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A problem of great interest in monitoring a nuclear test ban treaty (NTBT) is related to
interpreting properly the differences between a waveform generated by a nuclear explo-
sion and that generated by an earthquake. With a view of comparing these two types of
waveforms, Singh (1992) developed a technique for identifying a model in time domain.
Fortunately this technique has been found useful in modelling the recordings of the killer
earthquake occurred in the Kobe-Osaka region of Japan at 5.46 am on 17 January, 1995.
The aim of the present study is to show how well the method for identifying a model (de-
veloped by Singh (1992)) can be used for describing the vibrations of the above mentioned
earthquake recorded at Charters Towers in Queensland, Australia.

2000 Mathematics Subject Classification: 62P05, 62M10.

1. Introduction. Many researchers have studied the structure of seismic records.

Most of these studies (with the exception of Tjostheim [3, 4] and Dargahi-Noubery

et al. [2]) have been carried out in the frequency domain and they have been mainly

concerned with the properties of their spectra.

The purpose of the present study is to model the recordings of the earthquake

recently occurred at the Kobe-Osaka region of Japan on 17 January, 1995, in time

domain, that is, to fit an autoregressive moving average model to the seismogram (see

Figure 1.1) recorded at Charters Towers, Queensland, Australia.

One of the advantages of fitting a parametric model is that if a good model can be

fitted, the process can be characterized by numerical values of a few parameters as

opposed to the conjectural interpretation of the plots of spectra. Other advantages of

the parametric modelling a time series in general have been highlighted by Box and

Jenkins [1].

It has been found (see Tjostheim [3, 4], Dargahi-Noubary et al. [2]) that the lower-

order autoregressive (AR) models are often appropriate for short period seismograms.

Let Y(t) be a wide-sense-stationary (wss) process in discrete time. The process is said

to be an AR process of order p (abbreviated AR(p)) if Y(t) satisfies the difference

equation

ϕ(B)Y(t)= ε(t), (1.1)

where ϕ(B) = 1−ϕ1B−ϕ2B2−···−ϕpBp is a polynomial in B of degree p and is

called the AR operator of order p, the ϕ’s are constant coefficients; B is the back-

ward shift operator defined by BjY(t) = Y(t − j); ε(t) is a wss process such that

E{ε(t)ε(s)} = σ 2
ε δts , where δts is the Kronecker delta. Furthermore, it is assumed
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Figure 1.1. Seismogram of the Kobe earthquake of 17 January, 1995
recorded at Charters Towers.

that E{Y(t)ε(s)} = 0, for s > t. Obviously, Y(t) has zero mean (an assumption valid

for seismograms). Notice that model (1.1) contains p+1 parameters, namely, theϕi’s,

i = 1, . . . ,p and σ 2
ε . Once the order p is determined, the standard methods for esti-

mating parameters can be used.

It is well known that a seismogram recorded over its entire range is zero-mean

stationary in some sections while it is nonstationary-in-variance in others.

It may be noticed that the pattern of the series in Figure 1.1 is of this type. We

divide the whole seismogram into three subseries and denote them by X1(t), X2(t),
and X3(t) as shown in Figure 1.1. Thus we have three series out of the seismogram

in Figure 1.1. Then a model of the following type may be fitted to the seismogram,

namely

Z(t)=
3∑
j=1

δijXi(t), δij =

1, if i= j,

0, otherwise,
(1.2)

(see Figure 1.1). Series X1(t), X2(t), and X3(t) consist of 670, 535, and 1051 observa-

tions, respectively, and each is assumed to follow an ARMA (p,0) process.

Now, the problem is to identify the model for each of these series and then to

estimate the parameters.

Before discussing these problems in Sections 3 and 4, we review briefly the re-

lated work done previously in time domain, for information and ready reference to

the reader.

2. Short review of previous studies of seismograms in time domain. Tjostheim

[3, 4] considered the AR model defined by

X(t)=
p∑
j=1

αj(t)X(t−j)=U(t), (2.1)

where X(t) denotes the seismic noise recorded at NORSAR, E(U(t))= 0, Var(U(t))=
σ 2
u(t). It may be noted in model (2.1) that the coefficients αj(t), j = 1, . . . ,p, and the

residual variance σ 2
u(t) are assumed to be functions of t, though without any specific

forms. They were estimated using two different samples and shown to be significantly

different from the two samples indicating their time dependence.
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On the other hand, Dargahi-Noubary et al. [2] considered a model of the type

X(t)=
p∑
j=1

αj(k)X(t−j)=U(t), (2.2)

where αj(k)= (−1)j
(p
j
)
exp(−jk), j = 1,2, . . . ,p, and U(t)∼N(0,σ 2

u).
Thus model (2.2) consists of only two parameters, that is, k and σ 2

u. The maximum

likelihood estimators of these parameters have been obtained.

However, in neither of these studies, nothing seems to have taken into account the

fact that the series has increasing (or decreasing) variance in a certain range of the

series.

It is this problem which has been addressed in this paper. A realistic approach is

suggested in the following sections with an application to the Kobe-Osaka earthquake

recordings.

3. AR models with time-dependent error variance. Let (Ω,β,p) denote a probabil-

ity space and let �(·)=�(Ω,β,p) denote the space of all real-valued random variables

on (Ω,β,p)with zero mean and finite second-order moments. The space �(·) is called

the Hilbert space if the inner product and norm are defined, respectively, by

〈ξ,η〉 = E(ξ,η), ‖ξ‖2 = E(ξ2), ξ, η∈�(·). (3.1)

Consider now a zero-mean AR(P) model with time-dependent error variance de-

fined by

ϕ(B)X(t)=w(t), (3.2)

where α(B) is the AR operator and w(t) ∈ �(·) is a white-noise with zero mean and

time-dependent variance E{w2(t)} = σ 2
w(t) such that 0< k≤ E{w2(t)} ≤ K, where k

and K are finite positive constants. Model (2.1) is stationary if, (i) all roots of equation

α(x) = 0 lie outside the unit circle and (ii) the noise process w(t) is stationary, that

is, E{w2(t)} = σ 2
w , a constant. It follows that E(X(t))= 0 and EX2(t) <∞.

Put σ 2
w(t) = Hw(t), where Hw(t) is a positive function defined over the interval

[t1 ≤ t ≤ t2]. It is assumed that Hw(t) is bounded and bounded away from zero, that

is, 0< k≤Hw(t)≤K, where k < K are positive constants;

E
[
X(t)w(s)

]= 0 for t < s, t,s ∈ [t1, t2]. (3.3)

Furthermore, we are interested in the family for which Hw(t) is a parametric func-

tion of t. For all positive integer values of t, if the same parametric function is used,

the class of possible functions will be restricted to the family such that Hw(t)≥ 0.

Remark 3.1. It is interesting to note the relationship between VarXt =HX(t) and

VarWt = Hw(t) in the interval [t1, t2] as shown below: for convenience let t1 = 0,

t2 = t, then for an AR(1), it can be seen that

HX(t)=ϕ2tHX(0)+Hw(t)+
2t−1∑
j=1

ϕ2j−1Hw(t−j). (3.4)
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Notice that for |φ|< 1, and t→∞, HX(t) will depend on the last two terms in (3.2)

and hence the form of HX(t) will be similar to that of Hw(t). For instance if Hw(t) is

a linear function of t, HX(t) will also be a linear function of t, approximately.

Let X∗(t) be a uniquely determined bounded solution of (3.2) and let µ(X∗(t))
(resp., µ(w(t))) denote a closed linear subspace in �(·) spanned by all the random

variables X∗(t) (resp., w(t)). Similarly, let µ∗τ (X∗(t)) (resp., µτ(X∗(t))) denote the

closed linear subspace in �(·) spanned by all variables X∗(t), t ≤ τ (resp., w(t),
t ≤ τ). Suppose that Y∗(t) is a uniquely determined stationary solution to (1.1), then

there exists a uniquely determined bounded operator S(t) such that

S(t) : µ
(
Y∗(t)

)
�→ µ(X∗(t)) (3.5)

with a bounded inverse S−1(t) : µ(X∗(t))→ µ(Y∗(t)) so that

X∗(t)= S(t)Y∗(t) ∀t. (3.6)

Theorem 3.2. Let X∗(t) and Y∗(t) be defined as above. Then it follows from (3.6)

that

(i) E(X∗(t))= S(t)EY∗(t);
(ii) Var(X∗(t))= S2(t)VarY∗(t);

(iii) ρX(t,s)= ρY |t−s|.
The proof is simple and straightforward.

Remark 3.3. It may be noticed from Theorem 3.2(iii) that the correlation structure

of X(t) is the same as that of the zero-mean stationary process {Y(t)}; although X(t)
is zero-mean nonstationary-in-variance.

It is this common characteristic of the two processes which has been exploited in

the sequel for the identification of both X(t) and Y(t) as well as the identification of

the covariance structure of the white-noise w(t) in (3.2).

For example, let {Y(t)} be a zero-mean stationary AR(2) process defined by

Y(t)=ϕ1Y(t−1)+ϕ2Y(t−2)+ε(t); ε(t)∼N(0,σ 2
ε
)
. (3.7)

Under the transformation X(t)= S(t)Y(t), we have

X(t)=ϕ1(t)X(t−1)+ϕ2(t)X(t−2)+w(t), (3.8)

where

ϕ1(t)= ϕ1S(t)
S(t−1)

, ϕ2 = ϕ2S(t)
S(t−1)

, w(t)= S(t)ε(t). (3.9)

In general, it can be seen that

lim
t→∞

ϕi(t) �→ϕi, i= 1,2. (3.10)

In particular, let S(t)= exp(α t), then we have

X(t)=ϕ∗
1X(t−1)+ϕ∗

2X(t−2)+w(t), (3.11)
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where

ϕ∗
1 =ϕ1eα, ϕ∗

2 =ϕee2α,

Hw(t)= Var
(
w(t)

)= σ 2
ε e2α−t = βec−t , say,

(3.12)

where

β= σ 2
ε , c = 2α. (3.13)

Example 3.4. Take ϕ1 =−0.55, ϕ2 = 0.35, β= 1, α= 0.02, then

Y(t)=−0.55Y(t−1)+0.35Y(t−2)+ε(t), (3.14)

S(t)= exp(0.02t), (3.15)

X(t)= exp(0.02t)Y(t), (3.16)

and hence

X(t)=−0.56X(t−1)+0.36X(t−2)+w(t), (3.17)

where

w(t)= exp(0.02t)ε(t), Hw(t)= exp(0.04t)σ 2
ε . (3.18)

A sample {Y(1), . . . ,Y (200)} of 200 values was generated using (3.14) on VAX C and

then a sample {X(1), . . . ,X(200)} was generated using (3.16). These samples along

with their respective ACF’s and PACF’s are plotted in Figures 3.1a and 3.1b.

3.1. Inference and conclusions. It may be noticed from Figure 3.1 that

(i) the series Y(t) is stationary as expected;

(ii) the series X(t) under the transformation (3.16) is a naturally exponentially

increasing series since the variance of the white-noise w(t) is assumed to be

an exponential function of t;
(iii) the ACF’s and PACF’s of both Y(t) and X(t) are the same as expected (see

Theorem 3.2), except for some sampling fluctuations;

(iv) both ACF and PACF of X(t) (and/or Y(t)) suggest that the underlying station-

ary process Y(t) is an AR(2) and the oscillatory nature of the ACF of either

X(t) or Y(t), that one of the coefficients of the process Y(t), is negative.

4. Preliminary identification. Given a zero-mean and nonstationary-in-variance

series such as X(t) in the preceding section, the following steps are suggested to

identify the process:

(1) plot the series, its ACF and PACF,

(2) if the plot of the series is exponentially increasing (or decreasing) on both sides

of the mean then it may be argued that the error-variance is an exponential

function of time t with positive (or negative) exponent. Similar interpretation

may be given to the series if it is linearly increasing (or decreasing),

(3) the ACF and PACF together would suggest the order of the underlying stationary

process such as the Y(t) in the above example,
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(a) Plots of Y(t), its ACF and PACF.

Y(t)

540
0 288

1

0

−1

ACF PACF

(b) Plots of X(t), its ACF and PACF.

140

X(t)

−140

0

288

1

0

ACF PACF

Figure 3.1

(4) thus having identified the order of the AR process that can be fitted to the

given X(t) series and the covariance structure of the white-noise, any standard

procedure of estimation such as the maximum likelihood (ML) can be used to

estimate the parameters in the model and the covariance function of the white-

noise.

4.1. Advantages. One of the advantages of the above procedure is that it enables

us to estimate the variance of the white-noise and the coefficients of the underlying

stationary process which is referred to as Y(t) in the preceding example. For instance,

let Y(t) be the underlying stationary AR(1) defined by

Y(t)=ϕY(t−1)+εt, εt ∼N
(
0,σ 2

ε
)
, (4.1)

and let

X(t)= S(t)Y(t), (4.2)

then

X(t)=ϕ(t)X(t−1)+w(t), (4.3)



TIME SERIES MODELLING OF THE KOBE-OSAKA EARTHQUAKE RECORDINGS 473

where

ϕ(t)= ϕS(t)
S(t−1)

, w(t)= S(t)ε(t). (4.4)

Assuming S(t)= exp(αt), we have ϕ(t)=ϕeα =ϕ∗

Hw(t)= Varw(t)= exp(2αt)σ 2
ε = βexp(ct), (4.5)

where β= σ 2
ε and c = 2α. Given X(1), . . . ,X(n), the ML method will yield the estima-

tors ofϕ∗, β and thus enabling us to estimate σ 2
ε , the coefficients of models Y(t) and

X(t) in (4.1) and (4.3), respectively.

5. Fitting models to the Kobe-Osaka seismic recordings. The seismogram of the

Kobe earthquake recorded at Charters Towers is given in Figure 1.1. The graph dis-

plays the vertical component of the ground displacement (in nm) versus time in min-

utes. The total number of observations recorded were 2256. This entire set of ob-

servations has been divided into three main parts. We denote them by X1(t), X2(t),
and X3(t) series as shown in Figure 1.1. These series consist of 670, 535, and 1051

observations, respectively.

5.1. Modelling of series X2(t). First of all, we study and model series X2(t) due to

its unusual appearance. This consists of 535 values and it is displayed in Figure 5.1.

The ACF and PACF of X2(t) are shown in Figure 5.2.

Inference. (i) From Figure 5.3, we infer that the variance structure of the series

X2(t) is time-dependent and seems to be an exponential function of t multiplied by

a constant which may be taken as an error-variance of the underlying process Y2(t).
(See Section 4.)

(ii) Both ACF and PACF suggest that the representative process is pure autoregres-

sive process of order three (R(3)).
Based on this preliminary inference, we postulate the underlying stationary process

of the type

Y2(t)=ϕ1Y2(t−1)+ϕ2Y2(t−2)+ϕ3Y2(t−3)+ε3(t), (5.1)

where ε3(t)∼N(0,σ 2
ε ), and select S(t)= exp(αt).

Put

X2(t)= exp(αt)Y2(t). (5.2)

Then the model for X2(t) may be defined by

X2(t)=ϕ1(t)X2(t−1)+ϕ2(t)X2(t−2)+ϕ3(t)X3(t−3)+w(t), (5.3)

where

ϕ1(t)=ϕ∗
1 =ϕ1eα, ϕ2(t)=ϕ∗

2 =ϕ2e2α, ϕ3(t)=ϕ∗
3 =ϕ3e3α,

w(t)= exp(αt)ε(t),
(5.4)
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then

X2(t)=ϕ∗
1X1(t−1)+ϕ∗

2X2(t−2)+ϕ∗
3X3(t−3)+w(t),

Var
(
w(t)

)=Hw(t)= σ 2
ε exp(2αt)= βexp(2αt),

Var
(
Y2(t)

)=α0 = f
(
ϕ1,ϕ2,ϕ3

)
σ 2
ε , a constant,

(5.5)

where

f
(
ϕ1,ϕ2,ϕ3

)= σ 2
ε
[
ϕ3
(
ϕ1+ϕ3

)−(1−ϕ2
)]

K
,

K = {ϕ2
1+ϕ2

2ϕ
2
3+2ϕ1ϕ2ϕ3+

(
ϕ2

2+ϕ2
3+ϕ1ϕ2ϕ3−1

)(
1−ϕ2

)
+(ϕ1ϕ2+ϕ3+ϕ2

1ϕ3−ϕ3
3

)(
ϕ1+ϕ3

)}
.

(5.6)

For any fixed value of t,

Var
(
X(t)

)= exp(2αt)Var
(
Y(t)

)
. (5.7)

For the given values of series X2(t) (available from the authors on request), the esti-

mates ϕ̂∗
1 , ϕ̂∗

2 , ϕ̂∗
3 , β̂= σ̂ 2

ε , and α̂ were obtained using the maximum likelihood (ML)

method (see the appendix for details). The estimates are

ϕ̂∗
1 = 230580, ϕ̂∗

2 =−1.78829, ϕ̂∗
3 =−0.45799,

β̂= σ̂ 2
ε = 321187, α̂= 0.0034.

(5.8)

Thus the estimated model for X2(t) series is

X̂2(t)= 2306X2(t−1)−1.788X2(t−1)−0.458X3(t−1),

Var
(
X̂2(t)= exp

(
2α̂t

)
Var

(
Y(t)

))
, at fixed t,

Var
(
Ŷ (t)

)= β̂f (ϕ̂1,ϕ̂2,ϕ̂3
)
,

(5.9)

where

ϕ̂1 = ϕ̂∗
1 e

−α̂, ϕ̂2 = ϕ̂∗
2 e

−2α̂, ϕ̂3 = ϕ̂∗
3 e

−3α̂,

Var
(
ŵ(t)

)= β̂exp
(
2α̂t

)
, at fixed t

(5.10)

The estimated series X̂2(t), its ACF, and PACF are plotted in Figures 5.3, 5.4a, and

5.4b, respectively.

Inference 5.1. On comparing the plots of the original series X̂2(t), its ACF, and

PACF in Figures 5.1 and 5.2 with the corresponding plots of the estimated series X̂2(t),
its ACF and PACF in Figures 5.3, 5.4a, and 5.4b, one may note the striking similarity.

Thus based on (i) and (ii) above we may infer that the modelling of series X2(t),
following the procedures outlined in Sections 3 and 4, is more than satisfactory.

In the following subsection, we consider the modelling series X3(t).

5.2. Modelling of series X3(t). The series of X3(t) consisting of 1051 observations

is plotted in Figure 5.5. Its ACF and PACF are plotted in Figures 5.6a and 5.6b, respec-

tively.
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From Figures 5.5 and 5.6, it appears that the series in question represents a pure

AR(4) process. Consequently, using ITSM, we fitted three models to X3(t), namely,

AR(3), AR(4), and AR(5) and obtained the respective AICC-values along with the cor-

responding maximum likelihood estimates. The AICC-values are shown in Table 5.1.

Through the AICC-value corresponding to AR(5)model is the minimal, however, in

view of the parsimony and the PACF, we chose AR(4), namely,

X3(t)= 2.670×(t−1)−2.81×(t−2)+1.418×(t−3)−0.328×(t−4)+ε(t). (5.11)

The series X1(t) can be analyzed similarly.

Table 5.1

Model AICC-value

AR(3) 0.188909E+05

AR(4) 0.177846E+05

AR(5) 0.177086E+05

Appendix

Estimation of parameters. Consider a pure zero-mean AR(3) model defined by

X(t)=ϕ1X(t−1)+ϕ2X(t−1)+ϕ3X(t−3)+w(t), (A.1)

where EX(t) = 0, EX2(t) < ∞, and E(w(t)w(s)) = δtsσ 2
w(t), δts is the Kronecker

delta. Furthermore, it is assumed that E(Xtw(s))= 0 for s > t and the process X(t) is

nonstationary in variance, that is, σ 2
w(t) is a function of time; however, it is assumed

to be bounded and bounded away from zero.

DefiningX∼(1)= (X(t),X(t−1),X(t−2))T ,w∼ (t)= (w(t),0,0)
T , andΦ =

[ϕ1 ϕ2 ϕ3
1 0 0
0 1 0

]
,

(3.2) can be expressed as a 3-dimensional nonstationary-in-variance vector AR(1) pro-

cess, that is,

X∼(t)−ΦX∼(t−1)=w∼ (t). (A.2)

Given X∼(1),X∼(2), . . . ,X∼(n), it can be shown easily (see Tyssedal and Tjostheim [5])

that the weighted least squares estimate of Φ is given by

Φ̂ =n−1
n∑
t=1

X∼(t)X∼
T (t−1)

Hw(t)


n−1

n∑
t=1

X∼(t−1)X∼
T (t−1)

Hw(t)



−1

, (A.3)

whereHw(t)= σ 2
w(t). If theW(t) are assumed normally distributed, then Φ̂ is asymp-

totically equivalent to the maximum likelihood estimate of Φ. The nonweighed least

square estimate of Φ is given by

Φ∗ =n−1
n∑
t=1

X∼(t)X∼
T (t−1)

[
n−1

n∑
t=1

X∼(t−1)X∼
T (t−1)

]−1

. (A.4)
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Given w(1),w(2), . . . ,w(n), the likelihood function is

L= (2π)−n/2
n∏
t=1

(
Hw(t)

)−1/2
exp

[
− 1

2

n∑
t=1

w2(t)
(
Hw(t)

)−1

]
. (A.5)

Assuming Hw(t)= βexp(αt), 0<α< 1, B > 0, the log likelihood is

lnα=K− 1
2

n∑
t=1

lnβ− 1
2
α

n∑
t=1

t− 1
2

n∑
t=1

w2(t)β−1e−αt. (A.6)

Replacing w(t) by (X(t)−ϕ1X(t−1)−ϕ2X(t−2)−ϕ3X(t−3)) in (A.6) and then,

differentiating with respect to α and β we obtain

n∑
t=1

t = β̂−1
n∑
t=1

(
X(t)−ϕ∗

1X(t−1)−ϕ∗
2X(t−2)−ϕ∗

3X(t−3)
)2e−α̂t , (A.7)

β̂=n−1
n∑
t=1

(
X(t)−ϕ∗

1X(t−1)−ϕ∗
2X(t−2)−ϕ∗

3X(t−3)
)2e−α̂t , (A.8)

respectively, where ϕ∗
1 , ϕ∗

2 , and ϕ∗
3 are the preliminary estimates of ϕ1, ϕ2, and ϕ3

obtained from (A.4) for known X∼(t), X∼(t−1), and X∼(t−2). For a convergent solution

we suggest the following steps:

(1) choose an initial value of α between 0 and 1, say, α̂0. Using α̂0, β̂0 can be

estimated from (A.8);

(2) using β̂0, α can be re-estimated from (A.7) and then β is re-estimated from (A.8)

using a new estimate α̂;

(3) steps 1 and 2 are repeated until converging estimates of α and β for the pre-

liminary estimates Φ∗;

(4) Φ∗ is re-estimated from (A.3) using these convergent estimates of α and β;

(5) steps 1 to 4 are repeated until the convergent estimates of Φ∗, α, and β are

obtained.
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