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Abstract. Stabilization of the system of wave equations coupled in parallel with coupling
distributed springs and viscous dampers are under investigation due to different bound-
ary conditions and wave propagation speeds. Numerical computations are attempted to
confirm the theoretical results.
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1. Introduction. Many problems in structural dynamics deal with stabilizing the

elastic energy of partial differential equations by boundary or internal energy dissipa-

tive controllers for wave equations or the Euler-Bernoulli beam equation. Exponential

stability is a very desirable property for such elastic systems. The energy multiplier

method [2, 6] has been successfully applied to reach to this objective for various par-

tial differential equations and boundary conditions. Stabilization properties of serially

connected vibrating strings or beams can be found in several papers [4, 5]. There, uni-

form stabilization can be achieved if we employ dissipative boundary condition at one

end. If otherwise, one damper is located at the mid-span joint of two vibrating strings

coupled in series, the uniform stabilization property holds if c1/c2 (wave speeds) has

certain rational values. Stabilization properties of parallel connected vibrating strings

were investigated under various end conditions by [9]. What comes new in this work

is, firstly, dealing with the system of wave equations coupled in parallel with dis-

tributed viscous damping and springs (suspension system), and secondly, the rate

of convergence of the solution when this system goes under the movement by an

external disturbance (forcing function) or initial conditions. Having considered this,

we are willing to furnish the best possible configuration that guarantees the uniform

exponential stability due to different boundary conditions and wave speeds.

LetΩ1 =Ω2 =Ω = (0,1) be open sets inR. Also, let ∂Ω1,∂Ω2 be the boundaries ofΩ1

and Ω2, respectively. Throughout, (·) = d()/dt, (′) = d()/dx, and ∂2
x() = (∂2/∂x2)().

The coupling constants β > 0 and α> 0 are damping and spring coefficients, respec-

tively. We assume that the projection of Ω1 into Ω2, denoted as Ω. Also, u(x,t) and

v(x,t) are the displacement of two vibrating strings measured from their equilibrium

positions.

The governing equations prescribing the above systems are

utt−c2
1uxx =α(v−u)+β

(
vt−ut

)
, in Ω1×(0,∞), (1.1a)

vtt−c2
2vxx =α(u−v)+β

(
ut−vt

)
, in Ω2×(0,∞), (1.1b)
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with the initial conditions

u(0)= f1, ut(0)= g1, in Ω1,

v(0)= f2, vt(0)= g2, in Ω2.
(1.2)

Along with the system (1.1), we employ two different boundary conditions and wish

to study the stabilization of (1.1) on each, respectively. They are

(1) Dirichlet and Neumann for (1.1a) and Dirichlet for (1.1b):

u(0, t)= 0, ux(1,0)= 0, on ∂Ω1×(0,∞),
v = 0, on ∂Ω2×(0,∞).

(1.3)

(2) Dirichlet for (1.1):

u= v = 0, on ∂Ω×(0,∞). (1.4)

Here, c1 and c2 are wave speeds, also the distributed springs and dampers linking

two vibrating strings are the coupling terms, that is, α(u−v) and β(ut−vt). Energy

can flow from one object to another through this parameter (α) and damp via shock

absorber (β). This system is well posed in the following sense: if we put

V =
{
X̄=[u1,v1

]T
; u1∈H1(Ω1

)
, v1∈H1(Ω2)|u1=0, or u1x=0 on ∂Ω1, v1=0 on ∂Ω2

}
,

(1.5)

for any initial data (f1,g1,f2,g2) ∈ V ×L2(Ω), the system (1.1), (1.2), (1.3), (1.4), and

(1.5) has a unique solution, satisfying

X̄ ∈ C([0,∞);V)∩C1([0,∞);L2(Ω)
)
. (1.6)

Furthermore, the system is dissipative: the energy of the solutions, defined by

E(t)= 1
2

∫ 1

0

{|ut|2+c2
1 |∂xu|2+|vt|2+c2

2 |∂xv|2+α|u−v|2
}
dx, (1.7)

is decreasing in t ∈ (0,∞), since

Ė =−β
∫ 1

0
|ut−vt|2dx ≤ 0. (1.8)

This paper consists of two main parts with their corresponding subsections. In the

first part, we study the cases for boundary conditions (1.3) and (1.4), respectively. In

Section 2, we set our notation and reformulate the system (1.1), (1.2), (1.3), and (1.4)

into an evolution system and discuss more about well-posedness of the problem.

There, we also give a set of sufficient conditions for exponential decay. The theorems

formulated in terms of the influence of the bounded operator B on the separated

eigenmodes or clustered eigenmodes of � (system operator), see (2.4). Section 3, which

is the direct application of Theorem 2.2, in Section 2, we prove that the solution (1.1)

with (1.3) decays to zero uniformly exponentially. In Section 4, the importance of

different wave speeds has to be taken into consideration for exponential stability of

(1.1) with (1.4). To do this, we use the spectral method.

The second part, Section 5, of this paper is concerned with numerical computations.

There, we study the behaviour of solutions of the system graphically (using finite
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different scheme [11]) as time increases for boundary condition (1.4) and show the

significant stability of the solutions due to different wave propagation speeds.

2. Notations and preliminaries. Let the operator A be defined as

Au=−∂2
xu, (2.1)

whereA :D(A)→H0(Ω)= L2(Ω), and domain ofA,D(A)= {u∈H2(Ω); u|x∈∂Ω1 = 0},
and H0(Ω) = L2(Ω) is endowed with the usual Hilbert space topology. Properties of

the operator A:

(1) Closed and densely defined operator.

(2) Selfadjoint and coercive.

(3) A−1 is a compact operator.

Then, we can conclude that from the spectral theory of the selfadjoint operators

with compact resolvent that

σ(A)= σp(A)=
{
λ2
n
}∞

1 , (2.2)

where λn > 0, λn → ∞, and they are isolated, and each eigenvalue has a finite mul-

tiplicity. The corresponding normalized eigenvectors form an orthonormal basis for

H0. We also define a Hilbert space H1 =D(A1/2) endowed with inner product

〈
v1,v2

〉
H1 =

〈
A1/2v1,A1/2v2

〉
H0 . (2.3)

Now, the system (1.1) with boundary condition (1.4), similar approach can be applied

for other boundary conditions, can be reformulated into a first order evolution system

d
dt
X(·, t)=�X(·, t)+BX(·, t), X(·,0)=X0, (2.4)

in a Hilbert space �1. Here,

�=




0 1 0 0

−c2
1A−α 0 α 0

0 0 0 1

α 0 −C2
2A−α 0


 , B =




0 0 0 0

0 −β 0 β
0 0 0 0

0 β 0 −β


 ,

X(·, t)= (u(·, t),ut(·, t),v(·, t),vt(·, t))T ∈�1,

BX(·, t)= (0,−β(ut−vt),0,β(ut−vt))T ,

(2.5)

with

�2 =D(�)=D(A)×H1×D(A)×H1 ⊂�1. (2.6)

The Hilbert space �1 =H1×H0×H1×H0 is endowed with inner product
〈
u1,u2

〉
�1
= c2

1

〈
u1,u2

〉
H1+

〈
z1,z2

〉
H0+c2

2

〈
v1,v2

〉
H1

+〈w1,w2
〉
H0+α

〈(
u1−v1

)
,
(
u2−v2

)〉
H0 ,

(2.7)

where u1 = (u1,z1,v1,w1)T and u2 = (u2,z2,v2,w2)T . It can be shown that �2 is

dense in �1.
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Energy of the system (1.7) can be rewritten as

E(t)= 1
2

∫ 1

0

{|ut|2+c2
1 |A1/2u|2+|vt|2+c2

2 |A1/2v|2+α|u−v|2}dx. (2.8)

It is known that the unbounded operator � is closed and densely defined from D(�)
to �1. Furthermore, � has the following properties [10].

Lemma 2.1. Let � :D(�)→�1, and closed and densely defined operator, then

(a) �=−�∗ (skew-adjoint),

(b) � has compact resolvent �−1,

(c) � is the infinitesimal generator of a C0-semigroup Ŝ(t).

Proof. (a) For any u1 ∈D(�) and u2 ∈D(−�)=D(�), we have

〈
�u1,u2

〉
H1
= c2

1

〈
z1,u2

〉
H1+

〈−(c2
1A+α

)
u1+αv1,z2

〉
H0+c2

2

〈
w1,v2

〉
H1

+〈αu1−
(
c2

2A+α
)
v1,w2

〉
H0+

〈
α
(
u1−v1

)
,
(
u2−v2

)〉
H0

=−c2
1

〈
u1,z2

〉
H1+

〈
z1,c2

1Au2
〉
H0+α

〈(
v1−u1

)
,z2
〉
H0

+〈w1,c2
2Av2

〉
H0+α

〈(
u1−v1

)
,w2

〉
H0−c2

2

〈
v1,w2

〉
H1

+α〈z1,
(
u2−v2

)〉
H0+α

〈
w1,

(
u2−v2

)〉
H0

= 〈u1,−�u2
〉

�1
.

(2.9)

This implies that D(−�) ⊂ D(�∗) and �∗|D(−�) = −�. In [7], we can verify that

D(�∗)⊂D(−�)=D(A). Hence, D(�)=D(−�∗).
(b) The compactness of �−1 follows from the Sobolev embedding theorem.

(c) Since � is a closed linear operator with dense domain in �1, and

〈�X,X〉�1+〈X,�X〉�1 = 0 ∀X ∈D(�),
〈�∗X,X〉�1+〈X,�∗X〉�1 = 0 ∀X ∈D(�), (2.10)

then, by [1, Corollary 4.3.1], � generates C0-semigroup that preserves norms, and that

ends to the proof of Lemma 2.1.

Now, let Ã = �+B with domain D(Ã) = D(�) ⊂ �1. By [10, Theorem 1.1], since

B is a bounded linear operator in �1, and by Lemma 2.1, we can pose the following

theorem which furnishes the well-posedness of the problem.

Theorem 2.2. The operator Ã is the infinitesimal generator of a C0-semigroup S̃(t).

Equation (2.4) without operator B is said to be energy-conserving if it satisfies

∥∥Ŝ(t)X0

∥∥= ∥∥X0

∥∥, ∀X0 ∈�1, t ≥ 0. (2.11)

Wave propagation, quantum phenomenon, and mechanical vibration are the exam-

ples of this type. Usually energy dissipation comes into account when there exists

a medium impurity, distributed on boundary frictions, small viscous effects, and so

forth. These factors cannot be ignored, therefore we must incorporate them into (2.4).

Hence, BX(·, t) is the perturbing term which satisfies energy dissipation which causes
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the energy of the system to decay, that is, in structural dynamics, viscous damping ma-

terial suppresses the vibration. Hence, (2.4) with B describes stabilization problems.

From Theorem 2.2, Ã is a dissipative operator and that generates a C0-semigroup

of contractions S̃(t): ∥∥S̃(t)∥∥≤ 1, ∀t ≥ 0. (2.12)

Now, the question is: does the uniformly exponentially decay happen? That is, there

are ω> 0, K ≥ 1 such that ∥∥S̃(t)∥∥≤Ke−ωt. (2.13)

This is a stabilization problem and implies that all the eigenmodes should be damped

out uniformly at some rate ω. We end this section with pointing out the follow-

ing assumptions which are the sufficient conditions for exponential decay [3]. These

assumptions are formulated in terms of the influence of the operator B on the sepa-

rated eigenmodes or clustered eigenmodes of �.

Suppose in (2.4) we have

(A1) �∗ = −�.

(A2) � has a compact resolvent R(λ;�) = (λI−�)−1 for some λ ∈ C (hence for all

λ in the resolvent set of �), that is, Ker�= {0}.
(A1) and (A2) imply that � has a complete orthonormal set of eigenfunctions (eigen-

vectors) with corresponding eigenvalues iλ’s.

(A3) The spectrum of � satisfies the gap property

inf
{|λj−λk| : j,k= 1,2,3, . . . , j ≠ k

}= γ > 0. (2.14)

From (2.14) we can conclude that the spectrum of � in one space dimension, under the

compact resolvent condition (A2), consists of a discrete spectrum which is separated

by a steady gap, that is, γ.

(A4) The bounded linear operator B is dissipative:

Re〈BX,X〉 ≤ 0, ∀X ∈�1. (2.15)

(A1) and (A4) lead to the dissipativeness of operator Ã. These assumptions along with

(A3) imply that Ã has compact resolvents by the following corollary [7].

Corollary 2.3. Let (�) be skew-adjoint and �−1 be compact. Let B be a bounded

linear operator, then there exists at least λ ∈ C which is not an eigenvalue of Ã, and

(Ã−λI)−1 exists and is compact.

Note that by Lumer-Phillips theorem [10], Ã generates a C0-contraction semigroup

S̃(t)= eÃt (also by Theorem 2.2).

(A5) If any sequence {xn ∈�1 :n= 1,2, . . .} satisfies

lim
n→∞Re

〈
Bxn,xn

〉= 0, (2.16)

then

lim
n→∞Bxn = 0. (2.17)
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(A6) There exists δ > 0 such that ‖Bψ‖ ≥ δ for any unit eigenvectorψ of �; that is,

‖ψ‖ = 1, �ψ= iλnψ for some n. (2.18)

Note that (A1)–(A3) deal with the operator � which is unperturbed. And, (A1)–(A6) are

concerned only with damping perturbation operator B.

Main theorem 2.4 (see [3]). Under assumptions (A1)–(A6) property (2.13) holds.

3. Exponential stability (frequency domain method). Uniform exponential decay

of system (1.1) with (1.3) in R1, which is the main course of this paper, is under

consideration. To do this, we pose the following theorem.

Theorem 3.1. Let Ω = {x | x ∈ (0,1)} and α(x) and β(x) > β0 be positive qual-

ities, bounded and continuous over the subinterval I ⊂ (0,1), then the solution of the

following system:

utt−c2
1uxx =α(v−u)+β

(
vt−ut

)
, 0<x < 1,

vtt−c2
1vxx =α(u−v)+β

(
ut−vt

)
, 0<x < 1,

(3.1)

with the initial conditions

u(0)=u0, ut(0)=u1, v(0)= v0, vt(0)= v1, (3.2)

along with boundary conditions

u(0, t)= 0, ux(1, t)= 0, v(0, t)= 0, v(1, t)= 0, t > 0 (3.3)

will be uniformly exponential decay.

Proof. This theorem is the direct application of Theorem 2.4. The underlying

Hilbert space is

�1 =
{
U1 ∈H1(0,1)×L2(0,1)×H1(0,1)×L2(0,1) |u0(0)= v0(0)= 0

}
, (3.4)

where Hm(0,1) is the standard Sobolev space of order m. The inner product is de-

fined by

〈
U1,U2

〉
�1
=
∫ 1

0

{
c2

1u
′
0w̄

′
0+u1w̄1+c2

2v
′
0z̄
′
1+v1z̄1+α

(
u0−v0

)(
w̄0− z̄0

)}
dx, (3.5)

where

U1 =
(
u0,u1,v0,v1

)T , U2 =
(
w0,w1,z0,z1

)T . (3.6)

Without loss of generality, assume that c1 = c2 = 1, and α= β= 1. Define (see [9])

Â=




0 1 0 0

∂2
x−1 0 1 0

0 0 0 1

1 0 ∂2
x−1 0


 , B =




0 0 0 0

0 −1 0 1

0 0 0 0

0 1 0 −1


 . (3.7)
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Then Â has a complete orthonormal set of eigenfunctions:

Φn = 1
‖Φn‖�1

(
u0, iλu0,v0, iλv0

)T , (3.8)

where in [9], we have found

u0 =
(

sinax
a

+ sinbx
b

)
K2+

(
sinax
a

− sinbx
b

)
K4,

v0 =
(

sinax
a

− sinbx
b

)
K2+

(
sinax
a

+ sinbx
b

)
K4.

(3.9)

To find corresponding eigenvalues, we should apply the right end boundary condi-

tions (3.3). One can get the following homogeneous equations:


cosa+cosb cosa−cosb

sina
a

− sinb
b

sina
a

+ sinb
b



[
K2

K4

]
= 0. (3.10)

The homogeneous system (3.10) can give nonzero values for the unknown coefficients

Ki, i = 2,4, only provided that the determinant of the matrix on the left side is zero.

This leads to the following condition:

h cosasinb+cosbsina= 0, (3.11)

where

a= λ, b =
√
λ2−2, h= a

b
. (3.12)

Equation (3.11) is the frequency equation, and will lead to an infinite number of values

for λ (eigenvalues). Corresponding to each value of λ, a solution can be obtained for

eigenfunction, by substituting for λ in (3.10), solving those equations for coefficients

Ki, i = 2,4, and substituting the resulting values of Ki, i = 2,4, in (3.9). So, we have

from (3.10)

K2 = tan
1
2
(a+b)tan

1
2
(a−b)K4. (3.13)

Substitute (3.13) into (3.9) for K2, one can obtain the following eigenfunctions defined

in (3.8):

u0 =K4

{
tan

1
2
(a+b)tan

1
2
(a−b)

(
sinax
a

+ sinbx
b

)
+
(

sinax
a

+ sinbx
b

)}
,

v0 =K4

{
tan

1
2
(a+b)tan

1
2
(a−b)

(
sinax
a

− sinbx
b

)
+
(

sinax
a

+ sinbx
b

)}
.

(3.14)

The completion proof of Theorem 3.1. Now, we utilize the assumptions of

Theorem 2.4.

(A1) and (A2) are satisfied by the Lemma 2.1. (A3) (gap properties) can be reached

from (3.10). (A4) the bounded linear operator B is dissipative, since

Re
〈
BU1,U1

〉=−
∫ 1

0
β(x)|u1−v1|2dx ≤ 0, (3.15)

where from [9], we have

u1 = (cosax+cosbx)K2+(cosax−cosbx)K4,

v1 = (cosax−cosbx)K2+(cosax+cosbx)K4.
(3.16)

(A5) can be verified easily.
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(A6) There exists δ > 0 such that ‖Bψ‖ ≥ δ for any unit eigenvector ψ of Â (i.e.,

‖ψ‖ = 1, �ψ= iλnψ, for some n). From (3.7), (3.8), and (3.9), we have

‖BΦn‖2
�1
= 〈BΦn,BΦn〉�1 =

8λ2
n

b2

(
K2−K4

)2
∫ 1

0
β(x)2 sin2(bx)dx. (3.17)

Equation (3.13) raises a very serious question: what are the values of K2 and K4 for

large n? Because, if K2 =K4, according to the following corollary, we do not have the

uniform exponential decay for (1.1).

Corollary 3.2 (see [3]). Let Â and B satisfy the assumptions (A1)–(A5). In addition,

suppose that there exists a sequence of unit eigenvectors of Â,{ψn | n= 1,2, . . .}, each

member of which corresponds to an eigenvalue iλn, such that ‖Bψn‖ → 0 as n→∞.

Then the uniform exponential decay property (2.13) fails.

To answer this question, we should look back to (3.17) and find out the behaviour

of K2 and K4 for large λ. To do this, substitute (3.13) into (3.17) for K2, and let λ→∞.

Finally, we can derive ‖BΦn‖2
�1
≥ 4β2

0K
2
4 = δ2 > 0, which leads us to the completion of

the proof of Theorem 3.1.

4. Strongly decay (spectral method). Separation of variables is extremely valuable

when there are time derivatives. It is also extremely direct, because the part involving

time is only an exponential. For the heat equation it is a decay e−λt , and for the wave

equation it is an oscillation e−iωt . The key is to find the eigenvectors. They solve the

time-dependent problem by combining with e−λt or eiωt into pure exponential solu-

tions. For partial differential equations they are eigenfunctions. That is the step from

matrices to derivatives, which takes us directly to the fundamental equation (1.1).

The terms, ∂2(·)/∂x2 has negative eigenvalues (∂2/∂x2)(e2πikx)=−(2πk)2e2πikx for

a periodic case, and (∂2/∂x2)(sinπkx)=−(πk)2 sin(πkx) for zero boundary condi-

tions. The separated solutions a(t)φ(x) can be written down immediately. The heat

equation has decaying solutions e−λtφ; the wave equation has oscillating solutions

eiωtφ and e−iωtφ. The eigenvalues −λ=−ω2 with the eigenfunctions φ-one for each

frequency k. The solutions to wave equations are combinations of these exponential

solutions. For example,

u=
∑(

ckeiωkt+dke−iωkt
)
φk(x). (4.1)

To solve (1.3) with (1.4) we assume that the solutions can be written as a sum of

complete sets of eigenfunctions on 0≤ x ≤ 1, namely

u=
∑
ak(t)sinkπx, v =

∑
bk(t)sinkπx. (4.2)

What is unique about this approach is that it may be generalized so that any infi-

nite series of smooth and, preferably, orthogonal functions may be used to eliminate

the physical space variable from the problem and reduce the solutions of the par-

tial differential equations to the solution of a set of ordinary differential equations

in the other independent variable, that is, time. Because of its close association with

the Fourier series, the expansion coefficients are referred to as a spectra and this ap-

proach is called the spectral method. Now, we introduce (4.2) into (3.1) for u and v .

One can get the following system of the linear, second-order, homogeneous ordinary
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differential equations in a(t) and b(t):

äk =−
(
c1πk

)2ak+α
(
bk−ak

)+β(ḃk− ȧk),
b̈k =−

(
c2πk

)2bk+α
(
ak−bk

)+β(ḃk− ȧk). (4.3)

A general solution of (4.3) depends upon the magnitude of k. System (4.3) can be

written as system of a first-order ordinary differential equations:

χ̇ = Āχ, (4.4)

where χ = (a,ȧ,b, ḃ)T , and let

Π1 =−
[(
c1πK

)2+α
]
, Π2 =−

[(
c2πK

)2+α
]
, (4.5)

then

Ā=




0 1 0 0

Π1 −β α β

0 0 0 1

α β Π2 −β



. (4.6)

The characteristic polynomial of the matrix Ā is

P(λ)= det(Ā−λI)= λ4+2λ3+(a1+a2+2
)
λ2+(a1+a2

)
λ+a1a2+a1+a2, (4.7)

where a1 = (c1πK)2, and a2 = (c2πK)2. Here, α = β = 1. Solve (4.7) for λ and study

the behaviour of eigenvalues (λ) for large K. Now, we pose the following theorem

which is the essence of this section.

Theorem 4.1. System (1.1) with (1.4) (i) is not uniformly stable if c1 = c2, and (ii) is

strongly stable if c1 ≠ c2.

Proof of (i). Consider the characteristic polynomial (4.7), and let the wave speeds

be c1 = c2 = 1 and a= a1 = a2, then one can have

λ4+2λ3+2(a+1)λ2+2aλ+a2+2a= 0. (4.8)

Now, we produce the Roth’s tabulation (see the appendix)

λ4 1 2(a+1) a2+2a
λ3 2 2a 0

λ2 a+2 a2+2a
λ1 0 0

(4.9)

Since a row of zeros appears, we form the auxiliary equation using the coefficients of

the λ2 row. The auxiliary equation is

F(λ)= (a+2)λ2+a2+2a= λ2+a= 0, (4.10)

from which
dF(λ)
dλ

= 2λ= 0, (4.11)
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from which the coefficients 2 and 0 replace the zeros in the λ1 row of the original

tabulation. The remaining portion of the Roth’s tabulation is

λ1 2 0

λ0 a2+2a
(4.12)

Since there are no sign changes in the first column of Roth’s tabulation, equation

(4.8) does not have any root in the right-half complex-plane. Solving (4.10), we find

λ=±ia1/2 =±i(cπK), which are also the roots of (4.10). Since the equation has roots

on the iω-axis (imaginary axis) for each K, the system is not uniformly stable.

Proof of (ii). We are trying to show the asymptotic behavior of the solutions when

c1 ≠ c2. Consider the characteristic (4.7),

P(λ)= λ4+2λ3+(a1+a2+2
)
λ2+(a1+a2

)
λ+a1a2+a1+a2. (4.13)

Equation (4.13) can be factored to

P(λ)= (λ2+xλ+a1−z+1
)(
λ2+yλ+a2+z+1

)
, (4.14)

in which x,y , and z can be found from the following system of equations:

x+y = 2, x
(
a1−z+1

)+y(a2+z+1
)= a1+a2,(

a1−z+1
)(
a2+z+1

)= a1a2+a1+a2.
(4.15)

Solve system (4.15) for z,x,y , one can find the following solution set:{
z = 1

2

[(
a1−a2

)±((a1−a2
)2+4

)1/2
]
, x = 1+ 2

a1−a2−2z
, y = 2−x

}
. (4.16)

We see that every eigenvalue of the matrix Ā has −1/2 as real part, and

lim
K→∞

x = 1. (4.17)

Thus,x �y � 1 asK→∞. This implies that if c1 ≠ c2, we could find a sequence of solu-

tions to the system (1.1) with boundary condition (1.4) which approaches equilibrium

state strongly as time increases. This implies that the system is strongly stable.

5. Numerical confirmation. Having considered Theorem 4.1, we solve character-

istic equation (4.7) in order to study the behavior of eigenvalues of the system (1.1)

with (1.4) for large λ. Figures 5.1(a), 5.1(b), 5.1(c), and 5.1(d) in Part A show, when

c1 ≠ c2, that as λ→∞, the real part of complex roots of (4.14) approaches −1/2 (see

Figure 5.1(a)). Consequently, the system is asymptotically stable; that is, the energy of

the system, equation (1.7), goes to zero (see Figure 5.1(d)), and the displacements u
and v approach equilibrium state as t →∞. To observe this, we solved system (3.1),

for α = β = 1, numerically using finite difference method [11] and the solutions are

plotted in Figures 5.1(b) and 5.1(c) for u and v , respectively. In Figures 5.1(e), 5.1(f),

5.1(g), and 5.1(h) Part B, when c1 = c2, the sequence of eigenvalues are approaching−1

and 0 for all values of k (see Figure 5.1(e)). This implies that the energy of the system

never gets settled since the system is conservative (see Figure 5.1(h)). Consequently,

the solutions u and v do not go to the state of rest (see Figures 5.1(f) and 5.1(g)).
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Figure 5.1. Numerical solutions to the system (1.1) with Dirichlet boundary
conditions (1.4).
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Appendix

A.1. Routh-Hurwitz criterion. The Routh-Hurwitz criterion represents a method

of determining the location of zeros of a polynomial with constant real coefficient

with respect to the left-half and the right-half of the complex-plane, without actually

solving for the zeros. Consider the following characteristic equation (with all real

coefficients) of a linear time-invariant system

P(λ)= a0λn+a1λn−1+a2λn−2+···+an−1λ+an = 0. (A.1)

In order that (A.1) does not have roots with positive real parts, it is necessary that the

following conditions holds:

(i) All the coefficient of the (A.1) have the same sign.

(ii) None of the coefficients vanishes.

The above requirements are based on the laws of algebra, which relate the coefficient

of (A.1).

A.2. The Hurwitz criterion. See [8].

Theorem A.1 (Hurwits determinants). The necessary and sufficient condition that

all roots of (A.1) lie in the left-half of the complex-plane is that the equation’s Hurwitz

determinants, Dk k = 1,2, . . . ,n, must be positive. The Hurwitz determinants of (A.1)

are given by

D1 = a1, D2 =
[
a1 a3

a0 a2

]
, D3 =



a1 a3 a5

a0 a2 a4

0 a1 a3


 ,

Dn =



a1 a3 ··· a2n−1

a0 a2 ··· a2n−2

0 a1 ··· a2n−3

0 0 0 an


 ,

(A.2)

where the coefficients with indices larger than n or with negative indices are replaced

with zeros. Routh simplified the process by introducing a tabulation method in place of

the Hurwitz determinants, see proof of Theorem 4.1(i) and also in [8].

A.3. Special case. The following difficulty may occur that prevent Routh’s tabula-

tion from completing properly.

The elements in one row of Routh’s tabulation are all zero. In this situation, one

can use the auxiliary equation F(λ) = 0. This equation is always an even polynomial,

and the roots are also the roots of the original equation. In order to continue Routh’s

tabulation when this case happen, the following steps are needed:

(S1) From F(λ) = 0 by use of the coefficients from the row one before the row of

zeros.

(S2) Set dF(λ)/dλ= 0 (the derivative F(λ) with respect to λ).

(S3) Replace the row of zeros with the coefficient of dF(λ)/dλ= 0.

(S4) Continue with Routh’s tabulation in the usual manner with this row.
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(S5) Check the signs of the first column of Routh’s tabulation which contains infor-

mation on the roots of the equation. The roots of the equation are all in the half of

the complex-plane if all the elements of this column are of the same sign.
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