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tions with particular boundary conditions.
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1. Introduction. In this paper, we examine the existence of an inertial manifold of

the scalar-valued reaction-diffusion equation of the form

ut = ν∆u+f(u), u∈R (1.1)

with particular boundary conditions. For (1.1), we consider the following domains

Ωn ⊂Rn, n= 2,3;

Ω2 =
{(
x1,x2

)∈R2 : 0<x2 <
√

3x1, 0<x1 <
π
2

}
,

Ω3 =Ω2×(0,Lπ),
(1.2)

where L is a positive real number satisfying some conditions.

This problem was studied by Mallet-Paret and Sell [2] for 2-dimensional rectangular

and 3-dimensional cubic domains and Kwean [1] extended their result into several new

domains including the type of domains in (1.2). However for their works, they consider

either Dirichlet or Neumann boundary conditions or periodic boundary conditions

when the domain is a Cartesian product of intervals.

In our attempt to study (1.1) and (1.2), we consider particular boundary conditions

which are different from previous works. In order to formulate boundary conditions

we introduce some notations; let Sn be the subset of ∂Ωn in (1.2) given by

S2 =
{(
x1,x2

)∈ ∂Ω2 : x1 = π
2

}
,

S3 =
{(
x1,x2,x3

)∈ ∂Ω3 : x1 = π
2

}
,

(1.3)

and let Scn = ∂Ωn�Sn,n= 2,3 and hence ∂Ωn = Scn∪Sn. Then the boundary conditions

we study here are given as follows: for each n= 2,3,

u= 0 on Scn,
∂u
∂n

= 0 on Sn. (1.4)
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For this purpose we need good information about the eigenvalues and the eigen-

functions of −∆ with given boundary conditions (1.4) and then by showing that the

differential equations (1.1), (1.2), and (1.4) satisfy all the hypotheses of the Invariant

Manifold Theorems (Mallet-Paret and Sell [2]), we obtain the desired result.

2. The eigenvalue problem and the weaker PSA. Now consider the following

eigenvalue problems for n= 2,3:

∆u+λu= 0 in Ωn, u= 0 on Scn,
∂u
∂n

= 0 on Sn. (2.1)

To solve this problem, first we consider the eigenvalue problem for the following

domains:

Ω̃2 = {equilateral triangle of side π}, Ω̃3 = Ω̃2×(0,Lπ). (2.2)

Then we obtain the following result.

Lemma 2.1. Let Ω̃n ⊂Rn be given in (2.2) for n= 2,3. Then the eigenvalues and the

eigenfunctions of −∆ for Dirichlet boundary conditions are of the forms: for Ω̃2 ⊂R2,

λ̃k = 16
27

(
k2

1+k2
2−k1k2

)
,

f̃k
(
x1,x2

)= ∑
(k1,k2)

±exp
(

2i
3

)(
k2x1+ 2k1−k2√

3
x2

)
,

(2.3)

and for Ω̃3 ⊂R3,

λ̃k = 16
27

(
k2

1+k2
2−k1k2

)+ k2
3

L2
,

f̃k
(
x1,x2,x3

)= sin
k3

L
x3

∑
(k1,k2)

±exp
(

2i
3

)(
k2x1+ 2k1−k2√

3
x2

)
,

(2.4)

where k = (k1,k2) ∈ Z2(k = (k1,k2,k3) ∈ Z2 × Z+ for n = 3) satisfies (i) K1 + k2 is

multiple of 3, (ii) k1 ≠ 2k2, (iii) k2 ≠ 2k1, and (k1,k2) in the summation ranges over

S ⊂ Z2, |S| = 6, and ± is determined by the following rules: (for example, if (K1,k2),
(k2−k1,−k1), (−k2,k1−k2) have positive signs then the others have the negative signs).

(
k1,k2

)

(
k2−k1,k2

) (
k1,k1−k2

)

(
k2−k1,−k1

) (−k2,k1−k2
)

(−k2,−k1
)

(2.5)

Each leg of the cycle induces a change of the sign in the (k1,k2) entry of (2.3) and (2.4).
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For this proof, we refer to Pinsky [3] and Kwean [1].

Remark 2.2. For each Ω̃n, n = 2,3, if we consider the Neumann boundary condi-

tions, then the eigenvalues λ̃k are the same as in (2.3) and (2.4) and the eigenfunction

g̃k associated with the eigenvalue λ̃k is the same except that signs are all positive.

From the results of Lemma 2.1, one obtains the following result.

Lemma 2.3. Let Ωn ⊂Rn be given in (1.2) for n= 2,3. Then the eigenvalues and the

eigenfunctions of −∆ for given boundary conditions (1.4) are of the forms: for Ω2 ⊂R2,

λk = 16
27

(
k2

1+k2
2−k1k2

)
,

f(k1,k2)
(
x1,x2

)= f̃(k1,k2)
(
x1,x2

)+ f̃(k2,k1)
(
x1,x2

)
,

(2.6)

and for Ω3 ⊂R3,

λk = 16
27

(
k2

1+k2
2−k1k2

)+ k2
3

L2
,

fk
(
x1,x2,x3

)= sin
k3

L
x3f(k1,k2)

(
x1,x2

)
,

(2.7)

where k = (k1,k2) ∈ Z2(k = (k1,k2,k3) ∈ Z2×Z+ for n = 3) satisfies (i) k1,k2 are both

multiples of 3, (ii) k1 ≠ 2k2, (iii) k2 ≠ 2k1, and above f̃(k1,k2)’s in (2.6) are defined as in

(2.3).

Proof. We consider a reflection operator

R :
(
x1,x2

)
�→ (π−x1,x2

)
. (2.8)

Then for each solution f of (2.1), there is an extension f̃ of f on Ω̃n ⊂ Rn in (2.2) by

Rf̃ = f̃ and f̃ |Ωn = f . Then f̃ is an eigenfunction of −∆ on Ω̃n for Dirichlet boundary

conditions. The converse is also true. However, sinceRf̃(k1,k2) = f̃(k2,k1) for each f̃(k1,k2)

in (2.3), the eigenfunctions of −∆ for given boundary condition (1.4) are of the form

as in (2.6) and (2.7).

Now we define a multiplication operator as follows: for any v ∈ L∞, we let Bv denote

the operator on L2 defined by

(
Bvu

)
(x)= v(x)u(x), u∈ L2 (2.9)

and let ṽ be the mean value

ṽ = (volΩ)−1
∫
Ω
v(x)dx. (2.10)

Definition 2.4. For a given (bounded Lipschitz) domain Ω ⊂Rn, n≤ 3, and choice

of boundary conditions for the Laplacian, we say the weaker principle of spatial aver-

aging (PSA) holds if there exists a quantity ξ > 0 such that for every ε > 0, κ < 0 and

any bounded subset �⊂H2, there exists arbitrarily large λ= λ(�) > κ such that

∥∥(Pλ+κ−Pλ−κ)(Bv− ṽI)(Pλ+κ−Pλ−κ)∥∥op ≤ ε (2.11)



296 HYUKJIN KWEAN

holds for any v ∈�; such that

λm+1−λm ≥ ξ, (2.12)

where m satisfies λm ≤ λ < λm+1.

Here we introduce two geometric properties of lattices in Rn, n = 2,3, which are

crucial to the proof of a weaker principle of spatial averaging for each domainΩn ⊂Rn
in (1.2) with (1.4).

The first property is a property related to the spectral gap proved by Mallet-Paret

and Sell [2]; see also Richard [4].

Lemma 2.5. Let � be a finite collection of functions T of the form

T
(
k1,k2

)= ak2
1+bk1k2+ck2

2+sk1+tk2+r , (2.13)

with rational coefficients and negative discriminant, that is, b2−4ac < 0. Then given

any h> 0 there exists arbitrarily large m such that

T
(
k1,k2

)
∉ [m,m+h], (2.14)

for all T ∈� and k1,k2 ∈ Z.

For the next theorem, we consider the three linearly independent vectors in R3:

e1 =
(

4

3
√

3
,0,0

)
, e2 =

(
− 2

3
√

3
,
2
3
,0
)
, e3 =

(
0,0,

1
L

)
, (2.15)

and we define a new inner product and a norm induced by

〈x,y〉 =
( 3∑
s=1

xses,
3∑
t=1

ytet

)
,
∣∣[x]∣∣2 = 〈x,y〉, (2.16)

where x,y ∈R3 and (·,·) is usual inner product in R3.

Lemma 2.6. Assume that L2 is rational number. Let k= (k1,k2,k3)∈ Z3 and consider

∣∣[k]∣∣2 ≡ 16
27

(
k2

1+k2
2−k1k2

)+ k2
3

L2
. (2.17)

Then there exists ξ > 0 such that for any κ > 1 and d > 0, there exists an arbitrarily

large λ satisfying two conditions:

(i) whenever |[k]|2,|[l]|2 ∈ (λ−κ,λ+κ] with k,l ∈ Z3, one has either k = l or

|[k−l]| ≥ d,

(ii) |[k]|2 ∉ (λ−ξ/2,λ+ξ/2) for each k∈ Z3.

Proof. We follow Mallet-Paret and Sell’s approach [2]. Let L2 = q/p, where p and

q are relative prime integers. Let α = LCM{27,q} be fixed where LCM means least

common multiple. Then for any k∈ Z3, there exist integers n and r such that

∣∣[k]∣∣2 =n+ r
α
, 0≤ r < α. (2.18)
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Therefore, with ξ = 1/(2α) we see that there are arbitrarily large λ such that |[k]|2 ∉
(λ−ξ/2,λ+ξ/2). For the rest of the proof we will consider only such λ. Let λ be fixed

and let Nλ0 be the annular region

Nλ0 ≡
{
x ∈R3 : λ−κ <

∣∣[x]∣∣2 ≤ λ+κ}. (2.19)

Suppose that k,l∈Nλ0 ∩Z3 and 0≤ |[k−l]|<d. Then for j = l−k,

∣∣[l]∣∣2 =
∣∣[j+k]∣∣2 =

∣∣[j]∣∣2+2〈k,j〉+
∣∣[k]∣∣2, (2.20)

where 〈·,·〉 is defined in (2.16). As a result,

∣∣〈k,j〉∣∣≤ 1
2

∣∣∣∣[l]∣∣2−
∣∣[k]∣∣2−

∣∣[j]∣∣2∣∣
≤ 1

2

∣∣∣∣[l]∣∣2−
∣∣[k]∣∣2∣∣+ 1

2

∣∣[j]∣∣2

< κ+ d
2

2
.

(2.21)

For each j with 0 < |[j]| < d, let Sj = {x ∈ R3 : |〈x,j〉| < κ + d2/2} and let S =⋃
0<|[j]|<d Sj . If the property (i) fails for some λ, then S∩Nλ0 ∩Z3 ≠∅. If k∈ S∩Nλ0 ∩Z3,

then

∣∣〈k,j〉∣∣< κ+ d2

2
,

γ ≡ 〈k,j〉 = 8k1

27

(
2j1−j2

)+ 8k2

27

(
2j2−j1

)+ k3j3

L2
,

(2.22)

for some j and some γ = n/α, where 0 < |[j]| < d and n is an integer such that

|n/α|< κ+d2/2. Since γ =n/α for some integer n, there is only a finite number of γ
satisfying |γ| = |n/α|< κ+d2/2. On the other hand since j ≠ 0, we may assume that

j3 ≠ 0. Then by solving 〈k,j〉 = γ for k3, it is found that

k3 =−L
2

j3

(
8k1

27

(
2j1−j2

)+ 8k2

27

(
2j2−j1

)−γ) (2.23)

and hence by substituting k3,

∣∣[k]∣∣2 = 16
27

(
k2

1+k2
2−k1k2

)+ k2
3

L2

=
(

16
27
+ L

2

j2
3

((
16
27

)2

j2
1+
(

16
27

)2

j2
2−
(

16
27

)2

j1j2

))
k2

1

+
(
− 16

27
+ L

2

j2
3

(
2
(

8
27

)2

j1j2−
(

16
27

)2

j2
1+2

(
16
27

)2

j1j2−
(

8
27

)2

j2
2

))
k1k2

+
(

16
27
+ L

2

j2
3

((
8

27

)2

j2
1+
(

16
27

)2

j2
2−
(

16
27

)2

j1j2

))
k2

2

+sj,γk1+tj,γk2+rj,γ ,
(2.24)
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where sj,γ , tj,γ , and rj,γ are rationals depending only on j and γ. Now by taking coef-

ficients in (2.24), we define a quadratic function Tj,γ on Z2 with rational coefficients

of the form

Tj,γ
(
l1, l2

)= ajl21+bjl1l2+cjl22+sj,γl1+tj,γl2+rj,γ . (2.25)

Then the discriminant of Tj,γ in (2.25) is negative. Also since k∈Nλ0 ,

Tj,γ
(
k1,k2

)∈ (λ−κ,λ+κ]. (2.26)

Now let � be the set of all quadratic functions Tj,γ of the form in (2.25) for j ∈ Z3 and

γ = n/α with 0 < |[j]| < d, |γ| = |n/α| < κ+d2/2. Then since the indices j and γ
range over finite sets, � is a finite collection of functions Tj,γ satisfying all hypotheses

of Lemma 2.5. With h = 2+2κ, there exists a m in the statement of Lemma 2.5 such

that for any Tj,γ ∈� and l∈ Z2

Tj,γ
(
l1, l2

)
∉ [m,m+h], (λ−κ,λ+κ)⊂ [m,m+h], (2.27)

for some λ satisfying the second assertion (ii). Therefore (2.26) is impossible for this

λ. As m can be chosen arbitrarily large, the proof is now complete.

From these lemmas, we obtain the following important results.

Lemma 2.7. Let Ω3 be given in (1.2). Fix the boundary conditions (1.4) for n= 3. Let

� be a bounded subset of H2. Then for any ε > 0 and κ > 1, there exists arbitrarily

large λ= λ(�) > κ such that ∣∣∣∣
∫
Ω3

(
v− ṽ)ρ2dx

∣∣∣∣≤ ε (2.28)

for any v ∈� and ρ ∈ Range(Pλ+κ−Pλ−κ)⊂ L2 with ‖ρ‖ = 1.

Proof. We note that the product of any two eigenfunctions of the form in (2.7) is

a finite combinations of eigenfunctions g̃k−l of −∆ for Neumann boundary conditions

as we mention in Remark 2.2, that is,

fkf̄l = g̃k−l, (2.29)

where f̄ means the complex conjugate of f . With the property (2.29), the result fol-

lows from property (1) of Lemma 2.6 and the facts that the set of eigenfunctions of

Laplace operator forms complete orthogonal basis for L2 and that any bounded set

ofH2 is a compact subset of L2 forn≤ 3. For more detail proof, we mention Kwean [1].

By combining the results of the previous lemmas, one obtains the following theorem.

Theorem 2.8. The weaker PSA holds for the domainsΩn, n= 2,3 in (1.2) with given

boundary conditions (1.4).

Proof. We fix a quantity ξ > 0 satisfying property (2) of Lemma 2.6. Let ε > 0,

κ > 0, and a bounded subset �⊂H2(Ωn) be given. Then we have arbitrarily large λ > κ
satisfying property (1) of Lemma 2.5 and inequalities (2.28) in Lemma 2.7. Therefore

inequalities (2.11) and (2.12) can be obtained by the choices of ξ > 0 and λ.
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3. Inertial manifold. We are ready to examine the existence of inertial manifold of

the equation of the form

∂u
∂t
= ν∆u+f(u), u∈R, (3.1)

where the domainsΩn ⊂Rn are given in (1.2). For n= 3, we assume that L2 is rational.

Moreover, the nonlinearity

f :R �→R (3.2)

is assumed to satisfy the following conditions for some positive constants K1 and K2;

f is C1 in R,∣∣f(u)∣∣≤K1

∣∣u∣∣+K2 in R,∣∣Duf(u)∣∣≤K1 in R,

(3.3)

and we consider the boundary conditions for (3.1); for each n= 2,3,

u= 0 on Scn,
∂u
∂n

= 0 on Sn. (3.4)

Then we can assert the following.

Theorem 3.1. Assume that (3.1) is dissipative and that f : R → R is of class C3

satisfying conditions (3.3). Fix the boundary conditions (3.4). Then for every ν > 0 there

exists an inertial manifold � for (3.1).

Proof. Due to the invariant manifold theorem [2] and the dissipativity of (3.1), we

can prove the existence of an inertial manifold � (see [1]).
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