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EFFECTS OF DIFFRACTION AND RADIATION
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Abstract. This paper deals with an investigation of the effects of diffraction and radiation
on a submerged sphere in water of finite depth d. We assume that the fluid is homoge-
neous, inviscid, and incompressible, and the fluid motion is irrotational. In real situations,
the submerged sphere will experience six degrees of freedom (i.e., motions); three transla-
tional and three rotational. In this paper, however, we consider a very idealized situation
because of the complex nature of the physical problem. Two important motions, namely,
the surge (horizontal oscillations) and the heave (vertical oscillations) motions are stud-
ied. Our attention is mainly focused on the hydrodynamic coefficients of these motions.
The crux of the problem lies entirely on the determination of these coefficients which are
inherently related to the determination of the motions of the submerged sphere in regular
waves. This type of problem is usually solved by using potential theory, and mathemat-
ically, we look for the solution of a velocity potential which satisfies Laplace’s equation
along with the free surface, body surface, and bottom boundary conditions in conjunction
with a radiation condition. This boundary value problem, in fact, consists of two separate
problems: (a) diffraction problem and (b) radiation problem.

2000 Mathematics Subject Classification. 76R10.

1. Introduction. The motions of a spherical body in a regular gravity wave are in-

vestigated in this paper. There are plenty of practical instances where this study can

be used. A simple and very useful example in the real world is the motion of a sub-

marine of spherical shape in water of finite or infinite depth if the submarine hull is

considered a neutrally buoyant sphere.

The study of waves and wave loading on submerged structures has been the subject

of active research since the days of Havelock [4], and in practice, he can be considered

as the pioneer in this area of research. A British electrical engineer turned applied

mathematician, Havelock contributed tremendously in the field of water waves. Have-

lock’s pioneering work investigating the vertical motion of a floating hemisphere in

infinite water depth was extended by Hulme [5] to investigate the added mass and

radiation damping. Gray [3] studied the scattering problem of a submerged sphere

by expanding Green’s function and the associated velocity potential in spherical har-

monics.

An analysis of the hydrodynamic problem of linear forces acting on a submerged

sphere in an infinite water depth was investigated by Wang [9]. By employing a special

series solution, Wang solved the governing equation satisfied by the velocity poten-

tial. Wu and Taylor [10, 11] considered a submerged spheroid and obtained analytical

solutions for the linear forces. An analysis of wave induced drift forces acting on
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a submerged sphere in finite depth was presented by Wu et al. [12]. They used the

method of multipole expansions as demonstrated by Thorne [8] to determine the lin-

ear velocity potential for a finite water depth. In a recent study, Bora [1] and Bora

et al. [2] used the multipole expansion method of Thorne to obtain the velocity po-

tential for the problem of a submerged sphere in finite water depth. In that work the

mathematical problem was split into two boundary value problems: a diffraction and

a radiation problem.

This paper presents a systematic analysis for calculating the velocity potentials

arising in the diffraction and radiation problems due to a submerged sphere in

finite water depth. We have evaluated two very important hydrodynamic coefficients

inherent to the problem. By using the multipole expansion method, the added mass

and radiation damping coefficients are obtained. The mathematics is extremely com-

plex due to the presence of sophisticated mathematical functions namely, spherical

Bessel functions and associated Legendre functions which play paramount roles in

the solution process. The linear complex algebraic equation plays an important role

in the solution process, which determines the important unknown constants. Once

these constants are determined, the problem is completely solved. We believe that

the combined effects of diffraction and radiation by a submerged sphere in finite wa-

ter depth have not been investigated before, and to the best of our knowledge this

has been significantly absent from all the published literature so far. The determina-

tion of the motions using these two coefficients by the combined effects of diffraction

and radiation adds a novelty of advancement to our knowledge in this important area

of research. We have presented our analytical results in a lucid and very systematic

way.

2. Mathematical formulation for the diffraction problem. We assume that the

fluid is homogeneous, inviscid and incompressible and the fluid motion is irrotational.

The waves are also assumed to be of small amplitude. Here we consider the coefficients

related to the motion with two degrees of freedom, namely, the two translational mo-

tions in the x and z directions, that is, surge and heave motions, respectively. We

consider a surface wave of amplitude A incident on a sphere of radius a submerged

in water of finite depth d. The body is assumed to have motions with three degrees

of freedom in the presence of incident waves with angular frequency σ . The wave is

parallel to the x-axis at the time of incidence on the sphere and is propagating along

the positive direction.

We consider two sets of coordinate systems. One is a right-handed Cartesian coor-

dinate system (x,y,z), in which the x-y plane coincides with the undisturbed free

surface and the z-axis is taken vertically downwards from the still water level. The

other coordinate system is the spherical coordinate system (r ,θ,ψ) with the origin at

the geometric center (0,0,h) of the sphere. The relationship between the coordinate

systems is given by z−h = r cosθ, x = r sinθcosψ, and y = r sinθsinψ such that

R =
√
x2+y2, r =

√
R2+(z−h)2, tanθ = R/(z−h), for 0 ≤ θ ≤ π , and tanψ = y/x,

for −π ≤ψ≤π .

For an incompressible and inviscid fluid, and for small amplitude wave theory with

irrotational motion, we can express the fluid motion by introducing a velocity potential
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Φ(r ,θ,ψ,t). This Φ can be written as

Φ(r ,θ,ψ,t)= Re
[
φ(r ,θ,ψ)e−iσt

]
, (2.1)

where Re stands for the real part.

The motion is also assumed to be harmonic. Also, from Bernoulli’s equation, we get

pressure, P(r ,θ,ψ,t) as

P =−ρ∂Φ
∂t
. (2.2)

Now, the problem can be considered as a combination of two fundamental prob-

lems: the diffraction problem of an incident wave interacting with a fixed body; and

the radiation problem of a body forced to oscillate in otherwise still water. Because of

the linearity of the situation, the time-independent velocity potentialφ(r ,θ,ψ) can be

decomposed into four velocity potentials φI , φD , φ1, and φ3 where φI is the incident

potential,φD is the velocity potential due to the diffraction of an incident wave acting

on the sphere; andφ1 andφ3 are velocity potentials due to the radiation of surge and

heave, respectively.

Thus, φ can be written as φ = φI +φD +X1φ1+X3φ3, where X1 and X3 are the

displacements for surge and heave motions, respectively. Here φI , φD , φj , j = 1,3,

are all functions of r ,θ, and ψ and Xj , j = 1,3, is the independent parameter.

To obtain the velocity potential φ, the following boundary problem is to be solved.

Laplace’s equation in spherical coordinates:

∇2φ= 0. (2.3)

Free surface boundary condition:

∂φ
∂z

+Kφ= 0 on z = 0. (2.4)

Bottom boundary condition:

∂φ
∂z

= 0, z = d. (2.5)

Radiation condition:

lim
R→∞

√
R
(
∂
∂R

−ik0

)
φ= 0, (2.6)

where K = σ 2/g and k0 is the finite depth wavenumber defined by

k0 sinhk0d−K coshk0d= 0, (2.7)

and the incident and diffraction potentials satisfy the body surface condition

∂φI
∂n

=−∂φD
∂n

on r = a, (2.8)

where n denotes the normal vector from body surface to fluid.
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The radiation potentials satisfy the body surface condition

(a) for surge motion:

∂φ
∂r

= iσ sinθcosψ on r = a, (2.9)

(b) for heave motion:

∂φ
∂r

= iσ cosθ on r = a. (2.10)

The boundary conditions (2.9) and (2.10) have arisen from the equation

∂φj
∂n

= (−iσ)nj, j = 1,3. (2.11)

2.1. Incident potential. The incoming waves of amplitudeA and frequency σ prop-

agating in the positive x-direction can be described by the following incident velocity

potential:

φI = Agσ
coshk0(z−d)

coshk0d
eik0Rcosψ. (2.12)

Using McLachlan [6] and Thorne [8], the incident potential can be expressed in terms

of the associated Legendre functions as

φI= Ag
2σ coshkd

∞∑
m=0

εmim cosmψ

×
[
ek0(h−d)

∞∑
s=m

(
k0r

)s Pms (cosθ)
(s+m)! +e

−k0(h−d)
∞∑
s=m

(−1)m+s
(
k0r

)s Pms (cosθ)
(s+m)!

]

= Ag
2σ coshk0d

∞∑
m=0

εmim cosmψ

×
∞∑
s=m

{
(−1)s+mek0(d−h)+ek0(h−d)} (k0r

)s
(s+m)!P

m
s (cosθ),

(2.13)

where ε0 = 1 and εm = 2 for m≥ 1, or we can write for our convenience,

φI(r ,θ,ψ)=
∞∑
m=0

φ̂I(r ,θ)cosmψ, (2.14)

where

φ̂I = Ag
2σ coshk0d

εmim
∞∑
s=m

{
(−1)s+mek0(d−h)+ek0(h−d)} (k0r

)s
(s+m)!P

m
s (cosθ). (2.15)

Changing s to s+m and modifying, we have

φ̂I(r ,θ)= Agσ εmim
∞∑
s=0

χs
(
k0r

)s+m
(s+2m)!

Pms+m(cosθ), (2.16)
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where

χs = (−1)sek0(d−h)+e−k0(d−h)

2coshk0d
=




coshk0(d−h)
coshk0d

, s = 0,2,4,6, . . . ,

−sinhk0(d−h)
coshk0d

, s = 1,3,5, . . . .
(2.17)

Hence, the incident potential φI can be written in the final form as

φI(r ,θ,ψ)=
∞∑
m=0

Ag
σ
εmim

∞∑
s=0

χs
(
k0r

)s+m
(s+2m)!

Pms+m(cosθ)cosmψ. (2.18)

2.2. Diffraction potential. The diffraction velocity potentialφD satisfies (2.3), (2.4),

(2.5), (2.6), and (2.8). We can express this potential by making it ψ-independent as

follows:

φD(r ,θ,ψ)=
∞∑
m=0

φ̂D(r ,θ)cosmψ, (2.19)

where the ψ-independent potential is

φ̂D(r ,θ)=
∞∑

n=m
an+2AmnGmn . (2.20)

Here Amn are the unknown complex coefficients and Gmn are the multipole poten-

tials. Multipole potentials are solutions of Laplace’s equation which satisfy the free

surface and bottom boundary conditions and behave like outgoing waves from the

singular point which in this case is the centre of the sphere.

The potential Gmn can be expressed as

Gmn =
Pmn (cosθ)
rn+1

+ P
m
n (cosα)
rn+1

1

+ 1
(n−m)!

×
∫∞

0

(K+k)[e−k(d+H)+(−1)n+me−kh
]

ksinhkd−K coshkd
kn coshk(z−d)Jm(kR)dk.

(2.21)

The quantities α and r1 are defined as

r1 =
√
R2+(d+H−z)2, tanα= R

d+H−z . (2.22)

The line integration in the expression for Gmn passes under the singular point of the

integrand at k= k0. The potentials Gmn andφD satisfy Laplace’s equation, free surface

condition, bottom surface condition, and the radiation condition.

The second and third terms in (2.21) can be expanded in the region near the body

surface into a series of the associated Legendre functions by

Pmn (cosα)
rn+1

1

=
∞∑
s=0

Bmns
(
r

2H

)s+m
Pms+m(cosθ),

1
(n−m)!

∫∞
0

(K+k)[e−k(d+H)+(−1)n+me−kh
]

ksinhkd−K coshkd
kn coshk(z−d)Jm(kR)dk

=
∞∑
s=0

Cs(n,m)
(
r

2H

)s+m
Pms+m(cosθ),

(2.23)
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where Bmns and Cs(n,m) are given by

Bmns =
1

(2H)n+1

(s+n+m)!
(s+2m)!(n−m)! ,

Cs(n,m)= (2H)s+m

(n−m)!(s+2m)!

∫∞
0

(K+k)[e−k(d+H)+(−1)n+me−kh
]

ksinhkd−K coshkd
us(kH)dk,

(2.24)

with us(kH) as

us(kH)=

coshkH, s = 0,2,4, . . . ,

−sinhkH, s = 1,3,5, . . . .
(2.25)

Hence, the multipole potentials Gmn can finally be written as

Gmn =
Pmn (cosθ)
rn+1

+
∞∑
s=0

[
Bmns+Cs(n,m)

]( r
2H

)s+m
Pms+m(cosθ). (2.26)

Using the body surface boundary condition (2.8), we may write

∞∑
n=m

an+2Amn
∂Gmn
∂r

∣∣∣∣
r=a

=−∂φ̂I
∂r

∣∣∣∣
r=a
. (2.27)

From the expressions for Gmn and φ̂I from (2.26) and (2.16), respectively, we can

evaluate (∂Gmn /∂r)|r=a and (∂φ̂I/∂r)|r=a, and using these two expressions in (2.27),

we get

∞∑
n=m

Amn

[
−(n+1)Pmn (cosθ)+

∞∑
s=0

{
Bmns+Cs(n,m)

}( a
2H

)s+m
(s+m)an+1Pms+m(cosθ)

]

=−Ag
σ
εmim

∞∑
s=0

χs
(
k0a

)s+m
(s+2m)!

(s+m)a−1Pms+m(cosθ).

(2.28)

Using the orthogonality property of the associated Legendre functions and modi-

fying the result, we arrive at

∞∑
n=m

AmnEmns = Tms for s =m, m+1, m+2, . . . , (2.29)

where

Tms =−Agk0

σ
εmim

(
k0a

)s−1 s
(s+m)!χs−m,

Emns =−(n+1)δns+Dmn (s−m),

Dmn (s)= an+1(s+m)
(
a

2H

)s+m[
Cs(n,m)+Bmns

]
.

(2.30)

The diffraction potential φD has the final form

φD=
∞∑
m=0

∞∑
n=m

an+2Amn
[Pmn (cosθ)

rn+1
+

∞∑
s=0

{
Bmns+Cs(n,m)

}( r
2H

)s+m
Pms+m(cosθ)

]
cosmψ.

(2.31)
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3. Exciting forces. The forces associated with the incident and diffraction poten-

tials are the exciting forces which play a very important role in the wave field for a

structure in water. The exciting forces F(e)j can be obtained from

F(e)j = 2iρa2σA
∫ π
o

∫ π
0
φID|r=anj sinθdθdψ, (3.1)

where j = 0 corresponds to heave exciting force and j = 1 corresponds to surge ex-

citing force and we have written φID =φI+φD ,

nj =−Pj1(cosθ)cosjψ, j = 0,1. (3.2)

From (2.18) and (2.31), we have

∂φI
∂r

∣∣∣∣
r=a

=
∞∑
m=0

Ag
σ
εmim

∞∑
s=0

χs(s+m)
(
k0a

)s+m
a(s+2m)!

Pms+m(cosθ)cosmψ,

∂φD
∂r

∣∣∣∣
r=a

=
∞∑
m=0

∞∑
n=m

Amn
[
−(n+1)Pmn (cosθ)+

∞∑
s=0

(
Bmns+Cs

)( a
2H

)s+m

×(s+m)an+1Pms+m(cosθ)
]

cosmψ.

(3.3)

Applying the body surface condition ∂φD/∂r = −∂φI/∂r at r = a and some sim-

plifications gives

φID|r=a = a
∞∑
m=0

∞∑
n=m

2n+1
n

AmnPmn (cosθ)cosmψ. (3.4)

Now the exciting forces are given by

F(e)j =−2iρσa2A
∫ π

0

∫ π
0
φID|r=aPj1(cosθ)cosjψcosψsinθdθdψ

=−2iρσa2Aπ
εj

∫ π
0

∞∑
n=j

a
2n+1
n

AjnP
j
n(cosθ)sinθdθ,

(3.5)

where εj = 1 for j = 0, εj = 2 for j ≥ 1.

Using the orthogonality property of the associated Legendre functions,

F(e)j =−2iρσπa3Aεj2
(1+j)!
(1−j)!Aj1 =−4iρσπa3AAj1. (3.6)

Hence, the horizontal force, that is, the surge exciting force F(e)x = fxd is given by

fxd =−4iρσπAa3A11. (3.7)

The vertical force, that is, the heave exciting force F(e)z = fzd is given by

fzd =−4iρσπAa3A01. (3.8)

Non-dimensionalizing the forces given by (3.7) and (3.8), we can write the nondi-

mensional forces as

fxd
4iρσAπa3

=−A11,
fzd

4iρσAπa3
=−A01. (3.9)
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4. Radiation problem. Having solved the diffraction problem for the submerged

sphere, we now turn our attention to the radiation problem. As mentioned earlier we

will consider surge and heave potentials only. All these potentials satisfy the same

set of equations except for the body boundary condition which is different for each

motion. Both being related with translational motions, surge and heave potentials

have resemblance in their expressions. Hence we proceed to find the expression for

surge and heave potentials at the same time and then evaluate them using the respec-

tive boundary conditions. One very important point to note is that due to the body

symmetry of a sphere, no moment acts upon the body.

The radiation velocity potential φm must satisfy

∇2φm = 0 in the fluid,

∂φm
∂z

+Kφm = 0 on z = 0,

∂φm
∂z

= 0 on z = d,

∂φm
∂r

= (−iσ)nj, j = 1,3 on r = a,

lim
R→∞

R1/2
{
∂
∂R

−ik
}
φm = 0.

(4.1)

The kinematic boundary condition on the body surface for the radiation problem

in the case of surge and heave motions can be written as

∂φm
∂r

= iσPm1 (cosθ)cosmψ, (4.2)

where m= 0 corresponds to heave motion and m= 1 to surge motion.

The ψ-dependence of φm can be removed by assuming

φm(r ,θ,ψ)= φ̂m(r ,θ)cosmψ. (4.3)

The velocity potential φ̂m(r ,θ)will be expanded in multipole potentials which have

already been discussed while dealing with the diffraction potential. Now, from Thorne

[8, Section 5], removing the time dependence term,

φ̂m(r ,θ)=
Pmn (cosθ)
rn+1

+ (−1)n+m−1

(n−m)!
∫∞

0

K+k
K−kk

ne−k(z+d)Jm(kR)dk

+i (−1)m+n

(n−m)! 2πKn+1e−k(z+d)Jm(KR),
(4.4)

φ̂m can be finally expressed as

φ̂m(r ,θ)=
Pmn (cosθ)
rn+1

+
∞∑
s=m

(−1)m+s−1

(n−m)!(s+m)!r
sPms (cosθ)PV

∫∞
0

K+k
K−kk

n+se−2kddk

+i
∞∑
s=m

(−1)n+s

(n−m)!(s+m)! 2πK
n+s+1e−2Kdr sPms (cosθ),

(4.5)
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where PV means the principal value of the integral is to be considered. Alternately,

we can write φ̂m as

φ̂m(r ,θ)=
Pmn (cosθ)
rn+1

+
∞∑
s=m

[
As+iBs

]
r sPmn (cosθ), (4.6)

where

As = (−1)m+s−1

(n−m)!(s+m)!
∫∞

0

K+k
K−kk

n+se−2kddk,

Bs = (−1)n+s

(n−m)!(s+m)! 2πK
n+s+1e−2Kd.

(4.7)

Hence the radiation potential φm can be written as

φm(r ,θ,ψ)=
[Pmn (cosθ)

rn+1
+

∞∑
s=m

(
As+iBs

)
r sPms (cosθ)

]
cosmψ. (4.8)

Applying the body boundary condition for m= 0,1,

iσPm1 (cosθ)=
[−(n+1)Pmn (cosθ)

an+2
+

∞∑
s=m

(
As+iBs

)
sas−1Pms (cosθ)

]
. (4.9)

After simplifying, and using the orthogonality of the associated Legendre functions,

and making some re-arrangements,

∞∑
n=m

2nan−1

2n+1
(n+m)!
(n−m)!An =

2(n+1)
(2n+1)an+2

(n+m)!
(n−m)! ,

∞∑
n=m

2nan−1

2n+1
(n+m)!
(n−m)!Bn =

2
3
σ
(1+m)!
(1−m)! .

(4.10)

5. Determination of hydrodynamic coefficients and motion. The coefficients re-

lated with the radiation play a big role in allowing us to know the impact of motions

due to radiation. The evaluation of added-mass and damping coefficients is of utmost

importance in analyzing the contribution of radiation to the total boundary value

problem.

5.1. Surge hydrodynamic coefficients. From Sarpkaya and Isaacson [7], the com-

ponents of the radiated force can be written as

F(R)i =−
∑
j

(
µij
∂2Xj
∂t2

+λij
∂Xj
∂t

)
, (5.1)

where µij and λij are, respectively, called the added-mass and damping coefficients.

Those coefficients are taken to be real and are termed added-mass and damping co-

efficients, respectively, since they assume corresponding roles in the equations of

motion.
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The equation of motion can be written as (Newton’s law of motion)

(
Mij+µij

)∂2Xj
∂t2

+λij
∂Xj
∂t

+CijXj = F(e)i , (5.2)

where Mij is the mass matrix, Cij the hydrodynamic stiffness matrix and F(e)i are the

exciting forces associated with the diffraction potential.

The exciting force can be considered as the forcing function of the motion. It is em-

phasized that this equation relates to an unrestricted floating or submerged body. The

added-mass coefficients µij are analogous to those for a body accelerating in an un-

bounded fluid, but they are not the same. The damping coefficients λij are associated

with a net outward flux of energy in the radiated waves and thus represent only damp-

ing due to (radiating) fluid motion. The coefficients µij and λij are not dimensionless

but possess appropriate dimensions.

The radiated force Fr1 due to the surge motion can be written as the real part of

fr1e−iσt where fr1 is given by

fr1 = 2iρa2σA
∫ π

0

∫ π
0
X̂1φ1(a,θ,ψ)n1 sinθdθdψ

=−2iρa2σA
∫ π

0

∫ π
0
X̂1φ1(a,θ,ψ)sin2θcosψdθdψ.

(5.3)

This radiated force can be conveniently decomposed into components in phase with

the velocity and the acceleration,

Fr1 =−
(
µ11

∂2X1

∂t2
+λ11

∂X1

∂t

)
, (5.4)

where X1 = Re{X̂1e−iσt}. Hence, we can write

fr1 =−
{(−σ 2)µ11X̂1+λ11

(−iσ)X̂1
}= {σ 2µ11X̂1+iσλ11X̂1

}
. (5.5)

Then equating relations (5.3) and (5.5), we get

σ 2µ11X̂1+iσλ11X̂1 =−2iρa2σA
∫ π

0

∫ π
0
X̂1φ1(a,θ,ψ)sin2θcosψdθdψ (5.6)

which will yield the following after cancelling X̂1 throughout

µ11+iλ11

σ
=−2iρa2A

σ

∫ π
0

∫ π
0
φ1(a,θ,ψ)sin2θcosψdθdψ. (5.7)

Hence, equating the real and imaginary parts, the added-mass and damping coeffi-

cients are, respectively, given by

µ11 =−2ρAa2

σ

∫ π
0

∫ π
0

Re
[
iφ1(a,θ,ψ)

]
sin2θcosψdθdψ, (5.8)

λ11 =−2ρAa2
∫ π

0

∫ π
0

Im
[
iφ1(a,θ,ψ)

]
sin2θcosψdθdψ. (5.9)
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The surge potential φ1(r ,θ,ψ) at r = a can be written from (4.8) as

φ1(a,θ,ψ)=
[P1

n(cosθ)
an+1

∞∑
n=1

(
An+Bn

)
anP1

n(cosθ)
]

cosψ. (5.10)

Hence using (5.9) in (5.7) and (5.8) and simplifying by the use of the associated

Legendre functions, we obtain the added-mass and damping coefficients as

µ11 =−2ρAa2

σ

∫ π
0

∫ π
0

[ ∞∑
n=1

−BnanP1
n(cosθ)

]
cosψ×P1

1 (cosθ)sinθcosψdθdψ

= 4
3
ρa3πA
σ

B1,

λ11 =−2ρAa2
∫ π

0

∫ π
0

[P1
n(cosθ)
an+1

+
∞∑
n=1

AnanP1
n(cosθ)

]
cosψ×P1

1 (cosθ)sinθdθdψ

=−4
3
ρπA

[
1+A1a3].

(5.11)

Or else we can represent µ11 and λ11 as

µ11

(3/4)(ρa3πA/σ)
= B1,

λ11

(4/3)ρπA
=−[1+A1a3]. (5.12)

Using Newton’s law of motions, that is, mass times acceleration = the external

forces, we get

M11
∂2X1

∂t2
=−µ11

∂2X1

∂t2
−λ11

∂X1

∂t
+F(e)x , (5.13)

where M11 is the mass of the displaced fluid, the first two terms on the right-hand

side are due to the radiated force in the x-direction in which µ11 is the surge added

mass, λ11 the surge damping coefficient and F(e)x the x-component of the exciting

force. Although elementary in form, (5.13) plays a fundamental role in the oscillating

system. Therefore we must always cite the form of the equation.

In complex form, the equation of motion can be summed up as

(
M11+µ11

)
(−iσ)2X̂1+(−iσ)X̂1λ11 = fxd (5.14)

which simplifies to (
M11+µ11

)
σ 2X̂1+iσX̂1λ11 =−fxd, (5.15)

where

fxd =−2iρσa2A
∫ π

0

∫ π
0
φID(a,θ,ψ)sin2θcosψdθdψ. (5.16)

That gives us

X̂1 =− fxd
σ 2
(
M11+µ11+iλ11/σ

) . (5.17)

The amplitude of the surge oscillation is thus determined by (5.17). This solution

to this expression is inherently connected to the added mass and radiation damping

coefficients.
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5.2. Heave hydrodynamic coefficients. The radiated force Fr3 due to the heave

motion can be written as the real part of fr3e−iσt where fr3 is given by

fr3 =−2iρa2Aσ
∫ π

0

∫ π
0
X̂3φ3(a,θ,ψ)sinθcosθdθdψ. (5.18)

Considering X3 = Re{X̂3e−iσt}, we have, proceeding as in Section 5.1,

µ33+iλ33

σ
=−2iρAa2

σ

∫ π
0

∫ π
0
φ3(a,θ,ψ)sinθcosθdθdψ, (5.19)

where µ33 and λ33 are the heave added-mass and damping coefficient due to heave

motion, respectively. Hence,

µ33 =−2ρAa2

σ

∫ π
0

∫ π
0

Re
[
iφ3(a,θ,ψ)

]
sinθdθdψ, (5.20)

λ33 =−2ρAa2
∫ π

0

∫ π
0

Im
[
iφ3(a,θ,ψ)

]
sinθcosθdθdψ. (5.21)

The heave potential φ3(r ,θ,ψ) at r = a can be written from (4.8) as

φ3(a,θ,ψ)=
P0
n(cosθ)
an+1

+
∞∑
n=0

DnanP0
n(cosθ), Dn =An+iBn. (5.22)

Therefore, using (5.21) in (5.19) and (5.20) and simplifying with the associated

Legendre functions, we obtain the heave coefficients as

µ33 =−2ρa2A
σ

∫ π
0

∫ π
0

( ∞∑
n=0

BnanP0
n(cosθ)

)
×P0

1 (cosθ)sinθdθdψ

= 4
3
ρa3πA
σ

B1,

(5.23)

λ33 =−2ρa2A
σ

∫ π
0

∫ π
0

[P0
n(cosθ)
an+1

+
∞∑
n=0

AnanP0
n(cosθ)

]
P0

1 (cosθ)sinθdθdψ

=−4
3
ρπA
σ

(
1+A1a3).

(5.24)

Or else we can represent µ33 and λ33 as

µ33

(4/3)ρa3Aπ
= B1,

λ33

(4/3)(ρAπ/σ)
=−[1+A1a3]. (5.25)

The equation of motion (Newton’s law of motion) in complex form can be written as

ν33X̂3+
(
M33+µ33

)
(−iσ)2X̂3+(−iσ)X̂3λ33 = fzd, (5.26)

where ν33 is the restoring coefficient which is a known quantity, M33 is the mass of

the displaced fluid and

fzd =−2iρσa2A
∫ π

0

∫ π
0
φID(a,θ,ψ)sinθcosθdθdψ. (5.27)
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Hence

X̂3 = fzd
ν33−σ 2

(
M33+µ33+i(λ33/σ)

) . (5.28)

It is to be noted here that the amplitude of the heave oscillation is assumed to have

a restoring force component in the vertical direction, and has been given by (5.28). The

evaluation of this amplitude is connected with the determination of the added mass

coefficient and the radiation damping which makes the problem interesting. Once the

surge amplitude and the heave amplitude have been completely determined, the total

forces on the submerged sphere due to diffraction and radiation can be determined.

The next section deals with this investigation.

6. Evaluation of forces. This section is concerned with the evaluation of wave

forces due to the combined effects of diffraction and radiation. To the best of our

knowledge, the following analysis has not been reported in the existing literature.

Therefore, we present the analysis in this section. We find the forces acting along the

x and z directions. The component of the horizontal force fx can be computed from

fx = fxd+fx1, (6.1)

where fxd is the x-component of the diffraction force and fx1 the force due to surge

motion. The mathematical expression for each case is given by

fxd =−2iρσa2A
∫ π

0

∫ π
0
φID(a,θ,ψ)sin2θcosψdθdψ, (6.2)

fx1 =−2iρσa2AX̂1

∫ π
0

∫ π
0
φ1(a,θ,ψ)sin2θcosψdθdψ. (6.3)

It is to be emphasized here that the double integrals look very simple but the in-

tegrands are complicated expressions. Considerable efforts have been made in the

integration process as can be seen in the following.

The vertical force component fz can be written as

fz = fzd+fz3, (6.4)

where fzd is the z-component of diffraction force and fz3 the force due to the heave

motion. The mathematical expression for each case is given by

fzd =−2iρσa2A
∫ π

0

∫ π
0
φID(a,θ,ψ)sinθcosθdθdψ, (6.5)

fz3 =−2iρσa2AX̂3

∫ π
0

∫ π
0
φ3(a,θ,ψ)sinθcosθdθdψ. (6.6)

Similar efforts have also been made in the evaluation of these double integrals with

complicated expressions as integrands. The final solutions are summarized in the

following.
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Substituting the value of φ1(a,θ,ψ) from (5.10) into (6.3), we can evaluate fx1 as

fx1 =−2iρσa2πAX̂1

∫ π
0

∫ π
0

[P1
n(cosθ)
an+1

+
∞∑
n=1

DnanP1
n(cosθ)

]
cosψ

×P1
1 (cosθ)cosψsinθdθdψ

=−4
3
iρπAσX̂1

(
1+D1a3).

(6.7)

Substituting the value of φ3(a,θ,ψ) from (5.22) into (6.6), we can evaluate fz3 as

fz3 =−2iρσa2AX̂3

∫ π
0

∫ π
0

[P0
n(cosθ)
an+1

+
∞∑
n=0

DnanP0
n(cosθ)

]
P0

1 (cosθ)sinθdθdψ

=−4
3
AiρσπX̂3

[
1+D1a3].

(6.8)

Hence, the total force along the x-axis is

fx = fxd+fx1 =−4iρσπa3A11− 4
3
iρπσX̂1

(
1+D1a3). (6.9)

Similarly, the total force along the z-axis is

fz = fzd+fz3 =−4iρσπa3AA01− 4
3
iρσπAX̂3

(
1+D1a3), (6.10)

where X̂1 and X̂3 are given by (5.17) and (5.28) and in the following we have rewritten

them for ready reference only.

X̂1 =− fxd
σ 2
(
M11+µ11+i

(
λ11/σ

)) , X̂3 = fzd
ν33−σ 2

(
M33+µ33+i

(
λ33/σ

)) (6.11)

with µ11, λ11, µ33, and λ33 as already obtained. So, (6.9) and (6.10), respectively, give

us the total horizontal and vertical forces due to the combined effect of diffraction

and radiation. The evaluation of the forces along the x and z axes helps us in under-

standing the combined effect of diffraction and radiation.

7. Results and discussions. Exciting force coefficients obtained for the submerged

sphere give good comparison with the results obtained by Wang [9] for infinite water

depth. In long waves (Ka < 0.1), the shallow water heave exciting force at the fixed

submergence h/a= 1.25 reduces significantly from that in deep water. The converse

is true for surge exciting forces where the values in water of depth 2.5a are more than

double of those in depth 20a.

Tables 7.1, 7.2, 7.3, and 7.4 present the results for the added-mass and damping

coefficients for both surge and heave motions for different submergence values. The

results show good agreement with those obtained by Wang [9]. From Tables 7.1 and

7.3, we see that the added-mass µ11 and µ33 steadily decrease after reaching the maxi-

mum values in the range 0.4≤Ka≤ 0.5. After Ka= 1.5, they vary very insignificantly.
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Table 7.1. Surge added-mass µ11 for different submergence (h/a) values.

← h/a →
Ka 1.5 1.75 2.0 3.0

0 0.5287 0.5179 0.5118 0.5034

0.1 0.5403 0.5266 0.5187 0.5066

0.2 0.5545 0.5363 0.5255 0.5082

0.3 0.5656 0.5422 0.5283 0.5069

0.4 0.5693 0.5416 0.5255 0.5030

0.5 0.5646 0.5347 0.5187 0.4986

0.6 0.5527 0.5234 0.5092 0.4949

0.7 0.5359 0.5107 0.4989 0.4920

0.8 0.5160 0.4966 0.4895 0.4905

0.9 0.4962 0.4841 0.4815 0.4893

1.0 0.4776 0.4732 0.4752 0.4896

1.2 0.4475 0.4578 0.4675 0.4903

1.4 0.4286 0.4497 0.4648 0.4915

1.6 0.4189 0.4475 0.4652 0.4925

1.8 0.4158 0.4481 0.4676 0.4930

2.0 0.4171 0.4505 0.4698 0.4938

3.0 0.4381 0.4653 0.4787 0.4950

4.0 0.4523 0.4721 0.4825 0.4955

5.0 0.4582 0.4750 0.4839 0.4966

Table 7.2. Surge damping coefficients λ11 for different submergence (h/a) values.

← h/a →
Ka 1.5 1.75 2.0 3.0

0 0. 0. 0. 0.

0.1 0.0018 0.0017 0.0016 0.0013

0.2 0.0113 0.0098 0.0088 0.0057

0.3 0.0285 0.0237 0.0200 0.0106

0.4 0.0506 0.0398 0.0317 0.0138

0.5 0.0734 0.0544 0.0412 0.0147

0.6 0.0934 0.0655 0.0472 0.0138

0.7 0.1082 0.0722 0.0496 0.0120

0.8 0.1172 0.0745 0.0489 0.0099

0.9 0.1205 0.0733 0.0460 0.0076

1.0 0.1190 0.0695 0.0418 0.0057

1.2 0.1063 0.0574 0.0317 0.0030

1.4 0.0873 0.0438 0.0223 0.0014

1.6 0.0678 0.0318 0.0148 0.0006

1.8 0.0504 0.0220 0.0094 0.0003

2.0 0.0363 0.0148 0.0058 0.0001

3.0 0.0053 0.0015 0.0004 0.0000

4.0 0.0005 0.0001 0.0000 0.0000

5.0 0.0000 0.0000 0.0000 0.0000
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Table 7.3. Heave added-mass µ33 for different submergence (h/a) values.

← h/a →
Ka 1.5 1.75 2.0 3.0

0.0 0.5586 0.5362 0.5239 0.5070

0.1 0.5834 0.5539 0.5375 0.5131

0.2 0.6139 0.5742 0.5518 0.5166

0.3 0.6365 0.5859 0.5570 0.5133

0.4 0.6421 0.5831 0.5506 0.5055

0.5 0.6272 0.5667 0.5350 0.4969

0.6 0.5955 0.5414 0.5147 0.4895

0.7 0.5541 0.5127 0.4939 0.4845

0.8 0.5095 0.4846 0.4752 0.4890

0.9 0.4680 0.4598 0.4598 0.4794

1.0 0.4316 0.4394 0.4481 0.4793

1.2 0.3788 0.4123 0.4346 0.4805

1.4 0.3497 0.3998 0.4306 0.4827

1.6 0.3381 0.3971 0.4321 0.4847

1.8 0.3374 0.4000 0.4362 0.4863

2.0 0.3428 0.4055 0.4412 0.4874

3.0 0.3852 0.4331 o.4587 0.4901

4.0 0.4091 0.4457 0.4654 0.4910

5.0 0.4203 0.4513 0.4686 0.4918

Table 7.4. Heave damping coefficients λ33 for different submergence (h/a) values.

← h/a →
Ka 1.5 1.75 2.0 3.0

0 0. 0. 0. 0.

0.1 0.0040 0.0036 0.0033 0.0026

0.2 0.0245 0.0208 0.0182 0.0116

0.3 0.0631 0.0505 0.0416 0.0215

0.4 0.1129 0.0847 0.0658 0.0276

0.5 0.1627 0.1149 0.0848 0.0293

0.6 0.2037 0.1361 0.0958 0.0275

0.7 0.2304 0.1473 0.0991 0.0237

0.8 0.2423 0.1490 0.0964 0.0193

0.9 0.2414 0.1439 0.0896 0.0150

1.0 0.2318 0.1340 0.0805 0.0115

1.2 0.1966 0.1078 0.0604 0.0059

1.4 0.1554 0.0809 0.0421 0.0028

1.6 0.1172 0.0579 0.0279 0.0013

1.8 0.0856 0.0399 0.0177 0.0005

2.0 0.0609 0.0267 0.0109 0.0002

3.0 0.0085 0.0026 0.0007 0.0000

4.0 0.0009 0.0002 0.0003 0.0000

5.0 0.0001 0.0000 0.0000 0.0000
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Tables 7.2 and 7.4 show that the damping coefficients λ11 and λ33 start from zero and

after a certain value ofKa, they decrease uniformly to reach zero again whenKa= 5.0.

Also, we notice that the damping coefficients are smaller compared to the added-mass

for all the submergence values.

Analytic expressions for the total forces have been determined in Section 6. The ef-

fects of diffraction and radiation have been accounted for. The research in this area is

continuing. Our next step will be to display the results in graphical form considering

the effects of diffraction, the effects of radiation, and the combined effects of diffrac-

tion and radiation on a submerged sphere in regular waves of finite water depth. These

results , if possible, will be compared with the available experimental or field data. We

are very enthusiastic in our goal to collect field data to confirm this mathematical

theory.
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