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Abstract. We deal with matrix transformations preserving the starshape of sequences.
The main result gives the necessary and sufficient conditions for a lower triangular matrix
A to preserve the starshape of sequences. Also, we discuss the nature of the mappings of
starshaped sequences by some classical matrices.
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1. Introduction. In [1, 2, 4, 5] the authors have studied the convexity preserving

matrix transformations. In [6] Toader introduced the notion of starshaped sequences

and showed that the set of convex sequences is a subset of starshaped sequences. In

this paper, we prove the results on the transformations of starshaped sequences by

a lower triangular matrix A. We begin by the following definitions.

Definition 1.1. A real sequence (xn) is called a starshaped sequence if

xn−x0

n
≥ xn−1−x0

n−1
(1.1)

for n≥ 2.

Definition 1.2. Let A be a matrix defining a sequence-to-sequence transformation

by

(Ax)n =
∞∑
k=0

an,kxk. (1.2)

Next, we define the matrices A(1) = [a(1)n,k], A(2) = [a(2)n,k] as

a(1)n,i =
∞∑
k=i
an,k, a(2)n,i =

∞∑
k=i
a(1)n,k. (1.3)

Throughout we use A to denote a lower triangular matrix.

Also, for any given sequence (xn) we can find a corresponding sequence (ck) such

that

c0 = x0, c1 = x1, (1.4)

and for k≥ 2,

ck = xk− k
k−1

xk−1+ 1
k−1

x0, (1.5)
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which implies that (xn) can be represented by

xn =n
n∑
k=1

ck
k
−(n−1)c0. (1.6)

As a consequence we get the following lemma.

Lemma 1.3. For any two given real numbers α and β, we can construct a sequence

(xn) such that the corresponding sequence (ck) satisfies that ck = α, cj = β, 2≤ k < j
and all other ci’s are zero.

Proof. Consider the following sequence (xn) defined as

xn =




0, if n< k,

α, if n= k,
n
k
α, if k <n< j,

βk+jα
k

, if n= j,

n(βk+jα)
kj

, if n> j.

(1.7)

It is clear that the sequence (xn) satisfies the stated condition. Also, Toader proved

the following result in [6].

Lemma 1.4. The sequence (xn) is starshaped if and only if the corresponding se-

quence (ck) given in (1.5) satisfies that ck ≥ 0 for k≥ 2.

2. Main results. We give below the sufficient conditions for a matrix A to preserve

the starshape of a sequence.

Theorem 2.1. A matrix A= [an,k] preserves the starshape of sequences if

(i) (a(2)n,0−a0,0)/n= (a(2)n−1,0−a0,0)/(n−1), for n≥ 2,

(ii) a(2)n,1/n= a(2)n−1,1/(n−1), for n≥ 2 and

(iii) for each k≥ 2, {a(1)n,k}∞n=0 is starshaped.

Proof. Assume that conditions (i), (ii), and (iii) are true. Let (xk) be a starshaped

sequence. Since A is a lower triangular matrix, (xk) is in the domain of A. Denoting

the nth term of the transformed sequence by σn and using the representation given

in (1.6), we have

σn = (Ax)n =
n∑
k=0

an,k

[
k

k∑
i=1

ci
i
−(k−1)c0

]

= c0
[
an,0−an,2−2an,3−3an,4 ···−(n−2)an,n−1−(n−1)an,n

]
+c1

[
an,1+2an,2+3an,3 ···+(n−1)an,n−1+nan,n

]
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+ c2

2

[
2an,2+3an,3+···+(n−1)an,n−1+nan,n

]

+ c3

3

[
3an,3+4an,4+···+(n−1)an,n−1+nan,n

]

+···+ cn−1

n−1

[
(n−1)an,n−1+nan,n

]+cn[an,n].
(2.1)

Using the notations given in Definition 1.2, we can write σn as

σn = c0

[
a(2)n,0−2a(2)n,1

]
+c1

[
a(2)n,1

]

+ c2

2

[
2a(1)n,2+a(1)n,3+···+a(1)n,n

]

+ c3

3

[
3a(1)n,3+a(1)n,4+···+a(1)n,n

]

+···+ cn−2

n−2

[
(n−2)a(1)n,n−2+a(1)n,n−1+a(1)n,n

]

+ cn−1

n−1

[
(n−1)a(1)n,n−1+a(1)n,n

]
+cn

[
a(1)n,n

]
.

(2.2)

Here, we note that σ0 = c0a0,0. In order to show that {σn} is starshaped, we consider

for n≥ 2,

σn−σ0

n
− σn−1−σ0

n−1
= c0

[(
a(2)n,0−a0,0

n
− a

(2)
n−1,0−a0,0

n−1

)
−2

(
a(2)n,1
n

− a
(2)
n−1,1

n−1

)]

+c1

[
a(2)n,1
n

− a
(2)
n−1,1

n−1

]

+ c2

2

[
2

(
a(1)n,2
n

− a
(1)
n−1,2

n−1

)
+
(
a(1)n,3
n

− a
(1)
n−1,3

n−1

)

+···+
(
a(1)n,n−1

n
− a

(1)
n−1,n−1

n−1

)
+ a

(1)
n,n

n

]

+ c3

3

[
3

(
a(1)n,3
n

− a
(1)
n−1,3

n−1

)
+
(
a(1)n,4
n

− a
(1)
n−1,4

n−1

)

+···+
(
a(1)n,n−1

n
− a

(1)
n−1,n−1

n−1

)
+ a

(1)
n,n

n

]

+···+ cn−2

n−2

[
(n−2)

(
a(1)n,n−2

n
− a

(1)
n−1,n−2

n−1

)

+
(
a(1)n,n−1

n
− a

(1)
n−1,n−1

n−1

)
+ a

(1)
n,n

n

]

+ cn−1

n−1

[
(n−1)

(
a(1)n,n−1

n
−a

(1)
n−1,n−1

n−1

)
+a

(1)
n,n

n

]
+ cn
n

[
a(1)n,n

]
.

(2.3)
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Since (xk) is starshaped, the corresponding ck ≥ 0 for k ≥ 2. Now, using conditions

(i), (ii), and (iii) it is easy to see that

σn−σ0

n
− σn−1−σ0

n−1
≥ 0. (2.4)

Hence the theorem is proved.

We notice that a matrix A which preserves the starshape of sequences need not

satisfy all the three conditions of Theorem 2.1. We give below an example of such a

matrix.

Example 2.2. Let A be a matrix given by

A=




1 0 0 0 0 ···
2 0 0 0 0 ···
7 −8 4 0 0 ···

13 −12 −3 6 0 ···
17 −16 −4 8 0 ···
...

...
...

...
...

4n+1 −4n −n 2n 0 ···
...

...
...

...
...




. (2.5)

Then the corresponding matrices A(1) and A(2) are

A(1) =




1 0 0 0 0 ···
2 0 0 0 0 ···
3 −4 4 0 0 ···
4 −9 3 6 0 ···
5 −12 4 8 0 ···
...

...
...

...
...

n+1 −3n n 2n 0 ···
...

...
...

...
...




,

A(2) =




1 0 0 0 0 ···
2 0 0 0 0 ···
3 0 4 0 0 ···
4 0 9 6 0 ···
5 0 12 8 0 ···
...

...
...

...
...

n+1 0 3n 2n 0 ···
...

...
...

...
...




.

(2.6)
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For the above matrix A, it is obvious that conditions (i) and (ii) of Theorem 2.1 hold.

But condition (iii) fails because

a(1)3,2−a(1)0,2

3
<
a(1)2,2−a(1)0,2

2
, (2.7)

implying that {a(1)n,2}∞n=0 is not starshaped. ButA preserves the starshape of sequences.

To see this, using conditions (i) and (ii) of Theorem 2.1 we write (2.3) as

σn−σ0

n
− σn−1−σ0

n−1
= c2

2

[
2

(
a(1)n,2
n

− a
(1)
n−1,2

n−1

)
+
(
a(1)n,3
n

− a
(1)
n−1,3

n−1

)

+···+
(
a(1)n,n−1

n
− a

(1)
n−1,n−1

n−1

)
+ a

(1)
n,n

n

]

+ c3

3

[
3

(
a(1)n,3
n

− a
(1)
n−1,3

n−1

)
+
(
a(1)n,4
n

− a
(1)
n−1,4

n−1

)

+···+
(
a(1)n,n−1

n
− a

(1)
n−1,n−1

n−1

)
+ a

(1)
n,n

n

]

+···+ cn−2

n−2

[
(n−2)

(
a(1)n,n−2

n
− a

(1)
n−1,n−2

n−1

)

+
(
a(1)n,n−1

n
− a

(1)
n−1,n−1

n−1

)
+ a

(1)
n,n

n

]

+ cn−1

n−1

[
(n−1)

(
a(1)n,n−1

n
−a

(1)
n−1,n−1

n−1

)
+a

(1)
n,n

n

]
+cn
n

[
a(1)n,n

]
.

(2.8)

Therefore, for any starshaped sequence (xn), using Lemma 1.4 in the above equation

we get

σ2−σ0

2
− σ1−σ0

1
= c2

2

(
a(1)2,2

)
≥ 0,

σ3−σ0

3
− σ2−σ0

2
= c2

2

[
2

(
a(1)3,2

3
− a

(1)
2,2

2

)
+ a

(1)
3,3

3

]
+ c3

3

(
a(1)3,3

)
≥ 0,

(2.9)

and for n≥ 4,

σn−σ0

n
− σn−1−σ0

n−1
= 0. (2.10)

We give below the necessary conditions for a matrix A to preserve the starshape of

sequences.

Theorem 2.3. If a matrix A= [an,k] preserves the starshape of a sequence, then

(i) (a(2)n,0−a0,0)/n= (a(2)n−1,0−a0,0)/(n−1), for n≥ 2,

(ii) a(2)n,1/n= a(2)n−1,1/(n−1), for n≥ 2, and

(iii) for each k≥ 2, {a(2)n,k}∞n=0 is starshaped.
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Proof. Assume that the matrix A preserves the starshape of sequences. Equation

(2.3) which is satisfied by any transformed sequence can be written as

σn−σ0

n
− σn−1−σ0

n−1
= c0

[(
a(2)n,0−a0,0

n
− a

(2)
n−1,0−a0,0

n−1

)
−2

(
a(2)n,1
n

− a
(2)
n−1,1

n−1

)]

+c1

[
a(2)n,1
n
−a

(2)
n−1,1

n−1

]
+c2

2

[
2

(
a(2)n,2
n
−a

(2)
n−1,2

n−1

)
−
(
a(2)n,3
n

− a
(2)
n−1,3

n−1

)]

+···+cj
j

[
j
(
a(2)n,j
n
−
a(2)n−1,j

n−1

)
−(j−1)

(
a(2)n,j+1

n
−
a(2)n−1,j+1

n−1

)]

+···+ cn−1

n−1

[
(n−1)

(
a(2)n,n−1

n
−a

(2)
n−1,n−1

n−1

)
−(n−2)

a(2)n,n
n

]

+ cn
n

[
a(2)n,n

]
.

(2.11)

Suppose that condition (ii) does not hold. Therefore, there exists an N ≥ 2 such that

a(2)N,1
N

− a
(2)
N−1,1

N−1
= λ≠ 0. (2.12)

Choose a sequence (xn) such that xn = −nλ. Then (xn) is starshaped since from

(1.5) we get that c0 = x0 = 0, c1 = x1 = −λ and for k ≥ 2, ck = xk− (k/(k−1))xk−1+
(1/(k−1))x0 = 0. Thus for the transformed sequence σn, we obtain from (2.11) that

σN−σ0

N
− σN−1−σ0

N−1
=−λ2 < 0, (2.13)

which contradicts that A preserves the starshape of sequences. Therefore, condition

(ii) must be true. Consequently, (2.11) reduces to

σn−σ0

n
− σn−1−σ0

n−1
= c0

[(
a(2)n,0−a0,0

n
− a

(2)
n−1,0−a0,0

n−1

)]

+ c2

2

[
2

(
a(2)n,2
n

− a
(2)
n−1,2

n−1

)
−
(
a(2)n,3
n

− a
(2)
n−1,3

n−1

)]

+···+ cn−1

n−1

[
(n−1)

(
a(2)n,n−1

n
−a

(2)
n−1,n−1

n−1

)
−(n−2)

a(2)n,n
n

]

+ cn
n

[
a(2)n,n

]
.

(2.14)

Suppose that condition (i) is not true. Therefore, there exists an N ≥ 2 such that

a(2)N,0−a0,0

N
− a

(2)
N−1,1−a0,0

N−1
= β≠ 0. (2.15)

Choose a sequence (xn) such that xn = (n−1)β. Then (xn) is starshaped since from

(1.5) we get that c0 = x0 = −β, c1 = x1 = 0 and for k ≥ 2, ck = xk−(k/(k−1))xk−1+
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(1/(k−1))x0 = 0. Thus for the transformed sequence σn, we obtain from (2.14), that

σN−σ0

N
− σN−1−σ0

N−1
=−β2 < 0, (2.16)

which contradicts that A preserves the starshape of sequences. Therefore, the condi-

tion (i) must be true. We will now show that condition (iii) is necessary for the matrix

A to preserve the starshape of sequences. Since we have established conditions (i)

and (ii), (2.14) reduces for n≥ 2 to

σn−σ0

n
− σn−1−σ0

n−1
= c2

2

[
2

(
a(2)n,2
n

− a
(2)
n−1,2

n−1

)
−
(
a(2)n,3
n

− a
(2)
n−1,3

n−1

)]

+ c3

3

[
3

(
a(2)n,3
n

− a
(2)
n−1,3

n−1

)
−2

(
a(2)n,4
n

− a
(2)
n−1,4

n−1

)]

+···+cj
j

[
j
(
a(2)n,j
n
−
a(2)n−1,j

n−1

)
−(j−1)

(
a(2)n,j+1

n
−
a(2)n−1,j+1

n−1

)]

+···+cn−1

n−1

[
(n−1)

(
a(2)n,n−1

n
−a

(2)
n−1,n−1

n−1

)
−(n−2)

a(2)n,n
n

]

+ cn
n

[
a(2)n,n

]
.

(2.17)

To show that {a(2)n,k}∞n=0 is starshaped for k ≥ 2, we need to prove that for each fixed

j ≥ 2, a(2)n,j/n−a(2)n−1,j/(n−1) ≥ 0, for n ≥ 2. So, it is sufficient to show that for each

fixed n≥ 2, a(2)n,j/n−a(2)n−1,j/(n−1)≥ 0, for 2≤ j ≤n. Fix n≥ 2.

Case 1. When j = n we will show that a(2)n,n ≥ 0. If a(2)n,n = α < 0, then using

Lemma 1.3 we choose a starshaped sequence (xk) such that cn = 1 and other ck’s
are zero. Thus from (2.17) we obtain

σn−σ0

n
− σn−1−σ0

n−1
= 1
n
a(2)n,n =

α
n
< 0, (2.18)

which is a contradiction. Thus, a(2)n,n ≥ 0.

Case 2. When j =n−1 we will prove that a(2)n,n−1/n−a(2)n−1,n−1/(n−1)≥ 0.

Suppose not. If a(2)n,n−1/n−a(2)n−1,n−1/(n−1) = β < 0, then as before we choose a

starshaped sequence (xk) such that ck = 0 for k ≠ n−1 and cn−1 = 1. Thus using

Case 1 in (2.17) we obtain

σn−σ0

n
− σn−1−σ0

n−1
= 1
n−1

[
(n−1)

(
a(2)n,n−1

n
− a

(2)
n−1,n−1

n−1

)
−(n−2)

(
a(2)n,n
n

)]

= 1
n−1

[
(n−1)β−(n−2)

(
a(2)n,n
n

)]

< 0,

(2.19)

which is a contradiction. Continuing in this manner with j = n−2,n−3, . . . ,3,2, we

can establish that a(2)n,j/n−a(2)n−1,j/(n−1)≥ 0. This completes the proof.
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We give below an example to show that the three conditions of Theorem 2.3 are not

sufficient for a matrix A to preserve the starshape of sequences.

Example 2.4. Let A be a matrix given by

A=




0 0 0 0 0 . . .
1 0 0 0 0 . . .
2 0 0 0 0 . . .
3 3 −6 3 0 . . .
4 8 −16 8 0 . . .
...

...
...

...
...

n 2n −4n 2n 0 . . .
...

...
...

...
...




. (2.20)

Then the corresponding matrices A(1) and A(2) are given by

A(1) =




0 0 0 0 0 . . .
1 0 0 0 0 . . .
2 0 0 0 0 . . .
3 0 −3 3 0 . . .
4 0 −8 8 0 . . .
...

...
...

...
...

n 0 −2n 2n 0 . . .
...

...
...

...
...




, A(2) =




0 0 0 0 0 . . .
1 0 0 0 0 . . .
2 0 0 0 0 . . .
3 0 0 3 0 . . .
4 0 0 8 0 . . .
...

...
...

...
...

n 0 0 2n 0 . . .
...

...
...

...
...




. (2.21)

The above matrix A satisfies all three conditions of Theorem 2.3. But A does not

preserve the starshape of sequences. To see this, we choose a starshaped sequence

(xn) such that ck = 0 for k≠ 2 and c2 = 1. Then the sequence transformed by A is not

starshaped, because when n= 4, (2.17) yields

σ4−σ0

4
− σ3−σ0

3
= 1

2

[
2

(
a(2)4,2

4
− a

(2)
3,2

3

)
−
(
a(2)4,3

4
− a

(2)
3,3

3

)]
< 0. (2.22)

In Theorem 2.1 we stated the sufficient conditions for a matrix to preserve the

starshape of sequences, and in Theorem 2.3 we stated the necessary conditions. Now,

we give the necessary and sufficient conditions for a matrixA to preserve the starshape

of sequences.

Theorem 2.5. A matrixA= [an,k] preserves the starshape of sequences if and only if

(i) (a(2)n,0−a0,0)/n= (a(2)n−1,0−a0,0)/(n−1), for n≥ 2,

(ii) a(2)n,1/n= a(2)n−1,1/(n−1), for n≥ 2, and

(iii) for each k≥ 2, the sequence {ka(2)n,k−(k−1)a(2)n,k+1}∞n=0 is starshaped.
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Proof. Assume that conditions (i), (ii), and (iii) are true.

From condition (iii) we obtain, using Definition 1.1 that for each k≥ 2,

k
(
a(2)n,k
n

−
a(2)n−1,k

n−1

)
−(k−1)

(
a(2)n,k+1

n
−
a(2)n−1,k+1

n−1

)
≥ 0. (2.23)

If a sequence (xn) is starshaped, then using Lemma 1.4 and the above inequality in

(2.17) we see that the transformed sequence {σn} is also starshaped.

Conversely, let A preserve the starshape of sequences. Then conditions (i) and (ii)

follow from Theorem 2.3. Suppose that condition (iii) is not true for some k = j ≥ 2.

Therefore, the sequence

{
ja(2)n,j−(j−1)a(2)n,j+1

}∞
n=0

(2.24)

is not starshaped. So, there exists an N > j such that

j
(
a(2)N,j
N

−
a(2)N−1,j

N−1

)
−(j−1)

(
a(2)N,j+1

N
−
a(2)N−1,j+1

N−1

)
= β < 0. (2.25)

Choose a starshaped sequence (xk) such that ck = 0 for k ≠ j and cj = −β > 0. Then

from (2.17) we see that the transformed sequence satisfies that

σN−σ0

N
− σN−1−σ0

N−1
=−β

2

j
< 0, (2.26)

which is a contradiction. Hence the theorem is proved.

In the next theorem, we give a sufficient condition for a starshape preserving ma-

trix A to map a non-starshaped sequence into a starshaped one. For simplicity we

introduce the following notation

ω(2)
n,k := k

(
a(2)n,k
n

−
a(2)n−1,k

n−1

)
−(k−1)

(
a(2)n,k+1

n
−
a(2)n−1,k+1

n−1

)
. (2.27)

Theorem 2.6. Let a matrix A preserve the starshape of sequences. If there exist k
and j with j > k≥ 2 and a constant λ > 0 such that

λω(2)
n,k ≥ω(2)

n,j (2.28)

for all n≥ 2, then A maps a non-starshaped sequence into a starshaped sequence.

Proof. From (2.17) any transformed sequence satisfies for n≥ 2,

σn−σ0

n
− σn−1−σ0

n−1
= c2

2

[
ω(2)
n,2
]+ c3

3

[
ω(2)
n,3
]+···+ ck

k
[
ω(2)
n,k
]

+···+ cj
j
[
ω(2)
n,j
]+···+ cn−1

n−1

[
ω(2)
n,n−1

]+ cn
n
[
ω(2)
n,n
]
.

(2.29)
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Now, using Lemma 1.3 we choose a non-starshaped sequence (xk) such that ck = λ,

cj =−1 and all other ci’s are zero. Thus when n< k,

σn−σ0

n
− σn−1−σ0

n−1
= 0. (2.30)

When k≤n< j,

σn−σ0

n
− σn−1−σ0

n−1
= λ
k

[
ω(2)
n,k

]
≥ 0, (2.31)

by Theorem 2.5. When n≥ j,

σn−σ0

n
− σn−1−σ0

n−1
= λ
k

[
ω(2)
n,k

]
− 1
j

[
ω(2)
n,j

]
≥ 0, (2.32)

by our assumption. Thus {σn} is starshaped.

3. Examples. In this section, we study the starshape preserving nature of some

well-known matrices. Some of the results will not be proved here, as either their proof

follows in an obvious manner or is straightforward but more tedious.

One of the most familiar summability matrices is the Cesáro matrix [3, page 44].

This matrix is a lower triangular matrix given by

Cn,k =




1
n+1

, if k≤n,

0, if k >n.
(3.1)

The corresponding matrices C(1) and C(2) are given by

C(1)n,k =



n+1−k
n+1

, if k≤n,

0, if k >n,

C(2)n,k =



(n+1−k)(n+2−k)

2(n+1)
, if k≤n,

0, if k >n.

(3.2)

Theorem 3.1. The Cesáro matrix preserves the starshape of the sequences. Also, it

maps a non-starshaped sequence into a starshaped one.

Proof. It is easy to verify conditions (i) and (ii) of Theorem 2.5. To see condition

(iii), consider

k
(
C(2)n,k
n

−
C(2)n−1,k

n−1

)
−(k−1)

(
C(2)n,k+1

n
−
C(2)n−1,k+1

n−1

)
, (3.3)

which simplifies to k(k−1)/n(n2−1)≥ 0, for n, k≥ 2. It is not difficult to verify that

3ω(2)
n,2 = ω(2)

n,3 for all n ≥ 2. Therefore, by Theorem 2.6 we conclude that the Cesáro

matrix is stronger than the identity matrix.
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For j ∈N, the jth order of Cesáro matrix is given by [3, page 45]

Cj[n,k]=




(
n−k+j+1
j−1

)
(
n+j
j

) , if k≤n,

0, if k >n.

(3.4)

Lemma 3.2. For each j ∈N, the matrixCj+1C−1
j preserves the starshape of sequences.

Proof. If Cj+1C−1
j is represented by Aj , it is easy to see that

Aj[n,k]=




(
j+k
j

)
(
n+j+1
j+1

) , if k≤n,

0, if k >n.

(3.5)

Let (xn) be a starshaped sequence. Then a simple calculation shows that

(
j+n
j

)
xn =

(
n+j+1
j+1

)(
Ajx

)
n−

(
n+j
j+1

)(
Ajx

)
n−1. (3.6)

Writing

(
Ajx

)
n =n

n∑
i=1

ci
i
−(n−1)c0, (3.7)

equation (3.6) can be simplified to

xn = 1
j+1

[
(n+j+1)cn+n(j+2)

n−1∑
i=1

ci
i
+(j+1−n(j+2)

)
c0

]
. (3.8)

Therefore for each n≥ 2, we get

xn−x0

n
− xn−1−x0

n−1
= (n+j+1)

n(j+1)
cn+ (2−n)

(n−1)(j+1)
cn−1, (3.9)

which is nonnegative by assumption. Considering the values for n = 2,3, . . . succes-

sively, we see that cn ≥ 0 for n≥ 2. This completes the proof.

Thus the matrix Cj is included by the matrix Cj+1 in the starshape sense for each

j ∈N. Combining this result with Theorem 3.1, we obtain the following theorem.

Theorem 3.3. For each j ∈ N, the jth order of Cesáro matrix Cj preserves the

starshape of sequences.

Another well-known lower triangular matrix is the Nörlund matrix [3, page 43]

Np[n,k]=



pn−k
Pn

, if k≤n,
0, if k >n,

(3.10)



200 C. R. SELVARAJ AND S. SELVARAJ

where {pn} is a nonnegative sequence with p0 > 0 and Pn =
∑n
k=0pk. It is obvious that

N(2)p [n,0]= 1
Pn

n∑
i=0

Pi, (3.11)

which in turn yields that

N(2)p [n,0]−Np[0,0]
n

− N
(2)
p [n−1,0]−Np[0,0]

n−1
(3.12)

is negative. Therefore condition (i) of Theorem 2.3 fails. This results in the following

theorem.

Theorem 3.4. The Nörlund matrixNp does not preserve the starshape of sequences.
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