PROPERTIES OF THE FUNCTION $f(x)=x / \pi(x)$

PANAYIOTIS VLAMOS

(Received 21 August 2000)

Abstract

We obtain the asymptotic estimations for $\sum_{k=2}^{n} f(k)$ and $\sum_{k=2}^{n} 1 / f(k)$, where $f(k)=k / \pi(k), k \geq 2$. We study the expression $2 f(x+y)-f(x)-f(y)$ for integers $x, y \geq$ 2 and as an application we make several remarks in connection with the conjecture of Hardy and Littlewood.

2000 Mathematics Subject Classification. 11N05, 11A25.

1. Introduction. We denote by $\pi(x)$ the number of all prime numbers $\leq x$. We denote also $f(x)=x / \pi(x)$ for $x \geq 2$. Since $\pi(x) \sim x / \log x$, it follows that $f(x) \sim$ $\log x$. We could expect that the function $f(x)$ behaves like $\log x$. However, we will see that $\log x$ possesses several properties that $f(x)$ does not possess.

Indeed, the function $\log x$ is increasing and concave, while $f(x)$ does not have these properties. Denoting by p_{n} the nth prime number, we remark that $f\left(p_{n}\right)-f\left(p_{n}-1\right)=$ $p_{n} / n-\left(p_{n}-1\right) /(n-1)=\left(n-p_{n}\right) / n(n-1)<0$, so the function f is not increasing.

As shown also in [3], the function f is not concave because for $x_{1}=p_{n}-1$ and $x_{2}=p_{n}+1$ it follows that $f\left(x_{1}\right)+f\left(x_{2}\right) \geq 2 f\left(\left(x_{1}+x_{2}\right) / 2\right)$. The following fact was proved in [1]:

$$
\begin{equation*}
f(a x)+f(b x)<2 f\left(\frac{a+b}{2} \cdot x\right) \tag{1.1}
\end{equation*}
$$

for $a, b>0$ and x sufficiently large.
A property of the function log is given by Stirling's formula asserting that $n!\sim n^{n} e^{-n} \sqrt{2 n \pi}$, that is,

$$
\begin{equation*}
\sum_{k=1}^{n} \log k \sim n \log n-n+\frac{1}{2} \log n+\log \sqrt{2 \pi} . \tag{1.2}
\end{equation*}
$$

2. A property that is neighbor to Stirling's formula. Related to (1.2) we prove the following theorem.

Theorem 2.1. For fixed $m \geq 1$ and $n \geq 2$,

$$
\begin{equation*}
S(n)=\sum_{k=2}^{n} f(k)=n\left(\log n-2-\sum_{i=2}^{m} \frac{h_{i}}{\log ^{i} n}+O\left(\frac{1}{\log ^{m+1} n}\right)\right), \tag{2.1}
\end{equation*}
$$

where $h_{1}, h_{2}, \ldots, h_{m}$ are computable constants.

Proof. As proved in [2], for fixed $m \geq 2$ there exist $k_{1}, k_{2}, \ldots, k_{m}$, such that $k_{i}+$ $1!k_{i-1}+2!k_{i-2}+\cdots+(i-1)!k_{1}=i!\cdot i$ for $i \in \overline{1, m}$ and

$$
\begin{equation*}
\pi(x)=\frac{x}{\log x-1-\sum_{i=1}^{m}\left(k_{i} / \log ^{i} x\right)}+O\left(\frac{x}{\log ^{m+1} x}\right) \tag{2.2}
\end{equation*}
$$

Denoting $S_{i}(n)=\sum_{i=2}^{n} 1 / \log ^{i} n$, we have

$$
\begin{equation*}
S(n)=\sum_{k=2}^{n} \log k-(n-1)-\sum_{i=1}^{m} k_{i} S_{i}(n)+O\left(\frac{n}{\log ^{m+1} n}\right) . \tag{2.3}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{1}{\log ^{i} 3}+\frac{1}{\log ^{i} 4}+\cdots+\frac{1}{\log ^{i} n}<\int_{2}^{n} \frac{d t}{\log ^{i} t}<\frac{1}{\log ^{i} 2}+\frac{1}{\log ^{i} 3}+\cdots+\frac{1}{\log ^{i}(n-1)} \tag{2.4}
\end{equation*}
$$

it follows that $S_{i}(n)=\int_{2}^{n} d t / \log ^{i} t+O(1)$. Denote $I_{i}(n)=\int_{2}^{n} d t / \log ^{i} t$. Then

$$
\begin{equation*}
S_{i}(n)=I_{i}(n)+O(1) . \tag{2.5}
\end{equation*}
$$

From (1.2), (2.3), and (2.5) it follows that

$$
\begin{equation*}
S(n)=n \log n-2 n-\sum_{i=1}^{m} k_{i} I_{i}(n)+O\left(\frac{n}{\log ^{m+1} n}\right) \tag{2.6}
\end{equation*}
$$

The integration by parts then implies that

$$
\begin{equation*}
I_{i}(n)=\frac{n}{\log ^{i} n}+i I_{i+1}(n)+O(1) . \tag{2.7}
\end{equation*}
$$

By (2.6) and (2.7) we deduce that

$$
\begin{equation*}
S(n)=n \log n-2 n-\sum_{i=1}^{m} h_{i} \cdot \frac{n}{\log ^{i} n}+O\left(\frac{n}{\log ^{m+1} n}\right) . \tag{2.8}
\end{equation*}
$$

In view of (2.7), the relation (2.8) becomes

$$
\begin{equation*}
S(n)=n \log n-2 n-\sum_{i=1}^{m} h_{i}\left(I_{i}(n)-i I_{i+1}(n)\right)+O\left(\frac{n}{\log ^{m+1} n}\right) . \tag{2.9}
\end{equation*}
$$

Comparing this relation with (2.6), we get

$$
\begin{gather*}
h_{1}=k_{1}, \\
h_{2}-1 \cdot h_{1}=k_{2}, \tag{2.10}\\
\ldots \\
h_{m}-(m-1) h_{m-1}=k_{m},
\end{gather*}
$$

hence we have

$$
\begin{equation*}
h_{j}=k_{j}+(j-1) k_{j-1}+(j-1)(j-2) k_{j-2}+(j-1)(j-2) \cdots 1 \cdot k_{1} \tag{2.11}
\end{equation*}
$$

for $j \in \overline{1, m}$. We get $h_{1}=1, h_{2}=4, h_{3}=21$, and so forth.

By means of a similar method we now prove the following theorem.
TheOrem 2.2. For fixed $m \geq 1$ the relation

$$
\begin{equation*}
S(n)=\sum_{k=2}^{n} \frac{1}{f(k)}=n\left(\sum_{i=1}^{m} \frac{i!}{\log ^{i} n}+O\left(\frac{1}{\log ^{m+1} n}\right)\right) \tag{2.12}
\end{equation*}
$$

holds for $n \geq 2$.
Proof. In [2], the following relation was used:

$$
\begin{equation*}
\pi(n)=n \sum_{i=1}^{m} \frac{(i-1)!}{\log ^{i} n}+O\left(\frac{n}{\log ^{m+1} n}\right) \tag{2.13}
\end{equation*}
$$

With the notation from the proof of Theorem 2.1, we have

$$
\begin{equation*}
S(n)=\sum_{i=1}^{m}\left(\sum_{k=2}^{n} \frac{(i-1)!}{\log ^{i} k}\right)+O\left(\sum_{k=2}^{m} \frac{1}{\log ^{m+1} k}\right) \tag{2.14}
\end{equation*}
$$

that is,

$$
\begin{equation*}
S(n)=\sum_{i=1}^{m}(i-1)!S_{i}(n)+O\left(S_{m+1}(n)\right) \tag{2.15}
\end{equation*}
$$

In view of (2.5) and of the fact that $I_{m+1}(n)=O\left(n / \log ^{m+1} n\right)$, we get

$$
\begin{equation*}
S(n)=\sum_{i=1}^{m}(i-1)!I_{i}(n)+O\left(\frac{n}{\log ^{m+1} n}\right) \tag{2.16}
\end{equation*}
$$

It easily follows from (2.7) that $S(n)=\sum_{i=1}^{m} q_{i} / \log ^{i} n+O\left(n / \log ^{m+1} n\right)$ and

$$
\begin{equation*}
S(n)=\sum_{i=1}^{m} q_{i}\left(I_{i}-i I_{i+1}\right)+O\left(\frac{n}{\log ^{m+1} n}\right) \tag{2.17}
\end{equation*}
$$

Comparing the above relation with (2.16), we get

$$
\begin{gather*}
q_{1}=0! \\
q_{2}=1!+1 \cdot q_{1} \tag{2.18}\\
\cdots \\
q_{i+1}=i!+i q_{i}
\end{gather*}
$$

Consequently $q_{i}=i$! and the proof is finished.
3. An inequality for the function $f(x)$. We have shown in the introduction that the function f is not concave. In particular, it follows neither that $f(x+y) \geq f(x)$ nor that $f(x+y) \geq f(y)$. However, we can prove the following theorem.

THEOREM 3.1. The inequality

$$
\begin{equation*}
2 f(x+y) \geq f(x)+f(y) \tag{3.1}
\end{equation*}
$$

holds for all integers $x \geq y \geq 2$, except for the pairs $(3,2)$ and $(5,2)$.

Proof. In [3], it was proved that

$$
\begin{array}{ll}
\pi(x)<\frac{x}{\log x-1-(\log x)^{-0.5}} & \text { whenever } x \geq 6 \tag{3.2}\\
\pi(x)>\frac{x}{\log x-1+(\log x)^{-0.5}} & \text { whenever } x \geq 59
\end{array}
$$

In view of these inequalities, it follows that for $x, y \geq 59$ it suffices to prove that

$$
\begin{equation*}
2\left(\log (x+y)-1-\frac{1}{\sqrt{\log (x+y)}}\right)>\log x+\log y-2+\frac{1}{\sqrt{\log x}}+\frac{1}{\sqrt{\log y}} \tag{3.3}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\log \frac{(x+y)^{2}}{x y}>\frac{2}{\sqrt{\log (x+y)}}+\frac{1}{\sqrt{\log x}}+\frac{1}{\sqrt{\log y}} \tag{3.4}
\end{equation*}
$$

Since $(x+y)^{2} \geq 4 x y$ and $x \geq y$, it suffices to have the inequality

$$
\begin{equation*}
\log 4 \geq \frac{2}{\sqrt{\log 2 y}}+\frac{2}{\sqrt{\log y}} \tag{3.5}
\end{equation*}
$$

This inequality holds whenever $y \geq 2960$.
For $y<2960$, consider $x \geq 6000$. Then $x / y>1.5085$, hence we have $(x+y)^{2} / x y>$ $25 / 4$ and $\log (x+y)^{2} / x y>1.5085$. To verify the relation (3.4) it suffices to have $1.5085>1 / \sqrt{\log y}+3 / \sqrt{\log 5000}$. This holds whenever $y \geq 63$.

It remains to treat the cases (a) $y<63, x \geq y$, and (b) $y<2960, x<6000, x \geq y$.
(a) If $y \leq 62$, then $\min (x, y) \leq 146$. In this case, Schinzel [4] proved that

$$
\begin{equation*}
\pi(x+y) \leq \pi(x)+\pi(y) \tag{3.6}
\end{equation*}
$$

so $2 f(x+y) \geq 2 \cdot(x+y) / \pi(x)+\pi(y)$. It remains to prove that $2 \cdot(x+y) /$ $(\pi(x)+\pi(y))>x / \pi(x)+y / \pi(y)$, that is, $x / \pi(x) \geq y / \pi(y)$. Remark that $\max _{2 \leq y \leq 62} y / \pi(y)=58 / 16$. Since $\min _{x \geq 80} x / \pi(x) \geq 58 / 16$, it remains to study the situation $y \leq x \leq 80$, that is contained in the case (b).

By means of a personal computer, one can verify the cases when $y<2960$, $x<$ 6000 and $x \geq y$. Then one finds out the exceptions indicated in the statement of the theorem, namely $y=2$ and either $x=3$ or $x=5$.
4. A consequence for the Hardy-Littlewood conjecture. Related to the celebrated conjecture

$$
\begin{equation*}
\pi(x+y) \leq \pi(x)+\pi(y) \text { for integers } x, y \geq 2, \tag{4.1}
\end{equation*}
$$

several facts are known (see [4, pages 231-237]). However these results are far from solving the problem.
We can draw from Theorem 3.1 the following.
CONSEQUENCE. If the inequality from (4.1) is false for some integers $x \geq y \geq 2$, then $f(x)>f(y)$ and $f(x)>f(x+y)$.

Proof. From Theorem 3.1 it follows that $\pi(x+y) \leq 2(x+y) /(x / \log x+y / \log y)$. To prove (4.1), it would suffice that $2(x+y) /(x / \log x+y / \log y) \leq \pi(x)+\pi(y)$, that is, $x / \pi(x) \leq y / \pi(y)$. Thus, if the inequality from (4.1) is false, then $f(x)>f(y)$.

Now assume that $f(x)>f(y)$ and $f(x+y) \leq f(x)$. It then follows that

$$
\begin{equation*}
\pi(x+y)<\frac{(x+y) \pi(x)}{x}=\pi(x)+\frac{y \pi(x)}{x}<\pi(x)+\pi(y) \tag{4.2}
\end{equation*}
$$

Consequently, if inequality (4.1) does not hold, then $f(x)>f(y)$ and $f(x)>f(x+y)$.

Remark that for $x=y$ the statement of Theorem 3.1 reduces to $\pi(2 x) \leq 2 \pi(x)$. This is just Landau's theorem, that is a special case of the Hardy-Littlewood conjecture.

Acknowledgement. I thank Professor Octavian Bâscă for his help and fruitful discussions.

REFERENCES

[1] D. S. Mitrinović, J. Sándor, and B. Crstici, Handbook of Number Theory, Mathematics and Its Applications, vol. 351, Kluwer Academic Publishers Group, Dordrecht, Boston, London, 1996. MR 97f:11001. Zbl 862.11001.
[2] L. Panaitopol, A formula for $\pi(x)$ applied to a result of Koninck-Ivić, Nieuw Arch. Wisk. (5) 1 (2000), no. 1, 55-56. MR 2001a:11156.
[3] , Inequalities concerning the function $\pi(x)$: applications, Acta Arith. 94 (2000), no. 4, 373-381. CMP 1779 949. Zbl 0963.11050.
[4] A. Schinzel, Remarks on the paper "Sur certaines hypothèses concernant les nombres premiers", Acta Arith. 7 (1961/1962), 1-8. MR 24 \#A70. Zbl 101.27902.

Panayiotis Vlamos: Hellenic Open University, Greece
E-mail address: v1amos@v1amos.com

