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Abstract. The object of this paper is to construct extension operators in the Sobolev
spacesHk(]−∞,0]) andHk([0,+∞[) (k≥ 0). Then we use these extensions to get biorthog-
onal wavelet bases inHk(R). We also give a construction in L2([−1,1]) to see how to obtain
boundaries functions.
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1. Introduction. The decomposition method was used by Ciesielski and Figiel [1, 2]

to construct spline bases of general Sobolev spaces Wk
p(M) (k ∈ Z and 1 ≤ p ≤ +∞)

where M is a compact Riemannian manifold of dimension d. The extension operators

constructed by Ciesielski and Figiel are based on the extension theorem of Stein [13]

which do not permit to get multiresolution with compact support.

In 1993, we have constructed biorthogonal wavelet bases in Ω which is an interval

and a bounded open set of R2 (see [8, 9]). These bases are adapted to study Sobolev

spaces H1(Ω) and H1
0(Ω).

Recently, in 1997, the decomposition was used by Cohen, Dahmen, and Schneider

(see [3, 4, 5]) to construct biorthogonal wavelet bases (ψλ,
∼
ψλ)λ∈∇ of L2(Ω) where Ω

is a bounded domain of Rd. These bases were those of Sobolev spaces Hs(Ω) for s
only in the interval ]−3/2,3/2[.

There are related constructions given by Masson in [11]. All these constructions are

based on the decomposition method; there is a slight difficulty in their presentation,

due to notational burden. Moreover, it is unclear how to obtain regularity Sobolev

estimates for |s| ≥ 3/2 and also to get associated fast algorithms.

In this paper, we use a direct method based on the result described in [9] to define

orthogonal and biorthogonal multiresolution analyses on the interval [0,1] which are

generated by a finite number of basis functions. These analyses are regular and have

a compact support. Next we use a decomposition method to construct segmented

biorthogonal multiresolution analyses in R. In this case, we get decompositions of the

Sobolev space Hk(R) (k ∈ Z) by using simple extension operators. These extensions

permit to get fast algorithms for associated biorthogonal multiresolution analyses

because all bases constructed in this paper satisfy the lifting scheme described in

[11, 14] in order to get wavelet bases with compact support and with the same reg-

ularity as for Daubechies bases [6]. This analysis is adapted to the study of regular

functions in Hk([0,+∞[), Hk(]−∞,0]), and Hk(R), by using extensions. We also give

a construction of segmented biorthogonal multiresolution analysis in L2([−1,1]) to
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see how to obtain boundary functions. Finally, recall that segmented multiresolution

analyses are useful in many applications as numerical simulation for elliptic problems

or image processing (see [11]).

The first object of this paper is studied in Section 2. In fact, we construct biorthogo-

nal multiresolution (Vj,V∗j ) (j ∈ Z) on the interval [0,1]. By a derivation on Vj and an

integration on V∗j , we get biorthogonal multiscale analysis (V(1)j ,V (−1)
j ) of the space

L2([0,1]). Let Pj be the projector on Vj parallel to (V∗j )⊥ and P(1)j be the projector in

V(1)j parallel to (V(1)j )⊥, then we have the following commutation property:

d
dx

◦Pj = P(1)j ◦ d
dx

. (1.1)

If the multiscale functionϕ is regular, we develop a similar strategy for constructing

biorthogonal multiresolution analysis (V(d)j ,V (−d)j ) (d ∈ N) of the space L2([0,1]).
Moreover, we have the commutation property between scale projectors and derivation

d
dx

◦P(d−1)
j = P(d)j ◦ d

dx
. (1.2)

The biorthogonal analysis (V(d)j ,V (−d)j ) are adapted to the study of Sobolev spaces

Hk([0,1]) and Hk
0 ([0,1]) for k∈ Z.

Section 3 is devoted to the construction of extension operators. We show that if

we consider an extension operator E from Hk(]−∞,0]) into Hk(R) for k ∈ Z, we

get decomposition of the Sobolev space Hk(R) by using an isomorphism between the

spaceHk(R) and the space E(Hk(]−∞,0]))+Hk
0 ([0,+∞[). This isomorphism permits

to get biorthogonal multiresolution analysis of Hk(R) based on those of L2(]−∞,0])
and L2([0,+∞[). These multiscale analyses satisfy the commutation property between

scale projectors and derivation. All wavelet bases constructed in this section have a

compact support and are adapted to higher regularity analysis.

In conclusion, we describe “new” biorthogonal multiresolution analysis in L2

([−1,1]) to show more clearly how to construct boundary functions. These analyses

are adapted to the study of the Sobolev spaces H1([−1,1]) and H1
0([−1,1]).

2. Multiresolution analyses on the interval and applications. Recall that multires-

olution analyses (denoted by MRA) on the interval are introduced by Meyer [12]. For

other related constructions see [7, 8, 9]. In the first part of this section, we construct

orthogonal multiresolution analyses Vj on the interval [0,1] and we show that there

exists a new supplement Xj of Vj in Vj+1. In the second part, we introduce biorthogo-

nal multiresolution analyses on the interval and we prove, by using a derivation, that

we get other biorthogonal multiresolution analyses which are adapted to the study of

Sobolev spacesHk([0,1]) andHk
0 ([0,1]) for k∈ Z. Moreover, we get the commutation

property between scale projectors and derivation. These analyses have compact sup-

port and are adapted to higher regularity analysis. They will be used in the next section

and, by using some natural extensions, we get segmented biorthogonal analyses.

2.1. Orthogonal multiresolution analyses on the interval. We recall that the or-

thogonal multiresolution analysis (denoted by OMRA) Vj(R) of Daubechies [6] satisfies
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the following properties:

• V0 has an orthonormal base ϕ(x−k), k ∈ Z, where ϕ the scaling function with

compact support.

•ϕ(x/2)=∑2N−1
k=0 akϕ(x−k), the sequence of real numbers (ak) satisfies a0≠0 and

a2N−1 ≠ 0. Moreover, we have
∧
ϕ(2ξ)=M0(e−iξ)

∧
ϕ(ξ) whereM0(e−iξ)=

∑2N−1
k=0 ake−kiξ

and “∧” is the classical Fourier transform on R.

• suppϕ = [0,2N−1].
• The associated wavelet ψ is defined by

∧
ψ(2ξ)= e−i(2N−1)ξM0

(−e−iξ) ∧ϕ(ξ). (2.1)

• W0(R) (the orthogonal complement of V0(R) in V1(R)) has an orthonormal base

ψ(x−k), k∈ Z.

• Vj(R) has an orthonormal base ϕj,k(x)= 2j/2ϕ(2jx−k), j,k∈ Z, and Wj(R) has

an orthonormal basis ψj,k(x)= 2j/2ψ(2jx−k), j,k∈ Z.

The multiresolution of Daubechies is orthogonal in L2(R), but if we take its re-

striction to [0,1], we do not get an orthogonal multiresolution analysis in L2([0,1]).
Moreover, if we consider the functions ϕj,k(x)/[0,1], we have an independent system

but not orthogonal. However, if we consider the functionsψj,k(x)/[0,1] we get a depen-

dent system (see [12]). Then, the construction of orthogonal multiresolution analyses

in [0,1] (or biorthogonal) is technical specially near the boundaries 0 and 1.

In the following, we have to construct new orthogonal wavelet bases in [0,1]. For

this purpose, we consider the OMRA Vj(R) of Daubechies and we denote

Vj
(
[0,1]

)= Vect
{
ϕj,k/[0,1], ϕj,k ∈ Vj(R)

}
,

vj
(
[0,1]

)= Vect
{
ϕj,k, suppϕj,k ⊂ [0,1]

}
.

(2.2)

Definition 2.1. A sequence {Vj}j≥j0 of closed subspaces of L2([0,1]) is called a

MRA on L2([0,1]) associated with Vj(R) if we have

(i) for all j ≥ j0, vj([0,1])⊂ Vj ⊂ Vj([0,1]);
(ii) for all j ≥ j0, Vj ⊂ Vj+1.

Example 2.2 (periodic wavelets). For j ≥ 0, we denote

∼
ϕ(x)=

∑
p∈Z

ϕj,k(x−p)=
∑
p∈Z

ϕj,k+p2j (x). (2.3)

Then Vj is defined as the space generated by the functions
∼
ϕj,k/[0,1]. We then get

periodic wavelet bases which are adapted to the study of periodic regular functions.

The following result of Meyer [12] gives another example of MRA of L2([0,1])which

is important to establish the first goal of this paper.

Lemma 2.3. For j ≥ j0, the functionsϕj,k/[0,1], 2−2N ≤ k≤ 2j−1, form a Riesz basis

of Vj([0,1]) and the functions ψj,k/[0,1], −N+1 ≤ k ≤ 2j−N , constitute a Riesz basis

of Wj([0,1]).
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We describe a complement (not orthogonal) of Vj in Vj+1. More precisely, we have

the following important result from [9].

Proposition 2.4. Let j0 be the smallest integer satisfying 2j0 ≥ 4N−4. For j ≥ j0,

we denote

Xj = Vect
{
ψj,k, 0≤ k≤ 2j−2N+1; ϕj+1,2k+1, 0≤ k≤N−2;

ϕj+1,2k, −2N+2≤ k≤ 2j−N}. (2.4)

Then

(i) dimXj = 2j .

(ii) There exists an integer J such that for all j ≥ J, Vj+1 = Vj⊕Xj .

Proof. First we remark that suppψj,k ⊂ [0,1] for 0≤k≤2j−2N+1, suppϕj+1,2k+1

⊂ [0,(4N−4)/2j+1] for 0≤ k≤N−2 and suppϕj+1,2k ⊂ [−(4N−4)/2j+1,1−1/2j+1]
for −2N+2≤ k≤ 2j−N . We denote by xj,k, −N+1≤ k≤ 2j−N , the generated system

of Xj defined by

• for −N+1≤ k≤−1, xj,k =ϕj+1,2(k+N−1)+1;

• for 0≤ k≤ 2j−2N+1, xj,k =ψj,k;
• for 2j−2N+2≤ k≤ 2j−N , xj,k =ϕj+1,2k.

The matrix (mp,q), with −N+1 ≤ p, q ≤ 2j −1 of coefficients of xj,k relatively to

ψj,k/[0,1] (we decompose xj,k with respect to ϕj,k/[0,1] and ψj,k/[0,1] and we take only

the coefficients corresponding to ψj,k[0,1]) is defined by[
A 0

0 B

]
, (2.5)

where A = (mp,q), with −N+1 ≤ p, q ≤ 2j−1−1, is a superior triangular matrix with

all its diagonal coefficients are different from zero and B = (mp,q), with 2j−N+1 ≤
p, q ≤ 2j −N , is an inferior triangular matrix with all its diagonal coefficients are

different from zero. The diagonal terms of A and B are defined by

mp,p = 1√
2

〈
ϕ(x−2N+1),ψ

(
x
2

)�
, if p ≤−1, (2.6)

mp,p = 1, if 0 ≤ p ≤ 2j−2N+1, (2.7)

mp,p = 1√
2

〈
ϕ(x),ψ

(
x
2

)�
, if p ≥ 2j−2N+2, (2.8)

where 〈·,·〉 is the scalar product of L2(R). The system (xj,k), where −N+1≤ k≤ 2j−
N , is independent. Then we have dimXj = 2j and Xj∩Vj([0,1])= {0}. We remark that

Xj ⊂ vj+1([0,1]) and Xj∩Vj = {0}. Then vj+1([0,1])= vj([0,1])⊕Xj (the two spaces

have the same dimension) andXj ⊂ Vj+1. Since dimVj−dimvj([0,1]) is increasing and

bounded by dimVj([0,1])−dimvj([0,1]) = 4N−4, we conclude that there exists an

integer J such that for j ≥ J, Vj+1 = Vj⊕Xj . Finally, by using Gram-Schmidt method,

we get orthonormal wavelet basis on the interval [0,1].

2.2. Biorthogonal multiresolution analyses on the interval. First we give some

definitions of biorthogonal multiresolution analysis (denoted by BMRA), then we de-

scribe constructions on the interval.
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Definition 2.5. A sequence (Vj,V∗j ) of closed subspaces of L2([0,1]) associated

with biorthogonal multiresolution analysis (Vj(R),V∗j (R)) of L2(R) is called a biorthog-

onal multiresolution analysis of L2([0,1]) if

(i) vj([0,1])⊂ Vj ⊂ Vj([0,1]) and v∗j ([0,1])⊂ V∗j ⊂ V∗j ([0,1]).
(ii) Vj ⊂ Vj+1 and V∗j ⊂ V∗j+1.

(iii) L2([0,1])= Vj⊕(V∗j )⊥.

Example 2.6 (periodic BMRA). If (Vj(R),V∗j (R)) is a BMRA of L2(R) such that

the multiscale functions g and g∗ have compact support, we can define a BMRA of

L2([0,1]) associated with (Vj(R),V∗j (R)) by

∼
Gj,k =

∑
p∈Z

gj,k+p2j ,
∼
G
∗
j,k =

∑
p∈Z

g∗j,k+p2j
,

Vj = Vect
{∼
Gj,k/[0,1], 0≤ k≤ 2j−1

}
,

V∗j = Vect
{∼
G
∗
j,k/[0,1], 0≤ k≤ 2j−1

}
.

(2.9)

It is clear that
∫ 1
0

∼
G
∗
j,k(x)

∼
Gj,l(x)dx = δk,l for k,l ∈ {0, . . . ,2j − 1} and Vj , V∗j are

in duality for the scalar product of L2([0,1]). This BMRA is adapted to the study of

periodic functions.

Let (Vj(R),V∗j (R)) be a BMRA of L2(R)with associated multiscale functions (g,g∗).
We assume that suppg = [N1,N2] and we denote

Pαi (x)=
∑

k≤−N1−1

kig(x−k),

Pβi (x)=
∑

k≥−N2−1

kig(x−k).
(2.10)

Our construction is based on the following result.

Theorem 2.7. We consider a BMRA (Vj(R),V∗j (R)) of L2(R), (g,g∗) are the mul-

tiscale functions with compact support and (Vj,V∗j ) an associated BMRA of L2([0,1]).
We assume that

(i) g is differentiable and g′(x)= ∼
g(x)−∼

g(x−1).
(ii) Vj contains the functions

Pα0,j(x)= Pα0
(
2jx−2j

)
/[0,1],

Pβ0,j(x)= P
β
0

(
2jx−2j

)
/[0,1].

(2.11)

If we denote

∼
Vj =

{
f ∈ L2([0,1]) | ∃g ∈ Vj, f = g′},

∼
V
∗
j =

{
f ∈ L2([0,1]) | f ′ ∈ Vj, and f(0)= f(1)= 0

}
.

(2.12)

Then (
∼
Vj,

∼
V
∗
j ) is a BMRA of L2([0,1]). Moreover, if we denote by Pj (resp.,

∼
Pj ) the

projector from L2([0,1]) into Vj (resp.,
∼
Vj ) parallel to (V∗j )⊥ (resp., (

∼
V
∗
j )⊥), then we
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have the following commutation property

d
dx

◦Pj =
∼
Pj ◦ ddx . (2.13)

Proof. It is clear that
∼
g(x−k)= (∑∞

p=0g(x−k−p))
′
and (

∼
g
∗
(x−k))′ = g∗(x−k+

1)−g∗(x−k). Then
∼
vj ⊂

∼
Vj([0,1]) and

∼
v
∗
j ⊂

∼
V
∗
j ([0,1]). Moreover, since Vj contains

the functions Pβ0,j(x), we have
∼
Vj([0,1]) ⊂

∼
Vj and

∼
V
∗
j ([0,1]) ⊂

∼
V
∗
j . In the same way,

we have
∼
Vj ⊂

∼
Vj+1 and

∼
V
∗
j ⊂

∼
V∗j+1. To see the duality between

∼
Vj and

∼
V
∗
j , we consider

a base (α0 = 1,α1, . . . ,αn) of Vj with dimVj =n+1 and a dual base (β0,β1, . . . ,βn) of

V∗j . Then the derivation is an isomorphism from
∼
V
∗
j onto Vect(β1, . . . ,βn) and from

Vect(α1, . . . ,αn) onto
∼
Vj . If we define α̃i = (d/dx)αi and

∼
βi =−

∫ x
0 βi(t)dt then by inte-

gration, we conclude that the bases (
∼
αi) and (

∼
βi) are biorthogonal and we have a dual-

ity between
∼
Vj and

∼
V
∗
j . Finally the commutation property is satisfied. In fact, we have

d
dx

◦(Pjf )= d
dx

〈
f ,β0

〉
1+

n∑
i=1

〈
f ,βi

〉 d
dx

αi =
n∑
i=1

〈
f ,βi

〉
α̃i,

∼
Pj ◦

(
d
dx

f
)
=

n∑
i=1

〈
d
dx

f ,β∼i
�
α̃i =

n∑
i=1

([
fβ∼i

]1
0+

〈
f ,βi

〉)
α̃i

=
n∑
i=1

〈
f ,βi

〉
α̃i.

(2.14)

Fundamental example. Let Vj(R) be the OMRA of Daubechies where the scale

functionϕ is of class Cd. We denote by V(d)j (R) and V(−d)j (R) the MRA constructed by

derivation and integration. Then the theorem described above proves that V(d)j ([0,1])
and V(−d)j ([0,1])∩Hd

0 ([0,1]) form a BMRA of L2([0,1]). Moreover, if we denote by P(d)j

the projector on V(d)j ([0,1]) parallel to [V(−d)j ([0,1])∩Hd
0 ([0,1])]⊥, we have

d
dx

◦P(d)j = P(d+1)
j ◦ d

dx
. (2.15)

We define g and g∗ by

(
1−e−iξ)d�g(ξ)= (iξ)d �ϕ(ξ), (iξ)d

�
g∗(ξ)= (

e−iξ−1
)d �ϕ(ξ). (2.16)

The functions gj,k/[0,1] form a basis ofV(−d)j ([0,1]). To construct a basis ofV(−d)j ([0,1])
∩Hd

0 ([0,1]) we take the functions gj,k with support in [0,1] and the boundaries func-

tions as follows:

gα∗j,k =
d−1∑

p=−2N+2

αi,j,pg∗j,p/[0,1], 1≤ i≤ 2N−2,

gβ∗j,k =
2j+d−1∑

p=2j−2N+2

αi,j,pg∗j,p/[0,1], 1≤ i≤ 2N−2.

(2.17)
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The real constants αi,j,p satisfy

∫ +∞
0

 d−1∑
p=−2N+2

αi,j,p2j/2g∗
(
2jx−p)

2j/2g
(
2jx+2N−1−d−q)dx=δi,q, 1≤i≤2N−2.

(2.18)

In this case the following results are proved in [9].

Theorem 2.8. We assume that ϕ is a Cp+ε-function, p ∈ N, p ≥ d, and ε > 0. We

denote by P(d)j the projector on V(d)j ([0,1]) parallel to [V(−d)j ([0,1])∩Hd
0 ([0,1])]⊥ and

P(d)∗j its adjoint. We define Q(d)
j = P(d+1)

j −P(d)j , Q(d)∗
j = P(d)∗j+1 −P(d)∗j and j0 an integer

satisfying 2j0−1≥ 4N−4+2p. Then

(i) for f ∈ L2([0,1]), ‖f‖2 ≈ ‖P(d)j0 f‖2+(
∑
j≥j0 ‖Q

(d)
j f‖2

2)1/2.

(ii) for f ∈ L2([0,1]), ‖f‖2 ≈ ‖P(d)∗j0 f‖2+(
∑
j≥j0 ‖Q

(d)∗
j f‖2

2)1/2.

(iii) for k∈ Z such that −d≤ k≤ p−d, we have

f ∈Hk([0,1])⇐⇒ P(d)j0 f ∈ L2([0,1]), ∑
j≥j0

4jk
∥∥Q(d)

j f
∥∥2

2 <+∞;

f ∈H−k
0

(
[0,1]

)⇐⇒ P(d)∗j0 f ∈ L2([0,1]), ∑
j≥j0

4jk
∥∥Q(d)∗

j f
∥∥2

2 <+∞.
(2.19)

Remark 2.9. The fundamental property d/dx◦P(d)j = P(d+1)
j ◦d/dx allows to study

the vector functions with divergence equal to zero (see [9]).

3. Segmented biorthogonal multiresolution analyses and extension operators.

We study in this section two constructions of biorthogonal wavelet bases. The first

one is based on the OMRA of Daubechies and prove that we can analyze functions

in Hk(R) (k∈ Z) with information in the past Hk(]−∞,0]) (k∈ Z), the relaxation of

the past in the future near zero and information in the future Hk
0 ([0,+∞)) (k ∈ Z).

The second construction is based on a symmetric multiresolution analyses with com-

pact support and show how to obtain boundary functions in [−1,1]. We obtain, by

using extensions, biorthogonal multiresolution analyses of L2([−1,1]) from those of

L2([−1,0]) and L2([0,1]).

3.1. General principles of extensions. We begin with some notions of extensions

which are important for decompositions of the Sobolev space Hk(R). Next we give

conditions on extensions to get simple algorithms of wavelet bases.

Definition 3.1. We denote by Θ(R) the space of continuous operators on L2(R).
An operator A of Θ(R) is called an extension from the interval I into R if A is a

continuous operator from L2(I) into L2(R) such that

(i) Af/I = f .

(ii) For f in Hk(R), (k∈ Z), the usual Sobolev space, then Af ∈Hk(R).
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Example 3.2. We consider the interval I =]−∞,0] and f ∈ Ck(I) (space of Ck-
functions in I). We define the operator A by

Af(x)=


f(x), if x ≤ 0,
s∑

p=1

αpf
(
βpx

)
, if x > 0,

(3.1)

where βp are real constants such that βs < βs−1 < ···< β1 < 0. The real constants αp
will be chosen such that Af ∈ Ck(R). For this purpose, we must have

∑s
p=1αpβmp = 1,

m= 0,1, . . . ,k. The adjoint operator A∗ of A is defined by

A∗g(x)=


g(y)−

s∑
p=1

αpβ−1
p g

(
y
βp

)
, if y ≤ 0,

0, if y > 0.
(3.2)

If g ∈ Ck(R) thenA∗g ∈ Ck(R), since
∑s
p=1αpβm−1

p = 1,m= 0,1, . . . ,k. We conclude

that for s > 2k+2, the constants αp exist and then A and A∗ are known.

The biorthogonality of bases depends on the operators A and A∗. We remark that

the operator defined above is not “good” because A or A∗ does not preserve the

property of compact support, if we consider multiresolution analyses with compact

support, and special properties near the boundaries [9].

Proposition 3.3. Let k ∈ Z and E be an extension from Hk(]−∞,0]) into Hk(R).
Then the operator f → E(f/]−∞,0])+(f −E(f/]−∞,0])) constitutes an isomorphism from

Hk(R) onto E(Hk(]−∞,0]))⊕Hk
0 ([0,+∞[).

Remark 3.4. The extension E relaxes the information of the past, and the function

(f −E(f/]−∞,0])) is supported by the future axis. We will show how Proposition 3.3

permits to get wavelet bases of L2(R) by using those of L2(]−∞,0]) and L2([0,+∞[).
The main problem is in the definition of extension operators which are adapted to

scale, and permit to get regular wavelet bases. This problem is the object of the next

section.

3.2. Segmented biorthogonal multiresolution analyses. We introduce now the

definition of segmented BMRA.

Definition 3.5. We consider two intervals I1 and I2 of R such that I1∩I2 contains

one point. Let (V 1
j ,(V

1
j )∗) be a BMRA of L2(I1) and (V 2

j ,(V
2
j )∗) be a BMRA of L2(I2).

We put I = I1∪I2. Then a MRA (Vj,V∗j ) is called a segmented BMRA of L2(I) if we have

Vj = A1(V 1
j )⊕A2(V 2

j ) and V∗j = B1(V 1
j )∗ ⊕B2(V 2

j )∗ where A1, B1 are two extensions

from L2(I1) into L2(I) and A2, B2 are two extensions from L2(I2) into L2(I).

In the following, we describe two constructions of segmented BMRA. In the first

one, we consider I1 =]−∞,0] and I2 = [0+∞[ and we get a segmented BMRA of

L2(R). In the second construction, we consider I1 = [−1,0] and I2 = [0,1] and we get

a segmented BMRA of L2([−1,1]).

3.3. Construction of segmented BMRA of L2(R). The object of this section is

to construct a BMRA of L2(R). For this purpose, we consider the OMRA Vj(R) of
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Daubechies with associated scaling function ϕ and wavelet ψ, and we construct a

BMRA of L2(]−∞,0]) and L2([0+∞[). Next, we use some extension operators to get

a BMRA of L2(R).
Recall that the functions ϕj,k(x) = 2j/2ϕ(2jx−k), k ∈ Z, form a Riesz basis of

Vj(R) and ψj,k(x) = 2j/2ψ(2jx−k), k ∈ Z, form a Riesz basis of Wj(R) (orthogonal

complement of Vj(R) in Vj+1(R)). We define the extension operators Ej and E′j by

Ej : Vj
(
]−∞,0]) �→ Vj(R), ϕj,k/]−∞,0] �→ϕj,k,

E′j : Vj
(
[0,+∞[) �→ Vj(R), ϕj,k/[0,+∞] �→ϕj,k,

(3.3)

and the two extension operators E∗0 and (E∗0 )′

E∗0 : L2(]−∞,0]) �→ L2(R), f �→ f̄ , where f̄/]−∞,0] = f , f̄/]0,+∞[ = 0,(
E∗0

)′
: L2([0,+∞[) �→ L2(R), f �→ f̄ , where f̄/[0,+∞[ = f , f̄/]−∞,0[ = 0.

(3.4)

We consider Vj = Vect{ϕj,k, k∈ Z} (OMRA of Daubechies). To define the dual space,

we need to construct the new functions ϕ∗
j,q given by

ϕ∗
j,q(x)=

−1∑
k=2−2N

aj,q,lϕj,k/]−∞,0], (3.5)

where aj,q,l satisfy the following conditions: for 2−2N ≤ k≤−1, we have

∫ 0

−∞

−1∑
k=2−2N

aj,q,l2j/2ϕ
(
2jx−l)ϕ(

2jx−k)dx = δq,k. (3.6)

The precedent system of (2N−2) equations and (2N−2) unknowns has one solution

because the functions ϕj,k/]−∞,0], 2−2N ≤ k ≤ −1, are independent (see [5]). As the

conditions on aj,q,l do not depend on j, then we have

ϕ∗
j,q(x)= 2j/2ϕ∗

q
(
2jx

)
/]−∞,0]. (3.7)

We define now the dual space

V∗j = Vect
{
ϕj,k, k≤ 1−2N, ϕj,k, k≥ 0; 2j/2ϕ∗

q
(
2jx

)
/]−∞,0], 2−2N ≤ q ≤−1

}
. (3.8)

We remark that V∗j = Vect{ϕj,k/]−∞,0]}⊕Vect{ϕj,k, suppϕj,k ⊂ [0,+∞[} and then

V∗j ⊂ V∗j+1. It is clear that V∗j is constructed in order to get a BMRA (Vj,V∗j ) of L2(R).
We consider Wj = Vj+1∩ (V∗j )⊥. To give a basis of Wj , we need to construct the new

wavelets αj,k as follows: for 2−2N ≤ k≤−N , we put

αj,k =ψj,k−
−1∑

q=2−2N

〈
ψj,k,ϕ∗

j,q
〉
ϕj,q. (3.9)

We have (N−1) functions which can be orthonormalized (for the scalar product of

L2(]−∞,0])) to get the functions αj,k, 2−2N ≤ k≤−N , indicated above. Then a basis

of Wj is given by the following functions:

• ψj,k, k≤ 1−2N .
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• αj,k, 2−2N ≤ k≤−N .

• βj+1,2k=ϕj+1,2k−
∑
q≥0〈ϕj+1,2k,ϕj,q〉ϕj,q−

∑
q≥0〈ϕj+1,2k,ψj,q〉ψj,q, 0≤ k≤N−2.

• ψj,k, k≥ 0.

We construct now a basis of the spaceW∗
j = V∗j+1∩(Vj)⊥. It is clear that the functions

αj,k/]−∞,0] are in V∗j+1. For 2−2N ≤ k≤−N , we have

ψ∗j,k =αj,k/]−∞,0]−
−1∑

q=2−2N

〈
αj,k/]−∞,0],ϕ∗

j,q
〉
ϕ∗
j,q. (3.10)

Obviously, we have
〈
αj,k,ψ∗j,q

〉
L2(R) = δk,q. We denote by β∗j+1,2k, 0≤ k≤N−2, the

dual system of βj+1,2k, 0≤ k≤N−2, for the scalar product of L2(R), and we define

ϕ∗
j+1,2k = βj+1,2k−

−1∑
q=2−2N

〈
β∗j+1,2k,ϕj,q

〉
ϕ∗
j,q

−
−N∑

q=2−2N

〈
β∗j+1,2k,ψj,q

〉
ψ∗j,q−

∑
q≥0

〈
β∗j+1,2k,ψj,q

〉
ψj,q.

(3.11)

We conclude that a basis of W∗
j is given by the following functions:

• ψj,k, k≤ 1−2N .

• ψ∗j,k, 2−2N ≤ k≤−N .

• ϕ∗
j+1,2k, 0≤ k≤N−2.

• ψj,k, k≥ 0.

The functionsϕj,k, k∈ Z, form a basis of the space Vj and the functionsϕ∗
j,k, k∈ Z,

form a basis of the space V∗j such that

suppϕj,k ⊂
[
k
2j
,
k+2N−1

2j

]
, suppϕ∗

j,k ⊂
[
k−2N+2

2j
,
k+2N−1

2j

]
,

〈
ϕj,k,ϕ∗

j,q
〉
L2(R) = δk,q.

(3.12)

The projector Pj can be written as

Pjf =
∑
k∈Z

〈
f ,ϕ∗

j,k
〉
ϕj,k (3.13)

and we have the following property:

Pj+1 ◦Pj = Pj ◦Pj+1 = Pj. (3.14)

The following theorem proves that the MRA (Vj,V∗j ) described above is a segmented

BMRA of L2(R).

Theorem 3.6. (i) There exist a BMRA (Vj(]−∞,0]), V∗j (]−∞,0])) of L2(]−∞,0])
and a BMRA (Vj([0+∞[),V∗j ([0+∞[)) of L2([0+∞[) such that if we denote

Vj = Ej
(
Vj
(
]−∞,0]))⊕E′j(Vj([0+∞[)),

V∗j = E∗0
(
V∗j

(
]−∞,0]))⊕E∗′0

(
V∗j

(
[0+∞[)), (3.15)

then (Vj,V∗j ) is a segmented BMRA of L2(R).
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(ii) We consider the spaces

Wj
(
]−∞,0])= Vj+1

(
]−∞,0])∩(

V∗j
(
]−∞,0]))⊥,

W∗
j
(
]−∞,0])= V∗j+1

(
]−∞,0])∩(

Vj
(
]−∞,0]))⊥. (3.16)

We define in the same way the spaces Wj([0+∞[) W∗
j ([0+∞[). We denote

Wj = Ej
(
Wj

(
]−∞,0]))⊕E′j(Wj([0+∞[)),

W∗
j = E∗0

(
W∗
j
(
]−∞,0]))⊕E∗′0

(
W∗
j
(
[0+∞[)). (3.17)

Then Wj and W∗
j are in duality for the scalar product of L2(R) and we have Vj+1 =

Vj⊕Wj and V∗j+1 = V∗j ⊕W∗
j . If we denote

V(1)j
(
]−∞,0])= {

f ∈ L2(]−∞,0])/ ∃g ∈ Vj(]−∞,0]), f = g′},
V (−1)
j

(
]−∞,0])= {

f ∈ L2(]−∞,0])/ f ′ ∈ V∗j (]−∞,0]), and f(0)= 0
}
,

(3.18)

then (V(1)j (]−∞,0]), V (−1)
j (]−∞,0])) is a BMRA of L2(]−∞,0]). There exists also a

BMRA of L2([0+∞[) denoted by (V(1)j ([0,+∞[), V (−1)
j ([0,+∞[)).

(iii) If we define V(1)j and V(−1)
j in the same way as (3.15) by replacing Vj(]−∞,0])

by V(1)j (]−∞,0]) and V∗j (]−∞,0]) by V(−1)
j (]−∞,0]) (also for the spaces defined on

[0,+∞[), then (V(1)j ,V (−1)
j ) is a BMRA of L2(R). Moreover, if Pj is the projector from

L2(R) into Vj parallel to (V∗j )⊥ and P(1)j is the projector from L2(R) into V(1)j parallel

to (V(−1)
j )⊥, then we have

d
dx

◦Pj = P(1)j ◦ d
dx

. (3.19)

Proof. We consider the BMRA (Vj,V∗j ) of L2(R) described above. In the following

we prove the properties (i) and (ii). By taking the restrictions, respectively, on ]−∞,0]
and [0,+∞[ of functions of Vj and V∗j . We get the spaces

Vj
(
]−∞,0])= Vect

{
ϕj,k/]−∞,0], k≤−1

}
,

V∗j
(
]−∞,0])= Vect

{
ϕj,k, k≤ 1−2N, ϕ∗

j,k, 2−2N ≤ k≤−1
}
,

Vj
(
[0+∞[)= Vect

{
ϕj,k, k≥ 0

}
,

V∗j
(
[0+∞[)= Vect

{
ϕj,k, k≥ 0

}
.

(3.20)

In the same way, the spaces defined in (3.16) are completely described. In fact, we

have

Wj
(
]−∞,0])= Vect

{
ψj,k, k≤ 1−2N ; αj,k/]−∞,0], 2−2N ≤ k≤−N},

W∗
j
(
]−∞,0])= Vect

{
ψj,k, k≤ 1−2N, ψ∗j,k, 2−2N ≤ k≤−N},

Wj
(
[0,+∞[)= Vect

{
βj+1,2k, 0≤ k≤N−2, ψj,k, k≥ 0

}
,

W∗
j
(
[0,+∞[)= Vect

{
ϕ∗
j+1,2k/[0+∞[, 0≤ k≤N−2, ψj,k, k≥ 0

}
.

(3.21)
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Then the properties (3.15) and (3.16) are proved. To prove (3.18), we denote

d
dx

ϕj,k(x)= 2j
(
ϕ(1)
j,k(x)−ϕ(1)

j+1,k(x)
)
,

ϕ∗(−1)
j,k (x)= 2−j

∫ x
−∞

(
ϕ∗
j,k−1(t)−ϕ∗

j,k(t)
)
dt.

(3.22)

To show that ϕ∗(−1)
j,k has compact support, we prove that

∫+∞
−∞ ϕ

∗
j,k(x)dx = 2−j/2

(because the functions ϕ∗
j,k have compact support). In fact, we have

1= 2j/2
∑
q∈Z

ϕj,q(x), (3.23)

we then get ∫ +∞
−∞
ϕ∗
j,k(x)dx =

∫ +∞
−∞
ϕ∗
j,k(x)1dx

=
∫ +∞
−∞
ϕ∗
j,k(x)

(
2j/2

∑
q∈Z

ϕj,q(x)
)
dx

=
∫ +∞
−∞

2j/2ϕj,q(x)ϕ∗
j,k(x)dx

= 2−j/2.

(3.24)

We describe in the same way as (3.16) the spaces defined in (3.18) and (3.19). The

commutation property is proved in [9, Proposition 2.5]. Then, Theorem 3.6 is com-

pletely proved.

We remark that suppϕ∗
j,k ⊂]−∞,0] for k ≤ −1 and suppϕ∗

j,k ⊂ [0,+∞[ for k ≥ 0,

then we have two projectors

P−j f =
∑
k≤−1

〈
f ,ϕ∗

j,k
〉
ϕj,k, (3.25)

the projector in the past which is relaxed in the future, and

P+j f =
∑
k≥0

〈
f ,ϕ∗

j,k
〉
ϕj,k, (3.26)

the projector in the future.

We have similar properties as (3.25) and (3.26) for the projector Qj = Pj+1 − Pj ,
because the associated wavelets satisfy the same properties as the scaling functions

ϕ∗
j,k.

The space V(1)j is equal to V(1)j (R) (the MRA constructed by one derivation on Vj(R))
with a basis ϕ(1)

j,k , k∈ Z, and the space V(−1)
j has a basis ϕ∗(−1)

j,k , k∈ Z, such that

〈
ϕj,k,ϕ∗

j,q
〉
L2(R) = δk,q,

suppϕ∗(−1)
j,k ⊂]−∞,0], for k≤ 0,

suppϕ∗(−1)
j,k ⊂ [0,+∞[, for k≥ 0.

(3.27)
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The projector P(1)j is given by

P(1)j f =
∑
k∈Z

〈
f ,ϕ∗(−1)

j,k
〉
ϕ(1)
j,k , (3.28)

and we have the property

P(1)j+1 ◦P(1)j = P(1)j ◦P(1)j+1 = P(1)j . (3.29)

The associated wavelets may be constructed in the same way. In fact we denote

ψ(1)j,k(x)=
d
dx

ψj,k(x), ψ∗(−1)
j,k (x)= 2j

∫ x
−∞
ψ∗j,k(t)dt. (3.30)

We can generalize the result described above. In fact, the same extensions give the

following result.

Corollary 3.7. There exist a BMRA (V(d)j (]−∞,0]),V (−d)j (]−∞,0])) of L2(]−∞,0])
and a BMRA (V(d)j ([0+∞[), V(−d)j ([0+∞[)) of L2([0+∞[) such that if we denote

V(d)j = Ej
(
V(d)j

(
]−∞,0]))⊕E′j(V(d)j

(
[0+∞[)),

V (−d)j = E∗0
(
V(−d)j

(
]−∞,0]))⊕E∗′0

(
V(−d)j

(
[0+∞[)). (3.31)

Then (V(d)j ,V (−d)j ) is a segmented BMRA of L2(R).
If P(d)j is the projector from L2(R) into V(d)j parallel to (V(−d)j )⊥ and P(d+1)

j is the

projector from L2(R) into V(d+1)
j parallel to (V−(d+1)

j )⊥, then we have

d
dx

◦P(d)j = P(d+1)
j ◦ d

dx
. (3.32)

Remark 3.8. The extensions Ej and E′j expressed in (3.3) permit to require the

same regularity and localization of basic functions. If we assume that ϕ is a Cp+ε-
function then, the BMRA V(d)j (]−∞,0]), V(−d)j (]−∞,0]) is adapted to the study of the

Sobolev spaces Hk(]−∞,0]) and Hk
0 (]−∞,0]) for 0≤ k≤ p−d (or H−k(]−∞,0]) and

H−k
0 (]−∞,0]) for 0 ≤ k ≤ d). We have the same result for the BMRA V(d)j ([0,+∞[),

V(−d)j ([0+∞[) of L2([0,+∞[).
As a consequence, the BMRA (V(d)j , V (−d)j ) of L2(R) is adapted to the study of the

Sobolev spaces Hk(R) for 0≤ k≤ p−d and H−k(R) for 0≤ k≤ d.

3.4. Construction of segmented BMRA of L2([−1,1]). We consider the functions

ϕ and ϕ∗ defined by

ϕ̂(ξ)=
∞∏
j=1

m
(
ξ
2j

)
, with m(ξ)= 1+cosξ

2
,

ϕ̂∗(ξ)=
∞∏
j=1

m∗
(
ξ
2j

)
, with m∗(ξ)=

(
1+cosξ

2

)
(2−cosξ),

(3.33)

where “�” is the classical Fourier transform on R.
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These multiscales define a BMRA of L2(R). We denote by Uj(R) the closed linear

hull of ϕj,k, k ∈ Z, where ϕj,k(x) = 2j/2ϕ(2jx−k), and in the same way U∗j (R) the

closed linear hull of ϕ∗
j,k, k ∈ Z, where ϕ∗

j,k(x) = 2j/2ϕ∗(2jx − k). The important

properties of ϕ and ϕ∗ are

ϕ(x)= (
1−|x|)+. (3.34)

(We remark that ϕ is a spline function and Uj(R) is the space of continued functions

on R which are affine in every diadic interval [k/2j , (k+1)/2j].)

ϕ and ϕ∗ are in L2(R), (3.35)

There exists ε > 0 such that ϕ ∈H1+ε(R),

suppϕ = [−1,1], ϕ(x)=ϕ(−x),∑
k∈Z
ϕ(x−k)= 1,

∑
k∈Z
kϕ(x−k)= x, (3.36)

suppϕ∗ = [−2,2], ϕ∗(x)=ϕ∗(−x),∑
k∈Z
ϕ∗(x−k)= 1,

∑
k∈Z
kϕ∗(x−k)= x,

ϕ(x)= 1
2
ϕ(2x+1)+ϕ(2x)+ 1

2
ϕ(2x−1),

ϕ∗(x)= 1
2
ϕ∗(2x+2)+ 1

2
ϕ∗(2x+1)+ 3

2
ϕ∗(2x)

+1
2
ϕ∗(2x−1)− 1

4
ϕ∗(2x−2).

(3.37)

(We see that Uj(R)⊂Uj+1(R) and U∗j (R)⊂U∗j+1 (R).)〈
ϕj,k,ϕ∗

j,q
〉
L2(R) = δk,q. (3.38)

The last point allows that the functions ϕj,k, k ∈ Z, form a Riesz base of Vj(R) =
Uj(R)∩L2(R) and ϕ∗

j,k, k∈ Z, form a Riesz base of V∗j (R)=U∗j (R)∩L2(R) such that

L2(R)= Vj(R)⊕(V∗j (R))⊥.

The projector Pj from L2(R) into Vj parallel to (V∗j )⊥ can be written in the form

Pjf =
∑
k∈Z

〈
f ,ϕ∗

j,k
〉
ϕj,k, (3.39)

and satisfies Pj+1 ◦Pj = Pj ◦Pj+1 = Pj , such that Qj = Pj+1−Pj is a projector from

L2(R) into Wj(R)= ImQj = Vj+1(R)⊕(Vj(R))⊥ parallel to (W∗
j (R))⊥, where W∗

j (R)=
(KerQj)⊥ = V∗j+1(R)⊕(Vj(R))⊥. A base of Wj(R) is given by the functions ψj,k(x) =
2j/2ψ(2jx−k), k ∈ Z, where ψ̂(2ξ) = e−iξm(ξ+π)ϕ̂(ξ). In the same way, a base of

W∗
j (R) is given by the functions ψ∗j,k(x) = 2j/2ψ∗(2jx−k), k ∈ Z, where ψ̂∗(2ξ) =

e−iξm(ξ+π)ϕ̂∗(ξ). Moreover, the two bases are in duality for the scalar product of

L2(R): 〈
ψ(x),ψ∗(x−k)〉L2(R) = δk,0, Qjf =

∑
k∈Z

〈
f ,ψ∗j,k

〉
ψj,k. (3.40)
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The fundamental properties of ψ and ψ∗ are

suppψ= [−1,2], ψ(x)=ψ(1−x),∫ +∞
−∞
ψ(x)dx =

∫ +∞
−∞
xψ(x)dx = 0,

〈
ψ(x),ϕ∗(x−k)〉L2(R) = 0 for k∈ Z,

suppψ∗ = [−1,2], ψ∗(x)=ψ∗(1−x),∫ +∞
−∞
ψ∗(x)dx =

∫ +∞
−∞
xψ∗(x)dx = 0,

〈
ψ∗(x),ϕ(x−k)〉L2(R) = 0 for k∈ Z,〈

ψj,k,ψ∗j,q
〉
L2(R) = δj,j′δk,k′ .

(3.41)

We construct now a segmented BMRA of L2([−1,1]) by using those in L2([−1,0])
and L2([0,1]) and the extension operators Ej and E′j described above.

We define the following spaces:

Vj
(
[−1,0]

)=Vect

{
ϕα
j =

∑
k≤2−2j

ϕj,k/[−1,0], ϕj,k, 3−2j≤k≤−3, ϕβ
j=

2∑
k=−2

ϕj,k/[−1,0]

}
,

V∗j
(
[−1,0]

)= Vect
{
ϕ∗
j,k, 2−2j ≤ k≤−2

}
,

Vj
(
[0,1]

)= Vect

{
ϕj,k, 3≤ k≤ 2j−3, ϕλ

j =
∑

k≥2j−2

ϕj,k/[0,1]

}
,

V∗j
(
[0,1]

)= Vect
{
ϕ∗
j,k, 3≤ k≤ 2j−2

}
.

(3.42)

It is clear that Vj([−1,0]) and V∗j ([−1,0]) are in duality because suppϕ∗
j,k ⊂ [−1,0]

for 2−2j ≤ k ≤ −2. We have the same result for Vj([0,1]) and V∗j ([0,1]). We apply

extensions as follows:

• The function ϕβ
j is extended by ϕ̃β

j =
∑2
k=−2ϕj,k.

• The functions ϕ∗
j,k, 2−2j ≤ k≤−2 and 3≤ k≤ 2j−2, are extended by zero.

We get a BMRA of L2([−1,1]), which is symmetric and with compact support where

Vj
(
[−1,1]

)= Vect
{
ϕα
j , ϕj,k, 3−2j ≤ k≤−3, ϕ̃β

j , ϕj,k, 3≤ k≤ 2j−3, ϕλ
j

}
,

V∗j
(
[−1,1]

)= Vect
{
ϕ∗
j,k, 2−2j ≤ k≤−2,ϕ∗

j,k, 3≤ k≤ 2j−2
}
.

(3.43)

In the same way, we get the associated wavelet spacesWj([−1,1]) andW∗
j ([−1,1]).

Proposition 3.9. If f is a function of L2([−1,1]), then

f ∈H1([−1,1]
)⇐⇒ ∥∥Pjf∥∥2+

( ∑
j≥j0

4j
∥∥Qjf∥∥2

2

)1/2

<+∞. (3.44)
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Proof. If f ∈H1([−1,1]), ‖f‖H1 is calculated by ‖f‖2+‖f ′‖2. We have

f = Pj0f +
∑
j≥j0

Qjf , ‖f‖2 =
∥∥Pj0f∥∥2+

( ∑
j≥j0

∥∥Qjf∥∥2
2

)1/2

, (3.45)

where Qjf is given by

Qjf =
∑
k∈Z

〈
f ,ψ∗j,k

〉
ψj,k =

∑
k∈Z

2−j
〈
f ′,η∗j,k

〉
ψj,k, (3.46)

and η∗(x) = −
∫ x
−1ψ∗(t)dt. The functions 1 and x belong to Vj([−1,1]) (see (3.36)),

then we get
∫ 1
−1xαη∗(x)dx = 0, for 0≤α≤ 1 (see [8]). We have

4j
∥∥Qjf∥∥2

2 =
〈∑
k∈Z

〈
f ′,η∗j,k

〉
ψj,k,

∑
p∈Z

〈
f ′,η∗j,p

〉
ψj,p

〉
, (3.47)

and for a sequence (λj,k)j,k ∈ Z2, we have

∑
j∈Z

∑
k∈Z

〈
f ′,η∗j,k

〉
λj,k =

〈
f ′,

∑
j∈Z

∑
k∈Z
λj,kη∗j,k

〉

≤
∥∥f ′∥∥2

∥∥∥∥∥∑
j∈Z

∑
k∈Z
λj,kη∗j,k

∥∥∥∥∥
2

≤ C
∥∥f ′∥∥2

(∑
j∈Z

∑
k∈Z

∣∣λj,k∣∣2

)1/2

,

(3.48)

where C is a positive constant. Then we get
∑
j≥j0 4j‖Qjf‖2

2 ≤ C′‖f ′‖2, where C′ is a

positive constant. To prove the other inequalities, we write

f = Pj0f +
∑
j≥j0

Qjf , (3.49)

then we have

d
dx

f = d
dx

Pj0f +
∑
j≥j0

d
dx

Qjf ,
∥∥∥∥ ddxPj0f

∥∥∥∥
2
≤ C

∥∥Pj0f∥∥2, (3.50)

whereC is a positive constant. To see that f ∈H1([−1,1]), we must estimate‖∑j≥j0(d/
dx)Qjf‖2. We have

d
dx

Qjf =
∑
k∈Z

2j
〈
f ,η∗j,k

〉( d
dx

ψj,k
)
=

∑
k∈Z

〈
d
dx

f ,η∗j,k
�(

d
dx

ψj,k
)
, (3.51)

we then get ∥∥∥∥ ddxQjf
∥∥∥∥

2
�

∑
k∈Z

∣∣∣∣〈 d
dx

f ,η∗j,k
�∣∣∣∣2

� 4j
∥∥Qjf∥∥2

2. (3.52)

The properties (3.45) and (3.52) give the result.

Remark 3.10. We characterize in the same way the Sobolev space H1
0([−1,1]) be-

cause it is sufficient to replace the projector operator Pj (resp., Qj ) by P∗j (resp., by
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Q∗
j ). We prove then that ‖f‖H1 and ‖P∗j f‖2+ (

∑
j≥j0 4j‖Q∗

j f‖2
2)1/2 are equivalent in

H1
0([−1,1]).

Conclusion. We have constructed in this paper two multiresolution analyses

(OMRA and BMRA) of L2([0,1]) which are generated by a finite number of basis func-

tions. For the first one, we used a direct method based on the result described in [9]

to define an orthonormal multiresolution analysis on [0,1] which is regular and has

compact support. For the second one, we used the idea of “derivation and integration”

to get new biorthogonal multiresolution analyses on the interval. In this case, we get

the commutation property (2.13) between scale projectors and differentiability. Next,

we use the decomposition method to construct two segmented biorthogonal multires-

olution analyses. For the first one, we show that if we consider an extension operator

E from Hk(]−∞,0]) into Hk(R), we get decomposition of the Sobolev space Hk(R)
(k ∈ Z) by using an isomorphism between the space Hk(R) (k ∈ Z) and the space

E(Hk(]−∞,0]))+Hk
0 ([0,+∞[). This isomorphism permit to get biorthogonal mul-

tiresolution analyses ofHk(R) (k∈ Z) based on those of L2(]−∞,0]) and L2([0,+∞[).
These multiscale analyses satisfy the commutation property between scale projec-

tors and derivation. All segmented BMRA constructed in this case prove that we

can analyze functions in Hk(R) (k ∈ Z) with information in the past Hk(]−∞,0])
(k∈ Z), the relaxation of the past in the future near zero and information in the future

Hk
0 ([0,+∞[) (k ∈ Z). To prove the second one, we have constructed in the first time

orthogonal wavelet bases in the spaces L2([−1,0]) and L2([0,1]). Using extensions,

we get multiresolution analysis on the interval [−1,1]. These bases are associated to

simple algorithms and are adapted to the study of the Sobolev spacesH1([−1,1]) and

H1
0([−1,1]).
Recall that all bases constructed in this work satisfy the lifting scheme [10, 14];

thus, we get wavelet bases with compact support and with the same regularity as for

Daubechies bases.
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