
IJMMS 28:7 (2001) 427–432
PII. S0161171201006755

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

STATIONARY POINTS FOR SET-VALUED
MAPPINGS ON TWO METRIC SPACES

ZEQING LIU, QINGTAO LIU, and SHIN MIN KANG

(Received 16 February 2001)

Abstract. We give stationary point theorems of set-valued mappings in complete and
compact metric spaces. The results in this note generalize a few results due to Fisher.
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1. Introduction and preliminaries. In [2, 4], Fisher and Popa proved fixed point

theorems for single-valued mappings on two metric spaces. The purpose of this note

is to generalize these results from single-valued mappings into set-valued mappings.

In this note, we show stationary point results of set-valued mappings in complete and

compact metric spaces.

Let (X,d) and (Y ,ρ) be complete metric spaces and B(X) and B(Y) be two families

of all nonempty bounded subsets of X and Y , respectively. The function δ(A,B) with

A and B in B(X) is defined as follows:

δ(A,B)= sup
{
d(a,b) : a∈A, b ∈ B}. (1.1)

Define δ(A)= δ(A,A). Similarly, the function δ′(C,D)with C andD in B(Y) is defined

as follows:

δ′(C,D)= sup
{
ρ(c,d) : c ∈ C, d∈D}. (1.2)

A sequence of sets in B(X), {An :n= 1,2, . . .} converges to the set A in B(X) if

(i) each point a in A is the limit of some convergent sequence {an ∈ An : n =
1,2, . . .};

(ii) for arbitrary ε > 0, there exists an integerN such thatAn ⊂Aε, forn>N , where

Aε is the union of all open spheres with centers in A and radius ε.
Let T be a set-valued mapping ofX into B(X). z is a stationary point of T if Tz = {z}.

T is continuous at x in X if whenever {xn} is a sequence of points in X converging

to x, the sequence {Txn} in B(X) converges to Tx in B(X). If T is continuous at each

point x in X, then T is a continuous mapping of X into B(X).
The following Lemmas 1.1 and 1.2 were proved in [1, 3], respectively.

Lemma 1.1. If {An} and {Bn} are sequences of bounded subsets of a complete metric

space (X,d) which converge to the bounded subsets A and B, respectively, then the

sequence {δ(An,Bn)} converges to δ(A,B).

Lemma 1.2. Let {An} be a sequence of nonempty subsets of X and let x be a point

of X such that limn→∞δ(An,x)= 0. Then the sequence {An} converges to the set {x}.
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2. Stationary point results. Now we prove the following theorem for set-valued

mappings.

Theorem 2.1. Let (X,d) and (Y ,ρ) be complete metric spaces. If T is a continuous

mapping of X into B(Y) and S is a continuous mapping of Y into B(X) satisfying

the inequalities

δ(STx,STy)≤ cmax
{
δ(x,y),δ(x,STx),δ(y,STy),δ′(Tx,Ty)

}
, (2.1)

δ′
(
TSx′,TSy ′

)≤ cmax
{
δ′
(
x′,y ′

)
,δ′
(
x′,TSx′

)
,δ′
(
y ′,TSy ′

)
,δ
(
Sx′,Sy ′

)}
, (2.2)

for all x,y in X and x′,y ′ in Y , where 0 ≤ c < 1, then ST has a stationary point z in

X and TS has a stationary point w in Y . Further Tz = {w} and Sw = {z}.

Proof. From (2.1) and (2.2), it is easy to see that

δ(STA,STB)≤ cmax
{
δ(A,B),δ(A,STA),δ(B,STB),δ′(TA,TB)

}
,

δ′
(
TSA′,TSB′

)≤ cmax
{
δ′
(
A′,B′

)
,δ′
(
A′,TSA′

)
,δ′
(
B′,TSB′

)
,δ
(
SA′,SB′

)}
,

(2.3)

for all A,B in B(X) and A′,B′ in B(Y).
Let x be an arbitrary point in X. Define sequences {xn} and {yn} in B(X) and B(Y),

respectively, by choosing a pointxn in (ST)nx =Xn and a pointyn in T(ST)n−1x = Yn
for n= 1,2, . . . . From (2.3) we have

δ
(
Xn,Xn+1

)= δ(STXn−1,STXn
)

≤ cmax
{
δ
(
Xn−1,Xn

)
,δ
(
Xn−1,Xn

)
,δ
(
Xn,Xn+1

)
,δ′
(
Yn,Yn+1

)}

≤ cmax
{
δ
(
Xn−1,Xn

)
,δ′
(
Yn,Yn+1

)}
.

(2.4)

Similarly,

δ′
(
Yn,Yn+1

)≤ cmax
{
δ′
(
Yn−1,Yn

)
,δ
(
Xn−1,Xn

)}
. (2.5)

PutM =max{δ(x,X1),δ′(Y1,Y2)}. From the above inequalities, we obtain immediately

δ
(
Xn,Xn+1

)≤ cnM, δ′
(
Yn,Yn+1

)≤ cnM, (2.6)

for n≥ 1. It follows from (2.2) that

δ
(
Xn,Xn+r

)≤ δ(Xn,Xn+1
)+···+δ(Xn+r−1,Xn+r

)

≤ (cn+···+cn+r−1)M ≤ cn

1−cM.
(2.7)

Since c < 1, then δ(Xn,Xn+r )→ 0 as n→∞. So

d
(
xn,xn+r

)≤ δ(Xn,Xn+r
)
�→ 0 as n �→∞. (2.8)

Thus {xn} is a Cauchy sequence. Completeness of X implies that there exists z in X
such that xn→ z as n→∞. It follows that

δ
(
z,Xn

)≤ δ(z,xn
)+δ(xn,Xn

)

≤ δ(z,xn
)+δ(Xn,Xn

)

≤ δ(z,xn
)+2δ

(
Xn,Xn+1

)
,

(2.9)
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which implies that δ(z,Xn) → 0 as n → ∞. Similarly, there exists w in Y such that

yn→w and δ′(w,Yn)→ 0 as n→∞. Then

δ′
(
w,Txn

)≤ δ′(w,TXn
)= δ′(w,Yn+1

)
. (2.10)

By the continuity of T and Lemma 1.1, we have δ′(w,Tz) → 0 as n → ∞. From

Lemma 1.2 it follows that Tz = {w}. Note that

δ
(
STz,xn

)≤ δ(STz,Xn
)

≤ cmax
{
δ
(
z,Xn−1

)
,δ(z,STz),δ

(
Xn−1,Xn

)
,δ′
(
Tz,TXn−1

)}
.

(2.11)

Letting n tend to infinity, we have

δ(STz,z)≤ cmax
{
δ(STz,z),0

}
, (2.12)

which implies that STz = {z} = Sw. Similarly, we can show that w is a stationary

point of TS. This completes the proof of the theorem.

Theorem 2.2. Let (X,d) be a complete metric space, and let S and T be continuous

mappings of X into B(X) and map bounded set into bounded set. If S and T satisfy the

inequalities

δ(STx,STy)≤ cmax
{
δ(x,y),δ(x,STx),δ(y,STy),

δ(x,STy),δ(y,STx),δ(Tx,Ty)
}
,

(2.13)

δ(TSx,TSy)≤ cmax
{
δ(x,y),δ(x,TSx),δ(y,TSy),

δ(x,TSy),δ(y,TSx),δ(Sx,Sy)
}
,

(2.14)

for all x,y in X, where 0 ≤ c < 1, then ST has a stationary point z and TS has a

stationary point w. Further Tz = {w} and Sw = {z}. If z = w, then z is the unique

common stationary point of S and T .

Proof. Let x be an arbitrary point in X. Define a sequence of sets {Xn} by

T(ST)n−1x =X2n−1, (ST)nx =X2n for n≥ 1 and X0 = {x}.
Now suppose that {δ(Xn)} is unbounded. Then the real-valued sequence {an} is

unbounded, wherea2n−1 = δ(X2n−1,X3),a2n = δ(X2n,X2) forn≥ 1 and so there exists

an integer k such that

ak >
c

1−c max
{
δ
(
x,X2

)
,δ
(
X1,X3

)}
, (2.15)

ak >max
{
a1, . . . ,ak−1

}
. (2.16)

Suppose that k is even. Put k= 2n. From (2.15) and (2.16) we have

cδ
(
X2r ,x

)≤ c[δ(X2r ,X2
)+δ(X2,x

)]
< δ

(
X2n,X2

)
,

cδ
(
X2r−1,X1

)≤ c[δ(X2r−1,X3
)+δ(X3,X1

)
< δ

(
X2n,X2

)]
.

(2.17)

That is,

δ
(
X2n,X2

)
> cmax

{
δ
(
X2r ,x

)
,δ
(
X2r−1,X1

)
: 1≤ r ≤n}. (2.18)
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We now prove that the following inequality is true for m≥ 1:

δ
(
X2n,X2

)≤ cmmax
{
δ
(
X2r ,X2s

)
,δ
(
X2r ′−1,X2s′−1

)
: 1≤ r , s ≤n, 2≤ r ′, s′ ≤n}.

(2.19)

From (2.13) we have

δ
(
X2n,X2

)= δ(STX2n−2,STx
)

≤ cmax
{
δ
(
X2n−2,x

)
,δ
(
X2n−2,X2n

)
,δ
(
x,X2

)
,

δ
(
x,X2n

)
,δ
(
X2n−2,X2

)
,δ
(
X2n−1,X1

)}
.

(2.20)

It follows from (2.16) and (2.18) that

δ
(
X2n,X2

)≤ cδ(X2n−2,X2n
)
. (2.21)

Now suppose that (2.19) is true for some m. From (2.13), (2.14), (2.16), and (2.18)

we have

δ
(
X2n,X2

)≤ cmmax
{
δ
(
X2r ,X2s

)
,δ
(
X2r ′−1,X2s′−1

)
: 1≤ r , s ≤n, 2≤ r ′, s′ ≤n}

≤ cm+1 max
{
δ
(
X2r−2,X2s−2

)
,δ
(
X2r−2,X2r

)
,δ
(
X2s−2,X2s

)
,

δ
(
X2r−2,X2s

)
,δ
(
X2s−2,X2r

)
,δ
(
X2r−1,X2s−1

)
,

δ
(
X2r ′−3,X2s′−3

)
,δ
(
X2r ′−3,X2r ′−1

)
,

δ
(
X2s′−3,X2s′−1

)
: 1≤ r , s ≤n, 2≤ r ′, s′ ≤n}

≤ cm+1 max
{
δ
(
X2r ,X2s

)
,δ
(
X2r ′−1,X2s′−1

)
: 1≤ r , s ≤n, 2≤ r ′, s′ ≤n}.

(2.22)

So (2.19) is true for all m ≥ 1. Letting m tend to infinity, from (2.16) and (2.18) we

have 0< δ(X2n,X2)≤ 0, which is impossible. Similarly, when k is odd, 2n−1, say, we

also have 0< δ(X2n−1,X3)≤ 0, which is also impossible. Hence {δ(Xn)} is bounded.

Let M = sup{δ(Xr ,Xs) : r , s = 0,1,2, . . .}<∞. For arbitrary ε > 0, choose a positive

integer N such that cNM < ε. Thus for m,n greater than 2N with m and n both even

or both odd, from (2.13) and (2.14) we have

δ
(
Xm,Xn

)≤ cmax
{
δ
(
Xm−2,Xn−2

)
,δ
(
Xm−2,Xm

)
,δ
(
Xn−2,Xn

)
,

δ
(
Xm−2,Xn

)
,δ
(
Xn−2,Xm

)
,δ
(
Xm−1,Xn−1

)}

≤ cmax
{
δ
(
Xr ,Xs

)
,δ
(
Xr ,Xr ′

)
,δ
(
Xs,Xs′

)
:

m−2≤ r , r ′ ≤m, n−2≤ s, s′ ≤n}

≤ cN max
{
δ
(
Xr ,Xs

)
,δ
(
Xr ,Xr ′

)
,δ
(
Xs,Xs′

)
:

m−2N ≤ r , r ′ ≤m, n−2N ≤ s, s′ ≤n}

≤ cNM < ε.

(2.23)

So δ(X2n) and δ(X2n+1) → 0 as n → ∞. Take a point xn in Xn for n ≥ 1. Since

d(x2n,x2n+2p) ≤ δ(X2n,X2n+2p) → 0 as n → ∞, hence {x2n} is a Cauchy sequence.

Completeness of X implies that {x2n} has a limit z in X. Note that

δ
(
z,X2n

)≤ δ(z,x2n
)+δ(x2n,X2n

)≤ δ(z,x2n
)+δ(X2n

)
. (2.24)
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That is, δ(z,X2n) → 0 as n → ∞. Similarly {x2n+1} converges to some point w in X
and δ(w,X2n+1) → 0 as n → ∞. Since δ(w,TX2n) = δ(w,X2n+1), by the continuity

of T and Lemma 1.1, we have δ(w,Tz)→ 0 as n→∞. From Lemma 1.2 it follows that

Tz = {w}. In view of (2.13), we obtain that

δ
(
STz,x2n

)≤ δ(STz,X2n
)

≤ cmax
{
δ
(
z,X2n−2

)
,δ(z,STz),δ

(
X2n−2,X2n

)
,

δ
(
z,X2n

)
,δ
(
X2n−2,STz

)
,δ
(
Tz,X2n−1

)}
,

(2.25)

which implies that

δ(STz,z)≤ cmax
{
δ(z,STz),0

}
(2.26)

asn→∞. Since c < 1, δ(STz,z)= 0. Therefore STz = {z} = Sw and TSw = Tz = {w}.
Now suppose that z =w and that z′ is the second common stationary point of S

and T . Using (2.1)

δ
(
z,z′

)= δ(STz,STz′)

≤ cmax
{
δ
(
z,z′

)
,δ(z,STz),δ

(
z′,STz′

)
,

δ
(
z′,STz

)
,δ
(
z,STz′

)
,δ
(
Tz,Tz′

)}

≤ cδ(z,z′).

(2.27)

So z = z′ and this completes the proof of the theorem.

Remark 2.3. If we use single-valued mappings in place of set-valued mappings in

Theorems 2.1 and 2.2, Theorems 2 and 3 of Fisher [2] can be attained.

Remark 2.4. The following example demonstrates that the continuity of S and T
in Theorems 2.1 and 2.2 is necessary.

Example 2.5. Let X = {0}∪{1/n : n ≥ 1} = Y with the usual metric. Define map-

pings S,T by T0= {1}, T(1/n)= {1/2n} for n≥ 1 and S = T . It is easy to prove that

all the conditions of Theorems 2.1 and 2.2 are satisfied except that the mappings S
and T are continuous. But ST and TS have no stationary points.

Now we give the following theorem for the compact metric spaces.

Theorem 2.6. Let (X,d) and (Y ,ρ) be compact metric spaces. If T is a continuous

mapping of X into B(Y) and S is a continuous mapping of Y into B(X) satisfying the

following inequalities:

δ(STx,STy) <max
{
δ(x,y),δ(x,STx),δ(y,STy),δ′(Tx,Ty)

}
, (2.28)

δ′
(
TSx′,TSy ′

)
<max

{
δ′
(
x′,y ′

)
,δ′
(
x′,TSx′

)
,δ′
(
y ′,TSy ′

)
,δ
(
Sx′,Sy ′

)}
, (2.29)

for all distinct x,y in X and distinct x′,y ′ in Y , then ST has a stationary point z and

TS has a stationary point w. Further Tz = {w} and Sw = {z}.

Proof. Suppose that the right-hand sides of inequalities (2.28) and (2.29) are pos-

itive for all distinct x,y in X and distinct x′,y ′ in Y . Define the real-valued function
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f(x,y) in X×X as follows:

f(x,y)= δ(STx,STy)
max

{
δ(x,y),δ(x,STx),δ(y,STy),δ′(Tx,Ty)

} . (2.30)

Since S and T are continuous, f is continuous and achieves the maximum value s on

the compact metric space X×X. Inequality (2.28) implies s < 1. That is,

δ(STx,STy)≤ smax
{
δ(x,y),δ(x,STx),δ(y,STy),δ′(Tx,Ty)

}
(2.31)

for all distinct x,y in X. It is obvious that (2.31) is also true for x =y . Similarly, there

exists t < 1 such that

δ′
(
TSx′,TSy ′

)≤ tmax
{
δ′
(
x′,y ′

)
,δ′
(
x′,TSx′

)
,δ′
(
y ′,TSy ′

)
,δ
(
Sx′,Sy ′

)}
(2.32)

for all x′,y ′ in Y . So Theorem 2.6 follows immediately from Theorem 2.1.

Now suppose that there exist z,z′ in X such that

max
{
δ
(
z,z′

)
,δ(z,STz),δ

(
z′,STz′

)
,δ′
(
Tz,Tz′

)}= 0, (2.33)

which implies {z} = {z′} = STz and Tz = Tz′, a singleton, {w}, say. Therefore we

have STz = sw = {z},TSw = Tz = {w}. If there exist w,w′ in Y such that

max
{
δ′
(
w,w′),δ′(w,TSw),δ′

(
w′,TSw′),δ

(
Sw,Sw′)}= 0. (2.34)

Similarly, we also have STz = Sw = {z} and TSw = Tz = {w}. This completes the

proof of the theorem.

Remark 2.7. Theorem 4 of Fisher [2] is a particular case of our Theorem 2.6 if the

set-valued mappings in Theorem 2.6 are replaced by single-valued mappings.
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