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PROPERTIES OF THE FUNCTION f(x)= x/π(x)

PANAYIOTIS VLAMOS

(Received 21 August 2000)

Abstract. We obtain the asymptotic estimations for
∑n
k=2f(k) and

∑n
k=2 1/f(k), where

f(k)= k/π(k), k≥ 2. We study the expression 2f(x+y)−f(x)−f(y) for integers x,y ≥
2 and as an application we make several remarks in connection with the conjecture of
Hardy and Littlewood.

2000 Mathematics Subject Classification. 11N05, 11A25.

1. Introduction. We denote by π(x) the number of all prime numbers ≤ x. We

denote also f(x) = x/π(x) for x ≥ 2. Since π(x) ∼ x/ logx, it follows that f(x) ∼
logx. We could expect that the function f(x) behaves like logx. However, we will see

that logx possesses several properties that f(x) does not possess.

Indeed, the function logx is increasing and concave, while f(x) does not have these

properties. Denoting by pn thenth prime number, we remark that f(pn)−f(pn−1)=
pn/n−(pn−1)/(n−1)= (n−pn)/n(n−1) < 0, so the function f is not increasing.

As shown also in [3], the function f is not concave because for x1 = pn−1 and

x2 = pn+1 it follows that f(x1)+f(x2) ≥ 2f((x1+x2)/2). The following fact was

proved in [1]:

f(ax)+f(bx) < 2f
(
a+b

2
·x
)

(1.1)

for a,b > 0 and x sufficiently large.

A property of the function log is given by Stirling’s formula asserting that

n!∼nne−n√2nπ , that is,

n∑
k=1

logk∼nlogn−n+ 1
2

logn+ log
√

2π. (1.2)

2. A property that is neighbor to Stirling’s formula. Related to (1.2) we prove the

following theorem.

Theorem 2.1. For fixed m≥ 1 and n≥ 2,

S(n)=
n∑
k=2

f(k)=n
(

logn−2−
m∑
i=2

hi
logi n

+O
(

1

logm+1n

))
, (2.1)

where h1,h2, . . . ,hm are computable constants.
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Proof. As proved in [2], for fixed m ≥ 2 there exist k1,k2, . . . ,km, such that ki+
1!ki−1+2!ki−2+···+(i−1)!k1 = i!·i for i∈ 1,m and

π(x)= x
logx−1−∑m

i=1

(
ki/ logi x

) +O
(

x
logm+1x

)
. (2.2)

Denoting Si(n)=
∑n
i=2 1/ logi n, we have

S(n)=
n∑
k=2

logk−(n−1)−
m∑
i=1

kiSi(n)+O
(

n
logm+1n

)
. (2.3)

Since

1

logi3
+ 1

logi4
+···+ 1

logi n
<
∫ n

2

dt
logi t

<
1

logi2
+ 1

logi3
+···+ 1

logi(n−1)
, (2.4)

it follows that Si(n)=
∫n
2 dt/ logi t+O(1). Denote Ii(n)=

∫n
2 dt/ logi t. Then

Si(n)= Ii(n)+O(1). (2.5)

From (1.2), (2.3), and (2.5) it follows that

S(n)=n logn−2n−
m∑
i=1

kiIi(n)+O
(

n
logm+1n

)
. (2.6)

The integration by parts then implies that

Ii(n)= n
logi n

+iIi+1(n)+O(1). (2.7)

By (2.6) and (2.7) we deduce that

S(n)=n logn−2n−
m∑
i=1

hi · n
logi n

+O
(

n
logm+1n

)
. (2.8)

In view of (2.7), the relation (2.8) becomes

S(n)=n logn−2n−
m∑
i=1

hi
(
Ii(n)−iIi+1(n)

)+O
(

n
logm+1n

)
. (2.9)

Comparing this relation with (2.6), we get

h1 = k1,

h2−1·h1 = k2,

···
hm−(m−1)hm−1 = km,

(2.10)

hence we have

hj = kj+(j−1)kj−1+(j−1)(j−2)kj−2+(j−1)(j−2)···1·k1 (2.11)

for j ∈ 1,m. We get h1 = 1, h2 = 4, h3 = 21, and so forth.
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By means of a similar method we now prove the following theorem.

Theorem 2.2. For fixed m≥ 1 the relation

S(n)=
n∑
k=2

1
f(k)

=n
( m∑
i=1

i!
logi n

+O
(

1

logm+1n

))
(2.12)

holds for n≥ 2.

Proof. In [2], the following relation was used:

π(n)=n
m∑
i=1

(i−1)!
logi n

+O
(

n
logm+1n

)
. (2.13)

With the notation from the proof of Theorem 2.1, we have

S(n)=
m∑
i=1

( n∑
k=2

(i−1)!
logi k

)
+O

( m∑
k=2

1

logm+1k

)
, (2.14)

that is,

S(n)=
m∑
i=1

(i−1)!Si(n)+O
(
Sm+1(n)

)
. (2.15)

In view of (2.5) and of the fact that Im+1(n)=O(n/ logm+1n), we get

S(n)=
m∑
i=1

(i−1)!Ii(n)+O
(

n
logm+1n

)
. (2.16)

It easily follows from (2.7) that S(n)=∑m
i=1qi/ logi n+O(n/ logm+1n) and

S(n)=
m∑
i=1

qi
(
Ii−iIi+1

)+O
(

n
logm+1n

)
. (2.17)

Comparing the above relation with (2.16), we get

q1 = 0!,

q2 = 1!+1·q1,

···
qi+1 = i!+iqi.

(2.18)

Consequently qi = i! and the proof is finished.

3. An inequality for the function f(x). We have shown in the introduction that

the function f is not concave. In particular, it follows neither that f(x+y) ≥ f(x)
nor that f(x+y)≥ f(y). However, we can prove the following theorem.

Theorem 3.1. The inequality

2f(x+y)≥ f(x)+f(y) (3.1)

holds for all integers x ≥y ≥ 2, except for the pairs (3,2) and (5,2).
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Proof. In [3], it was proved that

π(x) <
x

logx−1−(logx)−0.5 whenever x ≥ 6,

π(x) >
x

logx−1+(logx)−0.5 whenever x ≥ 59.
(3.2)

In view of these inequalities, it follows that for x,y ≥ 59 it suffices to prove that

2
(

log(x+y)−1− 1√
log(x+y)

)
> logx+ logy−2+ 1√

logx
+ 1√

logy
, (3.3)

that is,

log
(x+y)2
xy

>
2√

log(x+y) +
1√

logx
+ 1√

logy
. (3.4)

Since (x+y)2 ≥ 4xy and x ≥y , it suffices to have the inequality

log4≥ 2√
log2y

+ 2√
logy

. (3.5)

This inequality holds whenever y ≥ 2960.

Fory < 2960, considerx ≥ 6000. Thenx/y > 1.5085, hence we have (x+y)2/xy >
25/4 and log(x +y)2/xy > 1.5085. To verify the relation (3.4) it suffices to have

1.5085> 1/
√

logy+3/
√

log5000. This holds whenever y ≥ 63.

It remains to treat the cases (a) y < 63, x ≥y , and (b) y < 2960, x < 6000, x ≥y .

(a) If y ≤ 62, then min(x,y)≤ 146. In this case, Schinzel [4] proved that

π(x+y)≤π(x)+π(y), (3.6)

so 2f(x + y) ≥ 2 · (x + y)/π(x) + π(y). It remains to prove that 2 · (x+y)/
(π(x)+π(y)) > x/π(x) + y/π(y), that is, x/π(x) ≥ y/π(y). Remark that

max2≤y≤62y/π(y) = 58/16. Since minx≥80x/π(x) ≥ 58/16, it remains to study the

situation y ≤ x ≤ 80, that is contained in the case (b).

By means of a personal computer, one can verify the cases when y < 2960, x <
6000 and x ≥y . Then one finds out the exceptions indicated in the statement of the

theorem, namely y = 2 and either x = 3 or x = 5.

4. A consequence for the Hardy-Littlewood conjecture. Related to the celebrated

conjecture

π(x+y)≤π(x)+π(y) for integers x,y ≥ 2, (4.1)

several facts are known (see [4, pages 231–237]). However these results are far from

solving the problem.

We can draw from Theorem 3.1 the following.

Consequence. If the inequality from (4.1) is false for some integers x ≥y ≥ 2, then

f(x) > f(y) and f(x) > f(x+y).
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Proof. From Theorem 3.1 it follows thatπ(x+y)≤ 2(x+y)/(x/ logx+y/ logy).
To prove (4.1), it would suffice that 2(x +y)/(x/ logx +y/ logy) ≤ π(x)+π(y),
that is,x/π(x)≤y/π(y). Thus, if the inequality from (4.1) is false, then f(x) > f(y).

Now assume that f(x) > f(y) and f(x+y)≤ f(x). It then follows that

π(x+y) < (x+y)π(x)
x

=π(x)+ yπ(x)
x

<π(x)+π(y). (4.2)

Consequently, if inequality (4.1) does not hold, then f(x) > f(y) and f(x) > f(x+y).

Remark that for x = y the statement of Theorem 3.1 reduces to π(2x) ≤ 2π(x).
This is just Landau’s theorem, that is a special case of the Hardy-Littlewood conjecture.
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