, so for any $h \in K$,

$$h(B_K) = \bigoplus_{g \in K} h(J_g) = \bigoplus_{g \in K} J_{hgh^{-1}} = \bigoplus_{g \in hKh^{-1}} J_g = \bigoplus_{g \in K} J_g = B_K.$$
 (3.1)

Thus
$$K|_{B_K} \cong \overline{K}$$
.

LEMMA 3.3. The fixed ring of B_K under K, $(B_K)^K = Z$.

PROOF. Let x be any element in $(B_K)^K$ and b any element in B_K . Then $b = \sum_{g \in K} b_g$ where $b_g \in J_g$ for each $g \in K$. Hence $bx = \sum_{g \in K} b_g x = \sum_{g \in K} g(x)b_g = \sum_{g \in K} xb_g = x\sum_{g \in K} b_g = xb$. Therefore $x \in Z$. Thus $(B_K)^K \subset Z$. Conversely, for any $z \in Z$ and $g \in K$, we have that zx = xz = g(z)x for any $x \in J_g$, so (g(z) - z)x = 0 for any $x \in J_g$. Hence $(g(z) - z)J_g = \{0\}$. Noting that $BJ_g = J_g B = B$, we have that $(g(z) - z)B = \{0\}$, so g(z) = z for any $z \in Z$ and $g \in K$. Thus $Z \subset (B_K)^K$. Therefore $(B_K)^K = Z$.

THEOREM 3.4. The algebra B_K is a central weakly Galois algebra with Galois group $K|_{B_K} \cong \overline{K}$.

PROOF. By Lemma 3.3, it suffices to show that (1) B_K is a finitely generated projective module over Z, and (2) $(B_K)_l\overline{K}\cong \operatorname{Hom}_Z(B_K,B_K)$. Part (1) is a consequence of Theorem 3.1. For part (2), since B_K is an Azumaya algebra over Z by Theorem 3.1 again, $B_K\otimes_Z B_K^o\cong \operatorname{Hom}_Z(B_K,B_K)$ [3, Theorem 3.4, page 52] by extending the map $(a\otimes b)(x)=axb$ linearly for $a\otimes b\in B_K\otimes_Z B_K^o$ and each $x\in B_K$ where B_K^o is the

opposite algebra of B_K . By denoting the left multiplication map with $a \in B_K$ by a_l and the right multiplication map with $b \in B_K$ by b_r , $(a \otimes b)(x) = (a_lb_r)(x) = axb$. Since $B_K = \bigoplus \sum_{g \in K} J_g$, $B_K \otimes_Z B_K^o = \sum_{g \in K} (B_K)_l (J_g)_r$. Observing that $(J_g)_r = (J_g)_l \overline{g}^{-1}$ where $\overline{g} = g|_{B_K} \in K|_{B_K} \cong \overline{K}$, we have that $B_K \otimes_Z B_K^o = \sum_{g \in K} (B_K)_l (J_g)_r = \sum_{g \in K} (B_K)_l (J_g)_l \overline{g}^{-1} = \sum_{g \in K} (B_KJ_g)_l \overline{g}^{-1}$. Moreover, since $BJ_g = B$ for each $g \in K$ and $B = \bigoplus \sum_{h \in G} J_h = B_K \oplus (\bigoplus \sum_{h \notin K} J_h)$, $B_K \oplus (\bigoplus \sum_{h \notin K} J_h) = B = BJ_g = B_KJ_g \oplus (\bigoplus \sum_{h \notin K} J_hJ_g)$ such that $B_KJ_g \subset B_K$ and $\bigoplus \sum_{h \notin K} J_hJ_g \subset \bigoplus \sum_{h \notin K} J_h$. Hence $B_KJ_g = B_K$ for each $g \in K$. Therefore $B_K \otimes_Z B_K^o = \sum_{g \in K} (B_KJ_g)_l \overline{g}^{-1} = \sum_{g \in K} (B_K)_l \overline{g}^{-1} = (B_K)_l \overline{K}$. Thus $(B_K)_l \overline{K} \cong \operatorname{Hom}_Z(B_K, B_K)$. This completes the proof of part (2). Thus B_K is a central weakly Galois algebra with Galois group $K|_{B_K} \cong \overline{K}$.

Recall that an algebra A is called an Azumaya weakly Galois extension of A^K with Galois group K if A is a weakly Galois extension of A^K which is a C^K -Azumaya algebra where C is the center of A. Next, we show that $B_K B^K$ is an Azumaya weakly Galois extension with Galois group $K|_{B_K B^K} \cong \overline{K}$. We begin with the following two lemmas about B_K .

LEMMA 3.5. The fixed ring of B under K, $B^K = V_B(B_K)$.

PROOF. For any $b \in B^K$ and $x \in J_g$ for any $g \in K$, we have that xb = g(b)x = bx, so $b \in V_B(J_g)$ for any $g \in K$. Thus $b \in V_B(B_K)$. Conversely, for any $b \in V_B(B_K)$ and $g \in K$, we have that bx = xb = g(b)x for any $x \in J_g$, so (g(b) - b)x = 0 for any $x \in J_g$. Hence $(g(b) - b)J_g = \{0\}$. But $BJ_g = J_gB = B$ for any $g \in K$, so $(g(b) - b)B = \{0\}$. Thus g(b) = b for any $g \in K$; and so $b \in B^K$. Therefore $B^K = V_B(B_K)$.

LEMMA 3.6. The algebra B^K is an Azumaya algebra over Z where Z is the center of B_K .

PROOF. Since B is a Galois algebra over R with Galois group G, B is an Azumaya algebra over its center C. By the proof of Theorem 3.1, B_K is a C-separable subalgebra of B, so $V_B(B_K)$ is a C-separable subalgebra of B and $V_B(V_B(B_K)) = B_K$ by the commutator theorem for Azumaya algebras [3, Theorem 4.3, page 57]. This implies that B_K and $V_B(B_K)$ have the same center Z. Thus $V_B(B_K)$ is an Azumaya algebra over Z. But, by Lemma 3.5, $B^K = V_B(B_K)$, so B^K is an Azumaya algebra over Z.

THEOREM 3.7. Let $A = B_K B^K$. Then A is an Azumaya weakly Galois extension with Galois group $K|_A \cong \overline{K}$.

PROOF. Since B_K is a central weakly Galois algebra with Galois group $K|_{B_K} \cong \overline{K}$ by Theorem 3.4, B_K is a finitely generated projective module over Z and $(B_K)_l \overline{K} \cong \operatorname{Hom}_Z(B_K, B_K)$. By Lemma 3.6, B^K is an Azumaya algebra over Z, so $A (\cong B_K \otimes_Z B^K)$ is a finitely generated projective module over $B^K (= A^{\overline{K}})$. Moreover, since $B^K = V_B(B_K)$ by Lemma 3.5 and $(B_K)_l \overline{K} \cong \operatorname{Hom}_Z(B_K, B_K)$,

$$A_{l}\overline{K} = (B_{K}B^{K})_{l}\overline{K} = (B_{K})_{l}\overline{K}(B^{K})_{r} \cong B_{K}\overline{K} \otimes_{Z} B^{K} \cong \operatorname{Hom}_{Z}(B_{K}, B_{K}) \otimes_{Z} B^{K}$$

$$\cong \operatorname{Hom}_{B^{K}}(B_{K} \otimes_{Z} B^{K}, B_{K} \otimes_{Z} B^{K}) \cong \operatorname{Hom}_{B^{K}}(B_{K}B^{K}, B_{K}B^{K})$$

$$= \operatorname{Hom}_{A^{\overline{K}}}(A, A).$$
(3.2)

Thus A is a weakly Galois extension of A^K with Galois group $K|_A \cong \overline{K}$. Next, we claim that A has center Z and $A^{\overline{K}}$ is an Azumaya algebra over $Z^{\overline{K}}$. In fact, B_K and B^K are Azumaya algebras over Z by Theorem 3.1 and Lemma 3.6, respectively, so $A (= B_K B^K)$ has center Z and $A^{\overline{K}} = (B_K B^K)^{\overline{K}} = B^K$. Noting that B^K is an Azumaya algebra over Z, we conclude that $A^{\overline{K}}$ is an Azumaya algebra over $Z^{\overline{K}}$. Thus A is an Azumaya weakly Galois extension with Galois group $K|_A \cong \overline{K}$.

4. An Azumaya Galois extension. In this section, we give several characterizations of an Azumaya Galois extension B by using B_K . This generalizes the results in [2, 6]. The Z-module $\{b \in B_K \mid bx = g(x)b \text{ for all } x \in B_K\}$ is denoted by $J_{\overline{g}}^{(B_K)}$ for $\overline{g} \in \overline{K}$ where $\overline{K}(=K/L)$ is defined in Lemma 3.2.

LEMMA 4.1. The algebra B_K is a central Galois algebra with Galois group $K|_{B_K} \cong \overline{K}$ if and only if $J_{\overline{a}}^{(B_K)} = \bigoplus \sum_{l \in L} J_{gl}$ for each $\overline{g} \in \overline{K}$.

PROOF. Let B_K be a central Galois algebra with Galois group $K|_{B_K} \cong \overline{K}$. Then $B_K = \bigoplus \sum_{\overline{g} \in \overline{K}} J_{\overline{g}}^{(B_K)}$ [6, Theorem 1]. Next it is easy to check that $\bigoplus \sum_{l \in L} J_{gl} \subset J_{\overline{g}}^{(B_K)}$. But $B_K = \bigoplus \sum_{g \in K} J_g$, so $\bigoplus \sum_{g \in K} J_g = \bigoplus \sum_{\overline{g} \in \overline{K}} J_{\overline{g}}^{(B_K)}$ where $\bigoplus \sum_{l \in L} J_{gl} \subset J_{\overline{g}}^{(B_K)}$. Thus $J_{\overline{g}}^{(B_K)} = \bigoplus \sum_{l \in L} J_{gl}$ for each $\overline{g} \in \overline{K}$. Conversely, since $J_{\overline{g}}^{(B_K)} = \bigoplus \sum_{l \in L} J_{gl}$ for each $\overline{g} \in \overline{K}$, $B_K = \bigoplus \sum_{g \in K} J_g = \bigoplus \sum_{\overline{g} \in \overline{K}} J_{\overline{g}}^{(B_K)}$. Moreover, by Lemma 3.3, $(B_K)^K = Z$, so \overline{K} is a Z-automorphism group of B_K . Hence $J_{\overline{g}}^{(B_K)} J_{\overline{g}^{-1}}^{(B_K)} = Z$ for each $\overline{g} \in \overline{K}$. Thus B_K is a central Galois algebra with Galois group $K|_{B_K} \cong \overline{K}$ because B_K is an Azumaya Z-algebra by Theorem 3.1 (see [4, Theorem 1]).

Next, we characterize an Azumaya Galois extension B with Galois group K.

THEOREM 4.2. *The following statements are equivalent:*

- (1) B is an Azumaya Galois extension with Galois group K;
- (2) Z = C;
- (3) $B = B_K B^K$;
- (4) B_K is a central Galois algebra over C with Galois group $K|_{B_K} \cong K$.

PROOF. (1) \Rightarrow (2). Since *B* is an Azumaya Galois extension with Galois group *K*, B^K is a C^K -Azumaya algebra. But, by Lemma 3.6, B^K is an Azumaya algebra over *Z*, so $Z = C^K$. Hence $C \subset Z = C^K \subset C$. Thus Z = C.

(2)⇒(3). Suppose that Z = C. Then, by Theorem 3.1, B_K is an Azumaya algebra over C. Hence by the commutator theorem for Azumaya algebras, $B = B_K V_B(B_K)$ [3, Theorem 4.3, page 57]. But, by Lemma 3.6, $B^K = V_B(B_K)$, so $B = B_K B^K$.

(3)⇒(4). By hypothesis, $B = B_K B^K$, so $L = \{1\}$ where L is given in Lemma 3.2. By the proofs of Theorem 3.1 and Lemma 3.6, B_K and B^K are C-separable subalgebras of the Azumaya C-algebra B such that $B = B_K B^K$, so B_K and B^K are Azumaya algebras over C [3, Theorem 4.4, page 58]. Thus C is the center of B_K . Next, we claim that $J_g = J_g^{(B_K)}$ for each $g \in K$. In fact, it is clear that $J_g \subset J_g^{(B_K)}$. Conversely, for each $a \in J_g^{(B_K)}$ and $x \in B$ such that x = yz for some $y \in B_K$ and $z \in B^K$, noting that $B^K = V_B(B_K)$, we have that ax = ayz = g(y)az = g(y)za = g(yz)a = g(x)a. Thus $J_g^{(B_K)} \subset J_g$. This proves that $J_g = J_g^{(B_K)} (= J_g^{(B_K)})$ since $L = \{1\}$ for each $g \in K$. Hence, B_K is a central Galois algebra over C with Galois group $K|_{B_K} \cong K$ by Lemma 4.1.

(4)⇒(1). Since B is a Galois algebra with Galois group G, B is a Galois extension with Galois group K. By hypothesis, B_K is a central Galois algebra over C with Galois group $K|_{B_K} \cong K$, so the center of B_K is C, that is, C = C. Hence $C \in C^K$ by Lemma 3.6. Thus $C \in C^K$ is an Azumaya Galois extension with Galois group $C \in C^K$.

Theorem 4.2 generalizes the following result of Kanzaki [6, Proposition 3].

COROLLARY 4.3. If $J_g = \{0\}$ for each $g \notin K$, then B is a central Galois algebra with Galois group K and C is a Galois algebra with Galois group G/K.

PROOF. This is the case in Theorem 4.2 that $B = B_K B^K = B_K$ where $B^K = C$.

We conclude the present paper with two examples, one to illustrate the result in Theorem 4.2, and another to show that $Z \neq C$.

EXAMPLE 4.4. Let $A = \mathbb{R}[i,j,k]$, the real quaternion algebra over the field of real numbers \mathbb{R} , $B = (A \otimes_{\mathbb{R}} A) \oplus A \oplus A \oplus A \oplus A \oplus A$, and G the group generated by the elements in $\{g_1, k_i, k_j, k_k, h_i, h_j, h_k\}$ where g_1 is the identity of G and for all $(a \otimes b, a_1, a_2, a_3, a_4) \in B$,

$$k_{i}(a \otimes b, a_{1}, a_{2}, a_{3}, a_{4}) = (iai^{-1} \otimes b, ia_{1}i^{-1}, ia_{2}i^{-1}, ia_{3}i^{-1}, ia_{4}i^{-1}),$$

$$k_{j}(a \otimes b, a_{1}, a_{2}, a_{3}, a_{4}) = (jaj^{-1} \otimes b, ja_{1}j^{-1}, ja_{2}j^{-1}, ja_{3}j^{-1}, ja_{4}j^{-1}),$$

$$k_{k}(a \otimes b, a_{1}, a_{2}, a_{3}, a_{4}) = (kak^{-1} \otimes b, ka_{1}k^{-1}, ka_{2}k^{-1}, ka_{3}k^{-1}, ka_{4}k^{-1}),$$

$$h_{i}(a \otimes b, a_{1}, a_{2}, a_{3}, a_{4}) = (a \otimes ibi^{-1}, a_{2}, a_{1}, a_{4}, a_{3}),$$

$$h_{j}(a \otimes b, a_{1}, a_{2}, a_{3}, a_{4}) = (a \otimes jbj^{-1}, a_{3}, a_{4}, a_{1}, a_{2}),$$

$$h_{k}(a \otimes b, a_{1}, a_{2}, a_{3}, a_{4}) = (a \otimes kbk^{-1}, a_{4}, a_{3}, a_{2}, a_{1}).$$

$$(4.1)$$

Then,

- (1) we can check that B is a Galois algebra over B^G with Galois group G where $B^G = \{(r_1 \otimes r_2, r, r, r, r) \mid r_1, r_2, r \in \mathbb{R}\} \subset C$, and $C = (\mathbb{R} \otimes \mathbb{R}) \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$, the center of B;
- (2) $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\} = \{g_1, k_i, k_j, k_k\};$
- (3) $J_1 = C$, $J_{k_i} = (\mathbb{R}i \otimes 1) \oplus \mathbb{R}i \oplus \mathbb{R}i \oplus \mathbb{R}i \oplus \mathbb{R}i$, $J_{k_j} = (\mathbb{R}j \otimes 1) \oplus \mathbb{R}j \oplus \mathbb{R}j \oplus \mathbb{R}i \oplus \mathbb{R}j$, $J_{k_k} = (\mathbb{R}k \otimes 1) \oplus \mathbb{R}k \oplus \mathbb{R}k \oplus \mathbb{R}i \oplus \mathbb{R}k$, so $B_K = (A \otimes_{\mathbb{R}} \mathbb{R}) \oplus A \oplus A \oplus A \oplus A$. Hence B_K has center C, that is Z = C, and B_K is a central Galois algebra over C with Galois group $K|_{B_K} \cong K$;
- (4) $B^K = (\mathbb{R} \otimes A) \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$ and $B = B_K B^K$, that is, B is an Azumaya Galois extension with Galois group K.

EXAMPLE 4.5. Let $A = \mathbb{R}[i, j, k]$, the real quaternion algebra over the field of real numbers \mathbb{R} , $B = A \oplus A \oplus A$, $G = \{1, g_i, g_j, g_k\}$, and for all $(a_1, a_2, a_3) \in B$,

$$g_{i}(a_{1}, a_{2}, a_{3}) = (ia_{1}i^{-1}, ia_{2}i^{-1}, ia_{3}i^{-1}),$$

$$g_{j}(a_{1}, a_{2}, a_{3}) = (ja_{1}j^{-1}, ja_{3}j^{-1}, ja_{2}j^{-1}),$$

$$g_{k}(a_{1}, a_{2}, a_{3}) = (ka_{1}k^{-1}, ka_{3}k^{-1}, ka_{2}k^{-1}).$$

$$(4.2)$$

Then,

(1) *B* is a Galois algebra over B^G where $B^G = \{(r_1, r, r) \mid r_1, r \in \mathbb{R}\} \subset C$, and $C = \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$, the center of *B*. The *G*-Galois system is $\{a_i; b_i \mid i = 1, 2, ..., 8\}$ where

$$a_{1} = (1,0,0), a_{2} = (i,0,0), a_{3} = (j,0,0), a_{4} = (k,0,0),$$

$$a_{5} = (0,1,0), a_{6} = (0,j,0), a_{7} = (0,0,1), a_{8} = (0,0,k);$$

$$b_{1} = \frac{1}{4}a_{1}, b_{2} = -\frac{1}{4}a_{2}, b_{3} = -\frac{1}{4}a_{3}, b_{4} = -\frac{1}{4}a_{4},$$

$$b_{5} = \frac{1}{2}a_{5}, b_{6} = -\frac{1}{2}a_{6}, b_{7} = \frac{1}{2}a_{7}, b_{8} = -\frac{1}{2}a_{8},$$

$$(4.3)$$

(2) $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\} = \{1, g_i\} \text{ where } J_{g_i} = \mathbb{R}i \oplus \mathbb{R}i \oplus \mathbb{R}i, \text{ so } B_K = \mathbb{R}[i] \oplus \mathbb{R}[i] \oplus \mathbb{R}[i] \text{ which is a commutative ring not equal to } C$, that is, $Z \neq C$.

ACKNOWLEDGMENTS. This work was supported by a Caterpillar Fellowship at Bradley University. The authors would like to thank the Caterpillar Inc. for the support.

REFERENCES

- [1] R. Alfaro and G. Szeto, *On Galois extensions of an Azumaya algebra*, Comm. Algebra 25 (1997), no. 6, 1873–1882.
- [2] F. R. DeMeyer, *Galois theory in separable algebras over commutative rings*, Illinois J. Math. **10** (1966), 287-295.
- [3] F. R. DeMeyer and E. Ingraham, *Separable Algebras over Commutative Rings*, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, Berlin, 1971.
- [4] M. Harada, Supplementary results on Galois extension, Osaka J. Math. 2 (1965), 343–350.
- [5] _____, Note on Galois extension over the center, Rev. Un. Mat. Argentina 24 (1968/1969), no. 2, 91-96.
- [6] T. Kanzaki, On Galois algebra over a commutative ring, Osaka J. Math. 2 (1965), 309-317.
- [7] G. Szeto and L. Xue, The structure of Galois algebras, J. Algebra 237 (2001), no. 1, 238–246.
- [8] O. E. Villamayor and D. Zelinsky, Galois theory with infinitely many idempotents, Nagoya Math. J. 35 (1969), 83–98.

GEORGE SZETO: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA *E-mail address*: szeto@hilltop.bradley.edu

LIANYONG XUE: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA *E-mail address*: lxue@hilltop.bradley.edu