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NUMERICAL METHODS OF COMPUTATION OF SINGULAR
AND HYPERSINGULAR INTEGRALS
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Abstract. In solving numerous problems in mathematics, mechanics, physics, and tech-
nology one is faced with necessity of calculating different singular integrals.

In analytical form calculation of singular integrals is possible only in unusual cases.
Therefore approximate methods of singular integrals calculation are an active develop-
ing direction of computing in mathematics. This review is devoted to the optimal with
respect to accuracy algorithms of the calculation of singular integrals with fixed singu-
larity, Cauchy and Hilbert kernels, polysingular and many-dimensional singular integrals.
The isolated section is devoted to the optimal with respect to accuracy algorithms of the
calculation of the hypersingular integrals.

2000 Mathematics Subject Classification. 65D32.

1. Introduction

1.1. Definitions of optimality. The developing of optimal methods for solving

problems of computational mathematics is of prime importance. Various definitions

of optimality of numerical methods, basic results on optimal algorithms and a detailed

bibliography can be found in [1, 3, 47]. Recall definitions of the algorithms, optimal

with respect to accuracy, for calculation of singular integrals. We use the definitions

from [3] of algorithms, optimal with respect to accuracy. The definitions of optimal

with respect to accuracy algorithms are different for singular integrals with fixed and

with moving singularities.

Consider a quadrature rule

∫ 1

−1

φ(τ)
τ

dτ =
N∑
k=1

pkφ
(
tk
)+RN(φ,pk,tk), (1.1)

where coefficients pk and nodes tk, k= 1, . . . ,N , are arbitrary.

An error of the quadrature rule (1.1) on class Ψ is defined as

RN
(
Ψ ,pk,tk

)= sup
φ∈Ψ

∣∣RN(φ,pk,tk)∣∣. (1.2)

Define a functional ζN[Ψ]= infpk,tk RN(Ψ ,pk,tk).
The quadrature rule with coefficients p∗k and nodes t∗k is optimal, asymptotically

optimal, optimal with respect to order on the class Ψ among all quadrature rules of

type (1.1) provided that RN(Ψ ,p∗k ,t
∗
k )/ζN[Ψ]= 1, ∼ 1, � 1.
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Define optimality with respect to accuracy for singular integrals with moving sin-

gularity. Consider a quadrature rule

1
2π

∫ 2π

0
φ(σ)ctg

σ −s
2

dσ =
N∑
k=1

pk(s)φ
(
tk
)+RN(s,φ,pk,tk). (1.3)

An error of the quadrature rule (1.3) is defined as

RN
(
φ,pk,tk

)= sup
0≤s≤2π

∣∣RN(s,φ,pk,tk)∣∣. (1.4)

The error of the quadrature rule on class Ψ is defined as

RN
(
Ψ ,pk,tk

)= sup
0≤s≤2π

RN
(
φ,pk,tk

)
. (1.5)

Define a functional ζN[Ψ]= infpk,tk RN(Ψ ,pk,tk).
The quadrature rule with coefficients p∗k and nodes t∗k is optimal, asymptotically

optimal, optimal with respect to order on class of functions Ψ among all quadrature

rules of the type (1.3) provided that RN(Ψ ,p∗k ,t
∗
k )/ζN[Ψ]= 1,∼ 1, or � 1.

1.2. Classes of functions. In this section, we will list several classes of functions

which will be constantly used later. Some definitions we will take from [31].

A function f defined on A = [a,b] or A = K, where K is a unit circle, satisfies

a Hölder conditions with constant M and exponent α, or belongs to class Hα(M),
M ≥ 0, 0≤α≤ 1 if |f(x′)−f(x′′)| ≤M|x′ −x′′|α, x′, x′′ ∈A.

More general is the class Hα,ρ(M). This consists of all functions f(t) which can be

represented as f(t)= g(t)/ρ(t), where g(t)∈Hα(M), ρ(t) is a weight function.

Class Hω(M), where ω(h) is a modulus of continuity, consists of all functions

f ∈ C(A) with the property |f(x′)−f(x′′)| ≤Mω(|x′ −x′′|), x′, x′′ ∈A.

Class Wr(M) consists of functions f(x) ∈ C(A) which have continuous deriva-

tives f ′,f ′′, . . . ,f (r−1) on A, a piecewise continuous derivative f (r) on A satisfying

maxx∈[a,b] |f (r)(x)| ≤M .

Let Wr
ρ (1) be the class of functions f(t) which can be represented as f(t) =

ϕ(t)/ρ(t), where ϕ(t)∈Wr(1), ‖ϕ‖C = 1, ρ(t) is a weight function.

The class of functions Wr
p(M), r = 1,2, . . . , 1 ≤ p ≤∞, consists of functions f(x),

defined on a segment A = [a,b] or one A = K, that have continuous derivatives

f ′,f ′′, . . . ,f (r−1), integrable derivative f (r) satisfying

[∫
A

∣∣f (r)(x)∣∣pdx]1/p
≤M. (1.6)

Let Φ be the class of functions f(x) that are defined on the segment [0,a] and

satisfy the conditions:

(1) limx→0f(x)= 0;

(2) f(x) is almost increasing;

(3) supx>0 1/f(x)
∫ x
0 f(s)/sds =Af <∞;

(4) supx>0x/f(x)
∫ x
0 f(s)/sds = Bf <∞.
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A function f(x1,x2, . . . ,xl), l=2,3, . . . , defined onA=[a1,b1;a2,b2; . . . ;al,bl] orA=
K1×K2×···×Kl, where Ki, i= 1,2, . . . , l, are unit circles satisfying Hölder conditions

with constant M and exponents αi, i = 1,2, . . . , l, or belongs to the class Hα1,...,αl (M),
M ≥ 0, 0≤αi ≤ 1, i= 1,2, . . . , l, if∣∣f (x1, . . . ,xl

)−f (y1, . . . ,yl
)∣∣≤M(∣∣x1−y1

∣∣α1+···+
∣∣xl−yl∣∣αl). (1.7)

Let ω(h), ωi(h), where i= 1,2, . . . , l, l= 2,3, . . . , be a modulus of continuity.

The class Hω1,...,ωl(M), consists of all functions f ∈ C(A), A = [a1,b1;a2,b2; . . . ;
al,bl] or A=K1×K2×···×Kl, with a property∣∣f (x1, . . . ,xl

)−f (y1, . . . ,yl
)∣∣≤M(ω1

(∣∣x1−y1

∣∣)+···+ωl
(∣∣xl−yl∣∣)). (1.8)

Let Hω
j (A), j = 1,2,3, A= [a1,b1; . . . ;al,bl], or A=K1×K2×···×Kl, l= 2,3, . . . , be

the class of functions f(x1, . . . ,xl) defined on A and satisfying∣∣f(x)−f(y)∣∣≤ω(ρj(x,y)), j = 1,2,3, (1.9)

where x = (x1, . . . ,xl), y = (y1, . . . ,yl), ρ1(x,y) = max1≤i≤l(|xi − yi|), ρ2(x,y) =∑l
i=1 |xi−yi|, ρ3(x,y)= [

∑l
i=1 |xi−yi|2]1/2.

Let Zωj (A), j = 1,2,3, be the class of functions f(x1, . . . ,xl), defined on A and sat-

isfying |f(x)+f(y)−2f((x+y)/2)| ≤ω(ρj(x,y)/2), j = 1,2,3.

Let Wr1,...,rl (M), l=2,3, . . . , be the class of functions f(x1, . . . ,xl), defined on a do-

main A, which have continuous partial derivatives ∂|v|f(x1, . . . ,xl)/∂x
v1
1 ···∂xvll , 0<

|v| ≤ r − 1, |v| = v1 + ··· + vl, vi ≥ 0, i = 1,2, . . . , l, r = r1 + ··· + rl, and

all piece-continuous partial derivatives of order r satisfying ‖∂rf (x1, . . . ,xl)/
∂xr1

1 ···∂x
rl
l ‖C ≤ M .

Let A = [a1,b1;a2,b2; . . . ;al,bl] or A = K1×K2×···×Kl, l = 2,3, . . . . Let Crl (M) be

the class of functions f(x1, . . . ,xl) which are defined in A and which have continuous

partial derivatives up to r−1 and a piecewise continuous partial derivatives of order r .

The partial derivatives of order r satisfy the conditions∥∥∥∥∥∂
rf
(
x1, . . . ,xl

)
∂xv1

1 ···∂xvll

∥∥∥∥∥
C
≤M (1.10)

for any v = (v1, . . . ,vl), where vi, i= 1,2, . . . , l are integer and
∑l
i=1vi = r .

1.3. Preliminaries. In this paper, we will use an affirmation by S. Smolyak quoted

from Bakhvalov’s article [4].

Lemma by S. Smolyak. Set L(f),L1(f ), . . . ,LN(f ) for linear functional and Ω for a

convex centric symmetrical set with center of symmetry θ in the linear metric space.

Then the numbers D1, . . . ,DN exist and they are such that

sup
f∈Ω

∣∣∣∣∣L(f)−
N∑
k=1

DkLk(f)

∣∣∣∣∣= R(T), (1.11)

that is, among the best methods there is the linear method.

In Smolyak lemma the following notations were used:

T(f)= (L1(f ), . . . ,LN(f )
)
, R(S,T)= sup

f∈Ω

∣∣L(f)−S(T(f))∣∣. (1.12)
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Here the functional L(f) is calculated by the method S in which the information T(f)
is used. An error of calculating L(f) is given by R(T)= infS R(S,T).

Now we will describe some designations which will be used in this paper.

Let f(t) be a function which is defined on the segment [a,b] and belongs to the class

of functions Wr(M). Let c ∈ [a,b]. An expression Tr−1(f ,[a,b],c) is a designation of

a segment of Taylor series

Tr−1
(
f ,[a,b],c

)= f(c)+ 1
1!
f (1)(c)(t−c)+···+ 1

(r −1)!
f (r−1)(c)(t−c)r−1. (1.13)

Let f(x1, . . . ,xl) ∈Wr,...,r (M), r = 1,2, . . . , x ∈ D = [a1,b1; . . . ;al,bl]. Let c ∈ D. Let

Tr (f ,D,c) be a segment of the Taylor series

Tr (f ,D,c)= f(c)+ 1
1!
df(c)+···+ 1

r !
drf(c). (1.14)

Let f(x1,x2)∈Wr,s(M), x = (x1,x2)∈D = [a,b;c,d]. Let ā∈ [a,b], c̄ ∈ [c,d]. Let

Trs(f ,D,(ā, b̄)) be a segment of Taylor series

Trs
(
f ,D,(ā, b̄

))= Tr (Ts(f (x1,x2
)
,[c,d], c̄

)
,[a,b],ā

)
. (1.15)

Let Dr(t) be a function

Dr(t)= 1
2rπr

∞∑
k=1

1
kr

cos
(

2πkt− πr
2

)
. (1.16)

Favar constant Kr is defined as

Kr = 4
π

∞∑
k=1

(−1)k(r+1) 1
(2k+1)r+1

, r = 0,1, . . . . (1.17)

Let Rrq(x) = xr +
∑r−1
k=0akxk be a polynomial of degree r of the least derivation

from zero in the space Lq[−1,1].
Let Rrq(a;h;x) be a polynomial xr +∑r−1

k=0akxk such that

∫ a+h
a−h

∣∣Rrq(a;h;x)
∣∣qdx = min

a0,...,ar−1

∫ a+h
a−h

∣∣∣∣∣xr +
r−1∑
k=0

akxk
∣∣∣∣∣
q

dx. (1.18)

Let f(t) be a function which is defined on the segment [a,b] and belongs to the class

of functions Wr
p(M). Now we construct the special polynomial for approximation of

the function f(t) on the segment [a,b]. This polynomial will be used for constructing

optimal quadrature rules for singular and Hadamard integrals.

We introduce a polynomial f̃ (τ,[a,b]) corresponding to the formula

f̃
(
τ,[a,b]

)= r−1∑
k=0

(
f (k)(a)
k!

(τ−a)k+Bkδ(k)(b)
)
,

δ(τ)= f(τ)−
r−1∑
k=0

f (k)(a)
k!

(τ−a)k.
(1.19)



NUMERICAL METHODS OF COMPUTATION OF SINGULAR . . . 131

Coefficients Bk are determined from the equality

(b−t)r −
r−1∑
j=0

Bjr !(b−a)
(r −j−1)!

(b−a)r−j−1 = (−1)rRrq(c,h,t), (1.20)

where Rrq(c,h,t) = tr +
∑r−1
k=0aktk is the polynomial of degree r of least deviation

from zero in the space Lq[a,b] (1/p+1/q = 1), c = (a+b)/2, h= (b−a)/2.

Let f ∈Wr
p(M,[a,b]), r = 1,2, . . . , 1≤ p ≤∞. Divide the segment [a,b] into smaller

segments ∆k = [tk,tk+1], k= 0,1, . . . ,n−1; tk = a+(b−a)k/n, k= 0,1, . . . ,n. Approxi-

mate the function f(t) on the segment∆k by the polynomial f̃ (t,∆k), k= 0,1, . . . ,n−1,

which was described above. A local spline is defined on the segment [a,b] and consists

of the polynomials f̃ (t,∆k), k= 0,1, . . . ,n−1, and is denoted by f̃ (t).
Let f(t) be a function defined on the segment [a,b] and belongs to class of func-

tions Wr
p(M,[a,b]), r = 1,2, . . . , 1 ≤ p ≤ ∞. Let Dn,r ,p(f (l)(tj)), 0 ≤ l ≤ r − 1 be a

difference operator with approximate value f (l)(tj) to within An−2(r−l). This operator

is constructed by values f(vk), k= 1,2, . . . ,r+1, and one is exact for the polynomials

of order r −1.

Let f(t1, t2)∈Wr,s(M,D), r ,s = 1,2, . . . , D = [a1,b1;a2,b2]. Let Dr,sm,n(f (k,l)(τ1,τ2)),
1≤ k≤ r−1, 1≤ l≤ s−1, be a difference operator with approximate value f (k,l)(τ1,τ2)
to within Am−2(r−l)n−2(s−l). The operator Dr,sm,n must be exact for the polynomials

of tv1 t
w
2 , v = 0,1, . . . ,r − 1, w = 0,1, . . . ,s − 1 and one must use values f(ζi,ξj),

i= 1,2 . . . ,r +1, j = 1,2, . . . ,s+1.

We describe one way of constructing an operator Dn,r ,p .

Assume we should like to construct the operator Dn,r ,p for approximation of the

value f (l)(0), 0 ≤ l ≤ r − 1. Let h = n−2 be a small number. We approximate the

function f(t) on the segment [0,h] with the Lagrange interpolation polynomials on

r +1 nodes vk ∈ [0,h], k = 1,2, . . . ,r +1. This interpolation polynomial is one kind

of the operator Dn,r ,p . Using theory of approximation [34, 35] we can conclude that

operator Dn,r ,p has all needed properties.

An operator Dr,sm,n can be constructed by similar ways.

Let f(t)∈Wr
p(M,[a,b]), r = 1,2, . . . , 1≤ p ≤∞. Let

Qn,r ,p
(
f ,[a,b]

)= n∑
k=1

pkf
(
tk
)

(1.21)

be the asymptotically optimal quadrature rule for calculation of the integral
∫ b
a f (t)dt.

Let f(t1, t2)∈Wr,s(M,D), r ,s = 1,2, . . . ,D = [a1,b1;a2,b2]. Let

Qr,s
n1,n2

(
f ;
[
a1,b1;a2,b2

])= n1∑
k1=1

n2∑
k2=1

pk1k2f
(
tk1k2

)
(1.22)

be the asymptotically optimal quadrature rule for calculation of the integral

∫ b1

a1

∫ b2

a2

f
(
t1, t2

)
dt1dt2. (1.23)
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We describe one of methods of construction of a functional Qn,r ,p(f ;[a,b]). It is

well known [36], that Euler-Maclaurin quadrature rule

∫ b
a
f (x)dx=a0f(a)+

m∑
k=0

pkf
(
xk
)+b0f(b)+

r−1∑
v=1

av
(
f (v)(b)−f (v)(b))+Rm(f) (1.24)

is optimal on class Wr
p(1). Approximating derivatives f (v)(b) and f (v)(a) by the dif-

ference operators Dn,r ,p(f (v)(b)) and Dn,r ,p(f (v)(a)) we receive the asymptotically

optimal quadrature rule

Qn,r ,p
(
f ;[a,b]

)= a0f(a)+
m∑
k=1

pkf
(
xk
)+b0f(b)

+
r−1∑
v=1

av
(
Dn,r ,p

(
f (v)(b)

)−Dn,r ,p(f (v)(a))).
(1.25)

The asymptotically optimal quadrature rulesQr,s
n1,n2(f ,[a1,b1;a2,b2]) are constructed

by similar ways.

A polynomial Pr (f ,[a,b]) that interpolated the function f(t) on the segment [a,b]
is constructed as follows. Denote by ζk, k= 1,2, . . . ,r , the roots of the Legendre poly-

nomial of degree r . We map a segment [ζ1,ζr ]∈ [−1,1] onto [a,b] so that the points

ζ1 and ζr map to a and b, respectively. Images of the points ζi under this mapping

are denoted by ζ′i , i= 1,2, . . . ,r . Using the points of ζ′i , i= 1,2, . . . ,r , we construct the

interpolation polynomial Pr (f ,[a,b]) of degree r −1.

The abbreviation q.r. means quadrature rule. The symbol [a] means the greatest

integer in a.

1.4. Short reviews on approximate methods for calculating singular and hyper-

singular integrals. Singular and hypersingular integrals of the forms

If =
∫ 1

−1

f(t)
t
dt, (1.26)

Hf = 1
2π

∫ 2π

0
f(σ)ctg

σ −s
2

dσ, (1.27)

Kf =
∫ 1

−1

ω(τ)f(τ)
τ−t dτ, (1.28)

Jf =
∫ 2π

0

∫ 2π

0
f
(
σ1,σ2

)
ctg

σ1−s1

2
ctg

σ2−s2

2
dσ1dσ2, (1.29)

Lf =
∫ 1

−1

∫ 1

−1

ω1
(
τ1
)
ω2
(
τ2
)
f
(
τ1,τ2

)
(
τ1−t1

)(
τ2−t2

) dτ1dτ2, (1.30)

Mf =
∫
D

p(θ)f(u)
r(u,v)

du, (1.31)

Af =
∫ 1

−1

f(t)
tv

dt, Bf =
∫ 1

−1

f(t)
|t|v+λ dt, v = 1,2,3, . . . , 0< λ< 1, (1.32)

Cf =
∫ 1

−1

f(t)dt
(t−s)v , v = 2,3, . . . , (1.33)
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Df =
∫ 1

−1

∫ 1

−1

f
(
t1, t2

)
dt1dt2(

t1−s1
)v1
(
t2−s2

)v2
, v1, v2 = 2,3, . . . , (1.34)

Ef =
∫ 1

−1

∫ 1

−1

f
(
t1, t2

)
dt1dt2((

t1−s1
)2+(t2−s2

)2)v , v = 2,3, . . . ,v, (1.35)

where θ = (u−v)/r(u,v), u = (u1,u2), v = (v1,v2), r(u,v) = [(u1−v1)2+ (u2−
v2)2]1/2, D = [−1,1;−1,1], play important role in fields like aerodynamics, electrody-

namics, the theory of elasticity and other areas of physics and engineering sciences.

One of the first publications devoted to approximate evaluation of singular integrals

with fixed singularity of type (1.26) was [29] in which the classical Gauss quadrature

rule was applied to the integral

If =
∫ 1

0

f(τ)−f(0)
τ

dτ. (1.36)

Optimal, asymptotically optimal, and optimal with respect to order quadrature rules

for calculating singular integrals of type (1.26) was investigated in the series of the

papers by Boikov. These results and references can be found in [5, 6, 8, 9].

Asymptotically optimal and optimal with respect to order quadrature rules for cal-

culating singular integrals of type (1.26) were diffused in [11] to the hypersingular

integrals as (1.32).

A great number of publications is devoted to numerical methods of the calculation

of singular integrals as (1.27) and (1.28).

For numerical evaluation of singular integrals as (1.27) there are often constructed

the following quadrature rules. They approximate the integrand function f(t) by the

interpolated polynomial P2n[f] with nodes sk = 2kπ/(2n+1), k= 0,1, . . . ,2n+1, (or

other nodes) and introduce a quadrature rule

Hf = 1
2π

∫ 2π

0
f(σ)

σ −s
2

dσ = 1
2π

∫ 2π

0
P2n[f](σ)

σ −s
2

dσ +Rn. (1.37)

The integral in the right-hand side is calculated exactly.

Similar quadrature rules are constructed for the singular integrals as (1.28)

Kf =
∫ 1

−1

ω(τ)f(τ)dτ
τ−t =

∫ 1

−1

ω(τ)Pn−1[f ](τ)dτ
τ−t +Rn. (1.38)

The Pn−1[f ](t) is an interpolated polynomial with nodes −1≤ t1 < t2 < ···< tn ≤ 1.

These procedures have been investigated in [15, 16, 22, 23, 27, 33, 40].

Instead of the interpolation polynomials for the approximation of the integrand

function there often are used partial sums of Fourier series, Vallee-Poussin, Bernstein-

Rogozinski, Fejer, Abel-Poisson, Cesaro sums. Some results in this direction are given

in [45].

The discrete vortex method detailed for the solution of many tasks of aerodynamics

was used for the numerical calculation of singular integrals as (1.27), (1.28), (1.29), and

(1.30). Explicit presentation of discrete vortex method is given in [30].
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For evaluation of the singular integrals as (1.27) and (1.28) many authors approxi-

mate an integrand function with different splines. Investigation in this direction can

be found in [8, 9, 39].

Evaluation of singular integrals with Cauchy kernel based on approximating the

integrand function by Whittaker cardinal or Sinc functions was investigated in [44].

Quadrature rules with the highest trigonometrical precision for singular integrals

with Hilbert kernel and weight ω was discussed in [18, 19].

For the evaluation of singular integrals many authors use the method of subtraction

of singularity. They write

K[f ,t]=
∫ 1

−1

ω(τ)
(
f(τ)−f(t))
τ−t dτ+f(t)

∫ 1

−1

ω(τ)
τ−t dτ (1.39)

and approximate the integral on the right-hand side using classical quadrature rules.

Investigation in this direction can be found in [17, 27].

In the theory of numerical approximation of Cauchy type integrals, three kinds of

Gaussian quadrature rules have been investigated.

Let a function f(t) be interpolated by the polynomial Pn−1[f ] of degree n−1 using

the zeroes of thenth Jacobi polynomial with the weight functionω(t) as interpolation

nodes. ThenK[Pn−1f ,t] is the Gaussian quadrature rule for the Cauchy principal value

integral.

The results on the Gaussian quadrature rules can be found in [17, 20, 21, 22, 25].

On the other hand, the integral K[f ,t] can be represented as (1.39). Then the first

integral on the right-hand side of (1.39) is a Riemann integral. It can be approximated

with Gaussian quadrature rules for Riemann integrals. The resulting approximation

for K[f ,t] is called the modified Gaussian quadrature rules for the Cauchy principal

value integral. Results on the modified Gaussian quadrature rules can be found in

[20, 22, 24].

The Gaussian quadrature rule of the third kind

K
[
f(t)

]=
∫ 1

−1

ω(τ)
(
Pn−1[f ](τ)−Pn−1[f ](t)

)
τ−t dτ+f(t)

∫ 1

−1

ω(τ)
τ−t dτ (1.40)

was proposed in [18].

For the evaluation of polysingular integrals as (1.30) and (1.31) many authors re-

placed a function f on the interpolated polynomials or splines. These methods were

considered in [6, 8, 46].

The uniform convergence with respect to the parameters t1 and t2 of the numerical

methods for evaluating the Cauchy principal value integral (1.30), where ω1, ω2 are

the Jacobi weight functions ωi(t)= (1−t)αi(1+t)βi , αi,βi >−1, i= 1,2, was studied

in [41].

The numerical methods of the evaluation of singular and polysingular integrals on

Hardy spaces are given in [8, 10].

From this short review it follows that many methods for calculating singular inte-

grals exist. It is necessary to find a criteria for the comparison of these methods. One

of these criterions is the optimality of algorithms.
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Optimal with respect to order quadrature rule for the evaluation integral as (1.27) on

Hölder and Sobolev classes of functions was constructed in [26]. Later asymptotically

optimal and optimal with respect to order quadrature rule for the evaluation integrals

as (1.27), (1.28), (1.29), (1.30), and (1.31) on Hölder and Sobolev classes of functions

was constructed by Boikov. These results were summed in [5, 6, 8, 9] which consist of

bibliography on numerical methods of the evaluation of singular and hypersingular

integrals.

Asymptotically optimal and optimal with respect to order quadrature rules for the

calculation of singular integrals was diffused in [11] to hypersingular integrals as

(1.32), (1.33), (1.34), and (1.35).

2. Singular integrals with fixed singularity. In this section, we give optimal, asymp-

totically optimal, optimal with respect to order quadrature rules for calculating one-

dimensional singular integrals with fixed singularity.

2.1. Optimal algorithms for calculating singular integrals with fixed singularity.

Up to now we know only four statements of optimal algorithms of calculating singular

integrals with fixed singularity.

We consider a singular integral

If =
∫ 1

−1

f(τ)
τ

dτ. (2.1)

We will compute the integral If by a quadrature rule as

If =
N∑

k=−N

′pkf
(
tk
)+RN(f ,pk,tk), (2.2)

where −1≤ t−N < ···< t−1 ≤ 0≤ t1 < ···< tN ≤ 1, prime in summation indicate that

k≠ 0.

We will consider the quadrature rules as (2.2) under two assumptions:

(1) t±N =±1, such that formula (2.2) is a Markov quadrature rule;

(2) tN ≥−1, tN ≤ 1.

Theorem 2.1 (see [6, 8]). Let Ψ = W 1(1). Among all possible Markov quadrature

rules of type (2.2) the quadrature rule

If =
N−1∑
k=1

2ln
k+1
k

(
f
(
k(k+1)
N(N+1)

)
−f

(
− k(k+1)
N(N+1)

))

+(f(1)−f(−1)
)
ln
N+1
N

+RN
(2.3)

is optimal. The error of the quadrature rule (2.3) is equal to Rn(Ψ)= 2ln(1+1/N).

Theorem 2.2 (see [6, 8]). Let Ψ = W 1(1). Among all possible quadrature rules of

type (2.2) the quadrature rule

If =
N∑
k=1

2ln
k+1
k

(
f
(
k(k+1)
(N+1)2

)
−f

(
− k(k+1)
(N+1)2

))
+RN (2.4)

is optimal. The error of the quadrature rule (2.4) is equal to RN(Ψ)= 2/(N+1).
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Theorem 2.3 (see [37]). Let Ψ =H1(1). Among all possible Markov quadrature rules

of type (2.2) the quadrature rule (2.3) is optimal.

Theorem 2.4 (see [37]). Let Ψ =H1(1). Among all possible quadrature rules of type

(2.2) the quadrature rule (2.4) is optimal.

Proofs of theorems. To make some notices relating to the proofs of the theo-

rems.

First of all we assume that the quadrature rule (2.2) is strictly for polynomials of

order r −1 in case applying it to functions of the Wr(1) class.

We expand the function φ(t) by the Taylor formula with remainder term in the

integral form

φ(t)=
r−1∑
k=0

φ(k)(0)
k!

tk+ 1
(r −1)!

∫ 1

0
Kr(t−s)φ(r)(s)ds for t ≥ 0,

φ(t)=
r−1∑
k=0

φ(k)(0)
k!

tk+ 1
(r −1)!

∫ −1

0
K̄r (t−s)φ(r)(s)ds for t ≤ 0,

(2.5)

where

Kr(u)=

u

r−1 for u≥ 0,

0 for u< 0,

K̄r (u)=

u

r−1 for u≤ 0,

0 for u> 0.

(2.6)

Since the quadrature rule (2.2) is exact for polynomials of degree not higher than

r −1 hence
∫ 1

−1

φ(τ)
τ

dτ−
N∑

k=−N,k≠0

pkφ
(
tk
)

= 1
(r −1)!

∫ 1

−1

1
τ

[∫ τ
0
(τ−t)r−1φ(r)(t)dt

]
dτ

−
N∑

k=−N,k≠0

pk
(r −1)!

∫ tk
0

(
tk−t

)r−1φ(r)(t)dt

= 1
(r −1)!

∫ 1

0
φ(r)(t)

[∫ 1

0

Kr(τ−t)
τ

dτ−
N∑
k=1

pkKr
(
tk−t

)]
dt

+ 1
(r −1)!

∫ 0

−1
φ(r)(t)

[∫ −1

0

K̄r (τ−t)
τ

dτ−
−1∑

k=−N
pkK̄r

(
tk−t

)]
dt.

(2.7)

Thus the error of the quadrature rule (2.2) on the function class Wr(1) is defined

by the inequality

∣∣RN∣∣≤ 2
(r −1)!

∣∣∣∣∣
∫ 1

0
φ(r)(t)

[∫ 1

0

Kr(τ−t)
τ

dτ−
N∑
k=1

pkKr
(
tk−t

)]
dt

∣∣∣∣∣. (2.8)
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Proof of Theorem 2.1. It follows from the theorem conditions that r = 1, t−N =
−1, tN = 1. In this case

∣∣RN∣∣≤ 2

∣∣∣∣∣
∫ 1

0
φ′(t)

[∫ 1

0

K1(τ−t)
τ

dτ−
N∑
k=1

pkK1
(
tk−t

)]
dt

∣∣∣∣∣

≤ 2

∣∣∣∣∣
∫ 1

0

∣∣∣∣∣
∫ 1

0

K1(τ−t)
τ

dτ−
N∑
k=1

pkK1
(
tk−t

)∣∣∣∣∣dt
∣∣∣∣∣

= 2
∫ 1

0

∣∣∣∣∣− lnt−
N∑
k=1

pkK1
(
tk−t

)∣∣∣∣∣dt.

(2.9)

We find the nodes tk and the weights pk from the integral minimality conditions

assuming t0 = 0

An =
∫ 1

0

∣∣∣∣∣− lnt−
N∑
k=1

pkK1
(
tk−t

)∣∣∣∣∣dt

=
∫ t1

0

∣∣− lnt−M1

∣∣dt+
∫ t2
t1

∣∣− lnt−M2

∣∣dt+···+
∫ 1

tN−1

∣∣− lnt−MN
∣∣dt

=
∫ t′1

0

(− lnt−M1
)
dt+

∫ t1
t′1

(
M1+ lnt

)
dt+···+

∫ t′N
tN−1

(− lnt−MN
)
dt+

∫ 1

t′N

(
MN+ lnt

)
dt,

(2.10)

where t′k ∈ (tk,tk+1).
We differentiate the expressionAN with respect to ti, t′i ,Mi and assume the obtained

expressions are equal to zero. As a result we have the equations system

∂AN
∂ti

=Mi+2lnti+Mi+1 = 0, i= 1,2, . . . ,N−1;

∂AN
∂t′i

=−2Mi−2lnt′i = 0, i= 1,2, . . . ,N−1,N ;

∂AN
∂Mi

=−2t′i+ti+ti−1 = 0, i= 1,2, . . . ,N−1,N.

(2.11)

We transform the equations of system (2.11) to the following form:

lnti =−
(
Mi+Mi+1

)
2

, i= 1,2, . . . ,N−1;

Mi =− lnt′i , i= 1,2, . . . ,N−1,N ;

t′i =
(
ti+ti−1

)
2

, i= 1,2, . . . ,N−1,N.

(2.12)

Hence

lnti =
(
lnt′i+ lnt′i+1

)
2

i= 1,2, . . . ,N−1;

t′i =
(
ti+ti−1

)
2

i= 1,2, . . . ,N−1,N,
(2.13)
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It follows that

t2
i = t′it′i+1, i= 1,2, . . . ,N−1;

t2
i =

ti+ti−1

2
ti+1+ti

2
, i= 1,2, . . . ,N−1;

4t2
i =

(
ti+ti−1

)(
ti+1+ti

)
.

(2.14)

We express ti (i = 2, . . . ,N) by means of t1 taking into account t0 = 0. It follows

from formula (2.14) that correctness of the recurrence relations is

ti+1 =
(
3t2
i −titi−1

)
(
ti+ti−1

) , i= 1,2, . . . ,N−1. (2.15)

Using formula (2.15) we obtain

t2 = 3t1 = (1+2)t1, t3 = 6t1 = (1+2+3)t1, t4 = 10t1 = (1+2+3+4)t1. (2.16)

The mathematical induction method makes it possible to prove that tn = (1+n)×
nt1/2. In fact this formula is valid for n= 2,3,4.

Let it holds for n. We show that it will be valid for n+1. Then

tn+1 =
(
3t2
n−tntn−1

)
(
tn+tn−1

) = (n+2)(n+1)t1
2

(2.17)

and the formula is proved. Now from the request tN = 1 we find that t1 = 2/N(N+
1). Having known the values t′i = i2t1/2 it is easy to obtain Mi = − ln(i2t1/2) =
− ln(i2/N(N +1)), i = 1,2, . . . ,N . The coefficients pi of the optimal quadrature rule

can be determined with respect to the constants Mi. Really,

pN =MN, pN−1 =MN−1−MN, pN−2 =MN−2−MN−1, . . . , p1 =M1−M2. (2.18)

From here

pN =− ln
(

N
(N+1)

)
, pk =−2ln

(
k

(k+1)

)
, k= 1,2, . . . ,N−1. (2.19)

So we received the quadrature rule (2.3).

It is not difficult to estimate the value of its error

∣∣RN∣∣≤ 2
N−1∑
k=1

∣∣∣∣∣
∫ tk+1

tk

(
φ(τ)−φ(t′k+1

))
τ−1dτ

∣∣∣∣∣+
∣∣∣∣∣
∫ t1
t−1

φ(τ)τ−1dτ

∣∣∣∣∣
≤ 2

[
1

N(N+1)
+
N−1∑
k=1

[
tk ln

t2
k

t′kt
′
k+1

+(t′k+t′k+1−2tk
)]

− ln
N2

N(N+1)
−
(

1− N2

N(N+1)

)]

= 2ln
(

1+ 1
N

)
.

(2.20)
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In order to prove the optimality of constructing the quadrature rule it is necessary

to point out the function φ(t) for which

∣∣RN(φ)∣∣= 2
∫ 1

0

∣∣∣∣∣ lnt−
N∑
k=1

pkK1
(
tk−t

)∣∣∣∣∣dt. (2.21)

A function φ(t) determined by the formula φ(t) =mink |t−tk|, k = 0,1, . . . ,N−1,N ,

can be taken in the capacity of such function. This completes the proof.

Proof of Theorem 2.2. In principle this proof is similar to that of Theorem 2.1.

As in the proof of Theorem 2.1, the quadrature rule is defined by the inequality (2.9).

Since in this case tN must not be equal to 1 then AN must be presented in the form

AN =
∫ t1

0

∣∣− lnt−M1

∣∣dt+
∫ t2
t1

∣∣− lnt−M2

∣∣dt+···
+
∫ tN
tN−1

∣∣− lnt−MN
∣∣dt+

∫ 1

tN
| lnt|dt

=
∫ t′1

0

(− lnt−M1
)
dt+

∫ t1
t′1

(
M1+ lnt

)
dt

+···+
∫ t′N
tN−1

(− lnt−MN
)
dt+

∫ tN
t′N

(
MN+ lnt

)
dt+

∫ 1

tN
− lntdt.

(2.22)

Having minimized AN with respect to tk, t′k and Mk we arrive at the system of

equations

∂AN
∂ti

=Mi+2lnti+Mi+1 = 0, i= 1,2, . . . ,N−1;

∂AN
∂tN

=MN+2lntN = 0;

∂AN
∂t′i

=−2Mi−2lnt′i = 0, i= 1,2, . . . ,N−1,N ;

∂AN
∂Mi

=−2t′i+ti+ti−1 = 0, i= 1,2, . . . ,N,

(2.23)

that differs from the system of (2.11) only by adding the equation

∂AN
∂tN

=MN+2lntN = 0. (2.24)

The solution of this system is not different from the solution of the equations

system (2.11) therefore is missing the intermediate evaluations. So we reduce the final

result: tk = k(k+1)/(N+1)2, t′k = k2/(N+1)2, Mk =−2ln(k/(N+1)), k= 1,2, . . . ,N .

Hence the optimal quadrature rule has the meaning (2.4). So it is easy to see that

the error of this quadrature rule is equal to the value 2/(N+1). This completes the

proof.
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2.2. Asymptotically optimal algorithms on the class Hα

2.2.1. Integrals on finite segments. Consider the singular integrals (2.1) on Hölder

class of functions. As a method of evaluation we use a quadrature rule q.r.

Iϕ =
N∑

k=−N

′pkϕ
(
tk
)+RN, (2.25)

where −1 ≤ t−N < ··· < t−1 ≤ 0 ≤ t1 < ··· < tN ≤ 1, is prime in summation indicates

that k �= 0.

Input a quadrature rule

Iϕ =
N−1∑
k=−N

′′ϕ
(
t′k
)
ln
(
tk+1

tk

)
+RN, (2.26)

where t±k = ±(k/N)(1+α)/α, t′k = (tk+tk+1)/2, k = 1,2, . . . ,N−1, t′−k = (t−k+t−k+1)/2,

k= 2,3, . . . ,N , is double prime in summation indicates that k �= 0, −1.

Theorem 2.5 (see [6, 8]). We set Ψ =Hα(1), 0< α≤ 1. Among all possible quadra-

ture rules of type (2.25), the formula (2.26) is asymptotically optimal and has the error

RN[Ψ]=
(
1+o(1))21−α(1+α)α

α1+αNα
. (2.27)

Proof. At the beginning we find value of ζN[Ψ]. Taking into account the symmetry

of the q.r. (2.25), we may restrict ourselves to the interval [0,1].
In the segment [0,1] we shall input a function

ϕ∗(t)=




0, 0≤ t ≤ t1,
mink |t−tk|, t1 ≤ t ≤ 1,

(2.28)

if α= 1 and

ϕ∗(t)=




0, 0≤ t ≤ tk, k=
[

1+α
α

22/α−2
]
+1,

minj
∣∣t−tj∣∣α, tk ≤ t ≤ 1,

(2.29)

if 0<α< 1.

We assume M for [lnN] and divide the segment [0,1] into smaller segments ∆k =
[SkM, S(k+1)M], k= 0,1, . . . , l−1;∆l = [SlM,1]where SkM = (kM/N)(1+α)/α, k= 0,1, . . . , i,
S(l+1)M = 1, l= [N/M]. It is not difficult to see that

∫ 1

0

ϕ∗(τ)
τ

dτ ≥
l+1∑
k=1

1
SkM

∫ SkM
S(k−1)M

ϕ∗(τ)dτ

≥ (1+α)
αM1+α

2αα1+αN1+α

l+1∑
k=1

(
k−θk
k

)(1+α)/α 1(
nk−1+1

)α

≥ (1+o(1)) (1+α)αM1+α

2αα1+αN1+α

l∑
k=M

1(
nk−1+1

)α .

(2.30)
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Here 0< θk < 1 and nk is the number of nodes of q.r. (2.25) situated in the segment

∆k. While deriving relation (2.30) the inequality

min
x1,...,xn

max
ϕ∈Hα(1)(x1,...,xn)

∫ b
a
ϕ(τ)dτ ≥ (b−a)1+α

(1+α)(2(n+1)
)α (2.31)

was used, where Hα(1)(x1, . . . ,xn) is the class of functions belonging to Hα(1) and

vanishing at the nodes a, x1, . . . ,xn, b.

And then we will find the minimal value of the sum
∑l
k=M(nk−1+1)−α. We do not

know the value of
∑l
k=M nk−1 but it is evident that the more the sum

∑l
k=M nk−1 the

less the sum
∑l
k=M(nk−1+1)−α. That is why we will look for the minimum of the sum

V =∑l
k=M(nk−1+1)−α if

∑l
k=M nk−1 =N . Standard methods of mathematical analysis

make it possible to find out that the nodes nM−1 = nM = ··· = nl−1 = N/(l−M+1)
give minimum of the sum V . Therefore V ∼ l1+α/Nα. Substituting this value into the

expression (2.30) we conclude that for any nodes tk, 1≤ k≤N the inequality

sup
∫ 1

0

ϕ(τ)
τ

≥ (1+o(1)) (1+α)α
2αα1+αNα

(2.32)

is valid, where the supremum is taken on all types of the functions ϕ(τ) belonging

to class Hα(1) on the segment [0,1] and vanishing at the points 0, tk, 1≤ k≤N . So,

ζN
(
Hα(1)

)= (1+o(1))21−α(1+α)α
α1+αNα

. (2.33)

The lower bound is received.

We will estimate the error of the q.r. (2.27). It is easy to see that

∣∣RN∣∣≤
∣∣∣∣
∫ t1
t−1

ϕ(τ)
τ

dτ−
∫ t1
t−1

ϕ(0)
τ

dτ
∣∣∣∣+2

N−1∑
k=1

∣∣∣∣
∫ tk+1

tk

ϕ(τ)−ϕ(t′k)
τ

dτ
∣∣∣∣=r1+r2. (2.34)

By estimating each expression r1, r2 separately

r1 = 2
∣∣∣∣
∫ t1

0

ϕ(τ)−ϕ(0)
τ

dτ
∣∣∣∣≤ 2tα1

α
= 2
N1+αα

= o
(

1
Nα

)
, (2.35)

r2 ≤ 21−αN(1+α)/α

1+α
N−1∑
k=1

(
tk+1−tk

)1+α

k(1+α)/α
= (1+o(1))21−α(1+α)α

α1+αNα
, (2.36)

and comparing the estimates (2.34), (2.35), and (2.36) with the estimate (2.32) we see

that Theorem 2.5 is valid.

2.2.2. Integral on axis. In this section, we investigate calculation methods for the

singular integrals

Jϕ =
∫∞
−∞

ϕ(τ)
τ

dτ (2.37)

on Hölder class of functions Hα,ρ(1), where ρ(t) = (max(1,|t|))λ. As a method of
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evaluating the integral (2.37) we use the quadrature rule

Jϕ =
N∑

k=−N

′pkϕ
(
tk
)+RN, (2.38)

where −A≤t−N <···<t−1≤0≤t1<···<tN≤A, A is a constant, which will be defined

below the prime in the summation to indicate that k �= 0. Input a quadrature rule

Jϕ =
N1−1∑
k=−N1

′′ϕ
(
t′k
)
ln
(
tk+1

tk

)
− 1
λ

M1−1∑
k=M0

ϕ
(
v′k
)((
vk
)−λ−(vk+1

)−λ)

− 1
λ

M1−1∑
k=M0

ϕ
(
v′−k

)((
v−k−1

)−λ−(v−k)−λ)+RN,
(2.39)

where

t±k =±
(
k
N1

)(1+α)/α
, t′k =

(
tk+tk+1

)
2

, k= 1,2, . . . ,N1−1,

t′−k =
(
t−k+t−k+1

)
2

, k= 2,3, . . . ,N1,

v±k =±
(
M1

k

)(1+α)/(λ−α)
, k=M0,M0+1, . . . ,M1; M1−M0 =N2,

M0 =
[

N2(
A(λ−α)/(1+α)−1

)], M1 =
[
A(λ−α)/(1+α)N2(
A(λ−α)/(1+α)−1

)
]
,v

v′±k =
(
v±k+v±k±1

)
2

, k=M0,M0+1, . . . ,M1−1,

N1 =
[
N
(λ−α)A(λ−α)/(1+α)
λA(λ−α)/(1+α)−α

]
, N2=

[
N
(
A(λ−α)/(1+α)−1

)
α

λA(λ−α)/(1+α)−α

]
, N=N1+N2,

(2.40)

the double prime in the summation to indicate that k �= 0, −1.

Theorem 2.6 (see [13]). Set Ψ = Hα,ρ(1). Among all possible quadrature rules of

the type (2.38), the formula (2.39) is asymptotically optimal and has the error RN[Ψ]=
L(N), where

L(N)= 2
(
1+o(1))

×
[(
λA(λ−α)/(1+α)−α)α

Nα

(
C1

(λ−α)αAα(λ−α)/(1+α)+
C2

αα
(
A(λ−α)/(1+α)−1

)α
)

+ B(α+1,λ−α)
Aλ−α

]
,

C1 = (1+α)
α

2αα1+α , C2 =
(

1+α
λ−α

)1+α (A(λ−α)/(1+α)−1
)1+α

Aλ−α2α(1+α) ,

A=
(

2Nα(λ−α)(α+1)/α

λ(1+α)
(
B(α+1,λ−α))1/α+ α

λ

)(1+α)/(λ−α)
,

(2.41)

and B(α,λ) is the beta-function.
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Proof. At the beginning find the lower bound of the value ζN[Ψ]. Taking into

account the symmetry of the q.r. (2.38), we restrict ourselves to the interval [0,∞).
We set that the nodes of the q.r. (2.38) are situated on the segment [0,A] and divide

[0,∞) into three parts: [0,1], [1,A], [A,∞). Let N1 be the number of the nodes tk of

the q.r. (2.38) situated on the segment [0,1], N2 is the number of the nodes tk of the

q.r. (2.38) situated on the segment [1,A]. It is clear that N1+N2 =N .

In Section 2.2.1 we constructed the asymptotically optimal q.r. (2.26) for calculating

the integral (2.1).

Consider the integral

∫ A
1

f(τ)
τ

dτ. (2.42)

Making use of the results in [2] we have

sup
∫ A

1

ϕ(τ)
τλ+1

dτ ≥ (1+o(1))(1+α
λ−α

)1+α (A(λ−α)/(1+α)−1
)1+α

Aλ−α
1

2α(1+α)Nα2
, (2.43)

where the supremum is taken on all types of the functions ϕ(t) ∈ Hα(1) and being

vanished at the points tk, situated on the segment [1,A]. It will be seen below that for

the optimal q.r. constant A must be strived to infinity. So,

sup
ϕ∈Hα(1)

∫ A
1

ϕ(τ)
τλ+1

dτ ≥ (1+o(1))C2N−α2 . (2.44)

Using [38, Formula 24, page 298], we find that

sup
∫∞
A

ϕ(τ)
τλ+1

dτ ≥
∫∞
A

(τ−A)α
τλ+1

dτ =
∫∞

0

τα

(τ+A)λ+1
dτ =Aα−λB(α+1,λ−α), (2.45)

where B(α,β) = Γ(α)Γ(β)/Γ(α+β) is the beta-function, Γ(α) is the gamma-function,

and the supremum is taken on all types of the functionsϕ(τ)∈Hα(1) and vanishing

at the nodes tk, 1≤ k≤N .

We will find the distribution of the nodes N1 and N2 on the segments [0,1] and

[1,A]. For this purpose it is necessary to find the minimum of the function

V
(
N1,N2

)= C1N−α1 +C2N−α2 +Aα−λB(α+1,λ−α) (2.46)

under additional condition N1+N2 =N .

In solving the problem on conditional extremum we find values of N1, N2, A (see

(2.40) and (2.41)) and receive the equality ζN[Ψ]= L(N).
The lower bound is received.

We will estimate the error of the q.r. (2.39). It is easy to see that

∣∣RN∣∣≤
∣∣∣∣
∫ t1
t−1

ϕ(τ)
τ

dτ−
∫ t1
t−1

ϕ(0)
τ

dτ
∣∣∣∣+2

N1−1∑
k=1

∣∣∣∣
∫ tk+1

tk

ϕ(τ)−ϕ(t′k)
τ

dτ
∣∣∣∣

+2
M1−1∑
k=M0

∣∣∣∣
∫ vk
vk+1

ϕ(τ)−ϕ(v′k)
τ1+λ dτ

∣∣∣∣+2
∣∣∣∣
∫∞
A

(τ−A)α
τ1+λ dτ

∣∣∣∣≤ L(N).
(2.47)

Comparing this estimate with the lower bound we see that Theorem 2.6 is valid.
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2.3. Asymptotically optimal quadrature rules for calculating singular integrals

on the class Wr
ρ (1)

2.3.1. Finite segments. We will calculate the integral (2.1) with q.r.

Iϕ =
N∑

k=−N

β∑
l=0

pklϕ(l)(tk)+RN(ϕ,pk,tk), (2.48)

where −1≤ t−N < ···< t−1 < t0 < t1 < ···< tN ≤ 1.

For approximating a function f(τ) on the segment [vk,vk+1] we will use the func-

tion f̃ (τ,[vk,vk+1]), which was introduced in Section 1.3. Spline is received by com-

bining the functions f̃ (τ,[vk,vk+1]) and is denoted by f̃ (τ).

Theorem 2.7 (see [6, 8]). Among all types of the q.r. (2.48) on the class Wr(1) with

β= r −1 (r = 1,2, . . .) the quadrature rule

Iϕ =
M−1∑
k=1

(∫ tk+1

tk

f̃
(
τ,
[
tk,tk+1

])
τ

dτ+
∫ t−k
t−k−1

f̃
(
τ,
[
t−k−1, t−k

])
τ

dτ
)

+
r−1∑
k=1

f (k)(0)
k!k

1
Nk(r+1)/r

(
1−(−1)k

)+RN,
(2.49)

t±k =±(k/N)(r+1)/r , k= 0,1, . . . ,N is asymptotically optimal. The error of the q.r. (2.49)

is equal to

RN[Ψ]=
(
2+o(1))(r +1

r

)r+1 1
4r r !Nr

. (2.50)

Proof. We will first consider the lower bound. Taking into account the symmetry

of the formula (2.48) it is sufficient to consider a gap [0,1].
Consider an integral ∫ 1

0

f(τ)
τ

dτ. (2.51)

Now we use designations S±k = ±(k/N)(r+1)/r (k = 0,1, . . . ,N), M = [lnN],
l = [N/M], Let Nk be the number of nodes of the q.r. (2.48) on the segment ∆k =
[S∗k ,S

∗
k+1], k = 0,1, . . . , l, where S∗k = SkM , k = 0,1, . . . , l−1, S∗l+1 = 1 corresponding to

the definition, f+(t) = (f (t)+|f(t)|)/2, f−(t) = (f (t)−|f(t)|)/2. To get the lower

bound we can consider only the segment [0,1]. On this segment we will construct a

function f∗(t), equal to zero for t ∈ [0,SM], belonging to Wr(1) and vanishing to-

gether with its derivatives up to (r−1) order inclusive at the nodes tk (k= 1,2, . . . ,N)
of the q.r. (2.48) and the points S∗k (k= 1,2, . . . , l+1). Besides, we will require that

∫ S∗k+1

S∗k
f∗(τ)dτ ≥ 0, k= 0,1, . . . , l. (2.52)

It is obvious that

∫ 1

0

f∗(τ)
τ

dτ≥
l∑

k=1

[(
1
S∗k+1

)∫ S∗k+1

S∗k
f∗(τ)dτ+

(
1
S∗k
− 1
S∗k+1

)∫ S∗k+1

S∗k
f∗−(τ)dτ

]
=I1+I2. (2.53)
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It is shown in [36] that at any position of the nodes tk

inf
pkl

sup
ϕ∈Wr (1)

∣∣∣∣
∫ 1

0
ϕ(τ)dτ−

N∑
k=1

r−1∑
l=0

pklϕ
(
tk
)∣∣∣∣≥ 1

r !
[
4(N−1)+2 r√r +1

]r . (2.54)

According to Smolyk lemma and Nikol’skĭı theorem [36] we have

sup
ϕ∈Wr (1);ϕ(j)(vi)=0;

i=1,2,...,Nk+2;j=0,1,...,r−1

∫ S∗k+1

S∗k
ϕ(τ)dτ

≥ (S∗k+1−S∗k
)r+1

inf
pkl,wk

sup
ϕ∈Wr (1)

∣∣∣∣
∫ 1

0
ϕ(τ)dτ−

Nk+2∑
k=1

r−1∑
l=0

Pklϕ(l)(wk
)∣∣∣∣,

(2.55)

where wi is the set of the nodes of q.r. situated on the segment ∆k and the points S∗k ,

S∗k+1. Therefore,

sup
ϕ∈Wr (1);ϕ(j)(vi)=0

∫ S∗k+1

S∗k
f (τ)dτ ≥

(
S∗k+1−S∗k

)r+1

r !
[
4
(
Nk+1

)+2 r√r +1
]r . (2.56)

Then

I1 =
l∑

k=1

1
S∗k+1

∫ S∗k+1

S∗k
f∗(τ)dτ

≥
l∑

k=1

(
S∗k+1−S∗k

)r+1

S∗k+1r !
[
4
(
Nk+1

)+2 r√r +1
]r

≥ (1+o(1))(r +1
r

)r+1 1
r !

(
M
N

)r+1 l∑
k=M1

1[
4
(
Nk+1

)+2 r√r +1
]r .

(2.57)

We can find the distribution of the nodes Nk minimizing the sum

V =
l∑

k=M1

1[
4
(
Nk+1

)+2 r√r +1
]r , (2.58)

provided that
∑l
k=1Nk =M . This sum can only be reduced if we suppose that NM1 +

NM1+1 + ··· +Nl = M . It is easy to verify that the sum V reaches minimum, pro-

vided that NM1 = NM1+1 = ··· = Nl = N/(l−M + 1) and this minimum is equal to

(1+o(1))lr+1/(4N)r . So, it has been shown that the minimum is reached provided

the values NM1 = ··· = Nl = N/(l−M+1), which may be non-whole numbers. As we

consider the problem of minimization of whole values, where the values NM1 , . . . ,Nl
must be whole positive numbers, the minimum of the sum V under these circum-

stances must not be less than (1+o(1))(lr+1)/((4N)r ). Therefore,

I1 ≥
(
1+o(1)) (r +1)r+1

4r r r+1r !Nr
. (2.59)

Estimate the expression I2

I2 ≤
l∑

k=1

(r +1)M(r+1)/r

r(k+1)k(r+1)/rN1+1/r

∫ S∗k+1

S∗k
f∗−(τ)dτ. (2.60)
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By construction every interval [Sk,Sk+1] has at least one node where the function

f∗(t) with its derivatives up to order (r −1) vanishes. In each interval we will take

one node and denote it by S∗∗k (k = 1,2, . . . , l). In the interval [Sk,Sk+1] the function

f∗(t) may be represented as

f∗(τ)= 1
(r −1)!

∫ τ
S∗∗k
(τ−t)r−1f∗(r)(t)dt (2.61)

and therefore,

∣∣∣∣∣
∫ Sk+1

Sk
f∗−(τ)dτ

∣∣∣∣∣≤
∫ Sk+1

Sk

∣∣f∗(τ)∣∣dτ ≤
(
Sk+1−Sk

)r+1

(r +1)!
. (2.62)

So, from (2.60) and (2.62) we have that

∣∣I2∣∣= o(M−r ). (2.63)

Starting from that and the estimate of the sum I1 we see that the upper bound of the

estimate from below on the segment [0,1] is not less than or equal to

ζN
[
Wr(1)

]≥ (2+o(1))
(
(r +1)/r

)r+1

4r r ! Mr . (2.64)

We can estimate the error of the q.r. (2.49)

∣∣RN∣∣≤ 2

∣∣∣∣∣
N−1∑
k=1

∫ tk+1

tk

ϕ(τ)−ϕ̃(τ,[tk,tk+1
])

τ
dτ

∣∣∣∣∣
+
∣∣∣∣∣
∫ t1
t−1

ϕ(τ)
τ

dτ−
r−1∑
k=1

ϕ(k)(0)
k!k

M−k(r+1)/r (1−(−1)k
)∣∣∣∣∣= r1+r2.

(2.65)

It is easy to see that

r1 = 2

∣∣∣∣∣
N−1∑
k=1

∫ tk+1

tk

f (τ)− f̃ (τ,[tk,tk+1
])

τ
dτ

∣∣∣∣∣

= 2

∣∣∣∣∣
N−1∑
k=1

∫ tk+1

tk

1
τ

∫ tk+1

tk

(
Kr(τ−t)
(r −1)!

−
r−1∑
j=0

Bkj
(r −1−j)!Kr−j

(
tk+1−tk

))
f (r)(t)dtdτ

∣∣∣∣∣

= 2

∣∣∣∣∣
N−1∑
k=1

∫ tk+1

tk
f (r)(t)

∫ tk+1

tk

1
τ

(
Kr(τ−t)
(r −1)!

−
r−1∑
j=0

Bkj
(r −1−j)!Kr−j

(
tk+1−t

))
dτdt

∣∣∣∣

≤ 2
N−1∑
k=1

1
tk

∫ tk+1

tk

∣∣f (r)(t)∣∣
∣∣∣∣
(
tk+1−t

)r
r !

−
r−1∑
j=0

Bkj
(
tk+1−tk

)
(r −1−j)!

(
tk+1−t

)r−j−1
∣∣∣∣dt

≤ 2
r !

M−1∑
k=1

1
tk

∫ tk+1

tk

∣∣∣∣(tk+1−t
)r −r−1∑

j=0

r !Bkj
(
tk+1−tk

)
(r −1−j)!

(
tk+1−t

)r−j−1
∣∣∣∣dt.

(2.66)
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It is known that (Nikol’skĭı [36])

∫ a+h
a−h

∣∣Rrq(a,h,x)∣∣qdx = 2hrq+1
[
Rrq(1)

]q
rq+1

. (2.67)

Then

r1 ≤ 4Rr1(1)
N−1∑
k=1

((
tk+1−tk

)
/2
)r+1

tk(r +1)!
≤ (1+o(1)) (r +1)r+1

22r−1rr+1r !Nr
,

r2 = 1
(r +1)!

∣∣∣∣∣
∫ t1
t−1

τ−1
(∫ τ

0
(τ−t)r−1f (r)(t)dt

)
dτ

∣∣∣∣∣≤ 2M−r−1

r !r
.

(2.68)

From the estimations (2.65) and (2.68) we get

RN[Ψ]≤
(
1+o(1)) (r +1)r+1

22r−1rr+1r !Nr
. (2.69)

Comparing this estimate with the estimate (2.64) we see that Theorem 2.7 is valid. Let

M = [ln1/2r N], L= [N/M]. Consider a quadrature rule

If =
r−1∑
k=1

Dn,r ,p
(
f (k)(0)

)1−(−1)k

k!k
t∗1

+
L−1∑
k=1

[∫ t∗k+1

t∗k
Dn,r ,p

(
Tr−1

(
f ,
[
t∗k ,t

∗
k+1

])
, t∗k
)( 1
τ
− 1
t∗k+1

)
dτ

+
∫ t∗−k
t∗−k−1

Dn,r ,p
(
Tr−1

(
f ;
[
t∗−k−1, t

∗
−k
])
t∗−k
)( 1
τ
− 1
t∗−k−1

)
dτ
]

+
L−1∑
k=0

(
lM,r ,p

(
f ,
[
t∗k ,t

∗
k+1

])
t∗−1
k+1 +lM,r ,p

(
f ,
[
t∗−k−1, t

∗
−k
])
t∗−1
−k−1

)+RN,

(2.70)

where t∗±k = ±(k/L)v , k = 0,1, . . . ,L, v = (rq+ 1)/(rq+ 1− q), 1/p+ 1/q = 1. The

operators Dn,r ,p and Tr−1(f ,∆k,ck) were introduced in Section 1.3.

Theorem 2.8 (see [8]). Let Ψ =Wr
p(1,1;[−1,1]), 1 < p ≤∞, r = 1,2, . . . . Among all

possible quadrature rules of the type (2.48), the formula (2.70) is asymptotically optimal

and has the error

RN(Ψ)=
(
1+o(1)) 1

Nr

(
rq+1

rq+1−q
)r+1/q

inf
c

∥∥Dr(t)−c∥∥Lq[0,1]. (2.71)

2.3.2. Integrals on axis. In this section, we investigate the calculation methods for

singular integrals (2.37) on the class of functions Wr
ρ (1), where ρ0(t) = max(1,|t|),

ρ1(t)= (ρ0(t))λ.
We will calculate the integral (2.37) with q.r.

Jϕ =
N∑

k=−N

β∑
l=0

pklϕ(l)(tk), (2.72)

where −A≤ t−N < ···< t−1 < t0 < t1 < ···< tN ≤A, constant A will be defined below.
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Theorem 2.9 (see [13]). Among all types of the q.r. (2.72) where β = r − 1 (r =
1,2, . . .) on the class Ψ =Wr

ρ (1), the quadrature rule

Jϕ =
M−1∑
k=1

(∫ tk+1

tk

f̃
(
τ,
[
tk,tk+1

])
τ

dτ+
∫ t−k
t−k−1

f̃
(
τ,
[
t−k−1, t−k

])
τ

dτ
)

+
r−1∑
k=1

f (k)(0)
k!k

M−k(r+1)/r (1−(−1)k
)

+
M1−1∑
k=M0

(∫ vk
vk+1

f̃
(
τ,
[
vk+1,vk

])
τ

dτ+
∫ v−k−1

v−k

f̃
(
τ,
[
v−k,v−k−1

])
τ

dτ
)
+RN,

(2.73)

where

t±k =±
(
k
M

)(r+1)/r
, k= 0,1, . . . ,M,

v±k =±
(
M1

k

)(r+1)/(λ−r)
, k=M0,M0+1, . . . ,M1,

M0 =
[

n
A(λ−r)/(r+1)−1

]
, M1 =

[
nA(λ−r)/(r+1)A(λ−r)/(r+1)−1

]
,

n=
[
r
(
A(λ−r)/(r+1)−1

)
λA(λ−r)/(r+1)−r N

]
, M =

[
A(λ−r)/(r+1)(λ−r)
λA(λ−r)/(r+1)−r N

]
,

A=
(

4Nr(λ−r)
λ(r +1)(r+1)/r

(
D(r ,λ)

)1/r + r
λ

)(r+1)/(λ−r)
,

(2.74)

is asymptotically optimal. The error of the q.r. (2.73) is equal to

RN[Ψ]=
(
1+o(1)) (r +1)r+1

22r−1rr r !(λ−r)r
(
C1(r +1)
C2r

+ λr

λ−r
)

1
Nr
, (2.75)

where

C1= D(r ,λ)
(λ−r)r !

, C2= (r+1)r+1

(λ−r)r+14r r r r !
, D(r ,λ)=

r∑
k=0

r !(−1)k(λ−r)
k!(r−k)!(λ−r+k) . (2.76)

Proof of this theorem is the union of the proofs of Theorems 2.6 and 2.9 but the

technicality is more complex.

2.4. Optimal with respect to order quadrature rules. The optimal with respect to

order quadrature rules can be useful in practical calculations which have good nu-

merical properties and which are simpler for program realization than asymptotically

optimal quadrature rules.

Consider the singular integrals as (2.1). We will compute the integrals If by quad-

rature rules as

If =
N∑

k=−N

ρ∑
l=0

pklf (l)
(
tk
)+RN(f ,pkl ·tk), (2.77)

where −1≤ t−N < ···< t−1 ≤ 0≤ t1 < ···< tN ≤ 1.
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Theorem 2.10 (see [6]). Let Ψ =Wr(1), r = 2,4, . . . . Let the integral If be calculated

by the quadrature rule of the type (2.77), where ρ = 0. Then

ζN(Ψ)≥
(
1+o(1))Kr (r +1)r+1

2r−1πrrrNr
, (2.78)

where Kr is Favar constant.

Let N1 = [N/r]+1. Let ∆K = [Sk,Sk+1], k = 0,1, . . . ,N1−1, ∆−k = [S−k−1,Sk], k =
0,1, . . . ,N1−1, where S±k = ±(rk/N)(r+1)/r , k = 0,1, . . . ,N1−1. Define S±N1 as S±N1 =
±1. Let ζk, k= 1,2, . . . ,r , be the nodes of Chebyshev polynomial of the type I.

Let ζ′k, k= 1,2, . . . , l, be the result of mapping the segment [−1,1] onto the segment

[a,b]. Let Pr (f ,[a,b]) be the Lagrange interpolated polynomial: Pr (f ,[a,b])(ζ′k) =
f(ζ′k), k= 1,2, . . . ,r .

Then the integral If we will be calculated by the quadrature rule

∫ 1

−1

f(τ)
τ

dτ =
N1−1∑
k=1

∫ Sk+1

Sk

Pr
(
τ,∆k

)
τ

dτ+
∫ S1

S−1

P2r
(
τ,
[
S−1,S1

])
τ

dτ

+
N1−1∑
k=1

∫ S−k
S−k−1

Pk
(
τ,∆−k

)
τ

dτ+RN.
(2.79)

Theorem 2.11 (see [6]). Let Ψ =Wr(1), r = 1,2, . . . . Among all possible quadrature

rules of the type (2.77), where ρ = 0, the quadrature rule (2.79) is optimal with respect

to order and its error occurs

RN(Ψ)=
(
1+o(1)) (r +1)r+1

r !r22r−1Nr
. (2.80)

Consider a quadrature rule

∫ 1

−1

f(τ)
τ

dτ =
N−1∑
k=1

[∫ Sk+1

Sk

Tr−1
(
f ,∆k,Sk

)
τ

dτ+
∫ S−k
S−k−1

Tr−1
(
f ,∆−k,S−k

)
τ

dτ
]

+
r−1∑
k=1

f (k)(0)
1−(−1)k

N(r+1)k/r k!k
+RN,

(2.81)

where ∆k = [Sk,Sk+1], ∆−k = [S−k−1,S−k], k = 0,1, . . . ,N−1, S±k = ±(k/N)(r+1)/r , k =
0,1, . . . ,N .

Theorem 2.12 (see [6]). Let Ψ =Wr(1), r = 1,2, . . . . Among all possible quadrature

rules of the type (2.77), where ρ = r − 1, the quadrature rule (2.81) is optimal with

respect to order and its error holds

RN(Ψ)≤ (r +1)r+1

rr+12r−1(r +1)!Nr
. (2.82)

We give now the description of the quadrature rule which is not optimal with respect

to order but make use of one operation of multiplication and AN lnN operation of

addition.
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Consider a quadrature rule

If = 1
N

M∑
k=−M,k≠0

f
(
t1
k
)+RN, (2.83)

where t±k = ±N−1/αek/N , t1
k = (tk+1+ tk)/2, t1

−k = (t−k−1+ t−k)/2, k = 1,2, . . . ,M , M =
[α−1N lnN].

Theorem 2.13 (see [6]). Let Ψ = Hα(1), 0 < α ≤ 1. The quadrature rule (2.83) has

the error RN[Ψ]≤ 2(eα/N/(αN)+1/(2ααNα)+1/(αN1+α)).

Proofs of Theorems 2.10, 2.11, 2.12, and 2.13 are given in [6]. At the end of the

section we describe one optimal with respect to order quadrature rule that is very

simple in realization. Convergence of this quadrature rule was proved in [12]. Intro-

duce the nodes t±k = ±(k/N)v , k = 0,1, . . . ,M , v = (r +1)/r . Let ζ1, . . . ,ζr ∈ [−1,1]
be the nodes of order r Legendre polynomial. On every subinterval [tk,tk+1], k =
−n,. . . ,N −1, we construct interpolated polynomial Pr (f ,[tk,tk+1]) of degree r −1

with nodes tk+(1+ζv)(tk+1−tk)/2, v = 1,2, . . . ,r . The integral (2.1) is approximated

by the quadrature rule

Iϕ =
N−1∑
k=1

(∫ t−k
t−k−1

Pr
(
ϕ(τ)
τ

,
[
t−k−1, t−k

])
dτ+

∫ tk+1

tk
Pr
(
ϕ(τ)
τ

,
[
tk,tk+1

])
dτ
)

+
∫ t1
t−1

Pr
(
ϕ(τ)−ϕ(0)

τ

)
dτ+RN.

(2.84)

Its error is equal to

RN =
(
1+o(1))22r+1r !(r +1)r+1

(2r)!rr+1Nr
. (2.85)

Remark 2.14. The quadrature rule (2.84) is asymptotically optimal for r = 1 and

optimal with respect to order for r = 2,3, . . . .

2.5. Stability of quadrature rules. Consider singular integrals of the kind (2.1),

which we will compute by quadrature rule as (2.2).

Practically, we cannot calculate the exact values of the functionals f(tk) and weights

pk. It is necessary to investigate the influence of the calculation error of the functionals

f(tk) and the weights pk on exactness of quadrature rules.

Let the functionals be calculated with exactness ε= |f(tk)− f̄ (tk)| ≤ ε, k=−N,. . . ,
−1,0,1, . . . ,N .

Theorem 2.15 (see [6]). Let Ψ = Hα(1), 0 < α ≤ 1. Let the functionals f(tk) be

calculated with the error equal to ε, 0 < ε < 1. In this case for any points tk ∈ [−1,1],
k=−N,. . . ,−1,0,1, . . . ,N the error of quadrature rules of the type (2.2) is not less than

(1+o(1))(1−ε1/(1−α))1+α21−α(1+α)α/(α1+αNα)+2ε(| lnε|+1)/α.
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Theorem 2.16 (see [6]). Let Ψ = Hα(1), 0 < α ≤ 1. Let |f(tk)− f̄ (tk)| ≤ ε, k =
−N,. . . ,−1,0,1, . . . ,N . Then the quadrature rule

If =
N−1∑

k=−N,k≠−1,0
f̄
(
t′k
)
ln
tk+1

tk
+RN, (2.86)

where t±1 = ±(k/N)(1+α)/α, k = 0,1, . . . ,N , t′±k = (t±k+ t±k+1)/2 has the error |RN | ≤
(1+o(1))21−α(1+α)α/(α1+αNα)+2εα−1(1+α) lnN+AN−1−α.

Theorem 2.17 (see [6]). Let Ψ =Hα, 0 < α ≤ 1. Let |f(tk)− f̄ (tk)| ≤ ε, k = −N,. . . ,
−1,0,1, . . . ,N . Then the quadrature rule

If =
N−1∑
k=−N

′f̄
(
t′k
) tk+1

tk
+RN, (2.87)

where t±k =±(k/N)(1+α)/α; t′±k = (t±k+t±k+1)/2; the prime in the summation indicates

that k ∉ [−k∗,k∗],k∗ = [Nε1/(1+α)] has the error |RN | ≤ 2ε(| lnε|+1)/α+21−α(1+
α)α(1+(1+α)N−1 lnN)/(α1+αNα).

3. Optimal methods of calculating singular integrals with Cauchy and Hilbert

kernels

3.1. Introduction. In this section, we will investigate optimal methods of the cal-

culation of singular integrals with Cauchy and Hilbert kernels. Consider singular in-

tegrals with Hilbert kernel as

Fφ= 1
2π

∫ 2π

0
φ(σ)ctg

σ −s
2

dσ, s ∈ [0,2π], (3.1)

that we will compute by quadrature rules as

Fφ=
N∑
k=1

ρ∑
l=0

pkl(s)φl
(
sk
)+RN(s,sk,pk(s),φ) (3.2)

with nodes 0 ≤ sk ≤ 2π and weights pk(s), k = 1,2, . . . ,N , and singular integrals with

Cauchy kernel as

Kφ=
∫ 1

−1

φ(τ)dτ
τ−t ,

(
t ∈ (−1,1)

)
, (3.3)

that we will compute by quadrature rules as

Kφ=
N∑

k=−N

ρ∑
l=0

pkl(t)φl
(
tk
)+RN(t,tk,pkl(s),φ), (3.4)

where −1≤ t−N < ···< t−1 < t0 < t1 < ···< tN ≤ 1.
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3.2. Asymptotically optimal quadrature rules on the class Hα(1)

Theorem 3.1 (see [6, 8]). Let Ψ =Hα(1) (0<α≤ 1). Then among all possible types

of the quadrature rules as (3.2), where ρ = 0, the formula

Fφ= 1
2π

N∑
k=1,k≠v,v±1

∫ tk
tk−1

φ
(
t′k−1

)
ctg

σ −s
2

dσ

+ 1
2π

∫ tv+1

tv−2

φ
(
t′v−1

)
ctg

σ −s
2

dσ +RN(s)

(3.5)

is asymptotically optimal. There is tk = 2kπ/N , t′k = (2k+1)π/N , k = 0,1, . . . ,N , s ∈
[tv−1, tv). The quadrature rule (3.5) error is equal to

RN[M]= 2lnN/π1−α(1+α)Nα+0
(
N−α

)
. (3.6)

Theorem 3.2 (see [6, 8]). LetΨ=Hω, whereω(σ)∈Φ. Then among all possible quad-

rature rules using N values of integrand function the formula (3.5) is asymptotically

optimal. The error of this formula is equal to

RN[Ψ]= 2N
(
lnN+0(1)

) 1
π2

∫ π/N
0

ω(σ)dσ. (3.7)

Theorem 3.3 (see [8]). Let Ψ =Hα(1) (0<α≤ 1). Then among all possible quadra-

ture rules as (3.4), where ρ = 0, the formula

Tφ= RN+




φ
(
t0
)∫ t2

−1

dτ
τ−t +

2N−1∑
k=2

φ
(
t′k
)∫ tk+1

tk

dτ
τ−t , t0 < t ≤ t1;

2N−1∑
k=0

φ
(
t′k
)′∫ tk+1

tk

dτ
τ−t +φ

(
t′j
)∫ tj+2

tj−1

dτ
τ−t , t1 < t ≤ t2N−1;

2N−2∑
k=0

φ
(
t′k
)∫ tk+1

tk

dτ
τ−t +φ

(
t2N
)∫ t2N

t2N−1

dτ
τ−t , t2N−1 ≤ t < t2N ;

(3.8)

where tk =−1+k/N , k= 0,1, . . . ,2N , t′k = (tk+tk+1)/2, k= 0,1, . . . ,2N−1, t ∈ [tj,tj+1),
the prime in the summation indicate that k ≠ j−1, j, j+1, is asymptotically optimal.

The error RN[Ψ]= (1+o(1))21−α lnN/(1+α)Nα is valid.

Remark 3.4. Theorem 3.3 is valid for even number of the nodes too.

Theorem 3.5 (see [6, 8]). Let φ∈Hω (ω∈ Φ). Then among all possible quadrature

rules as (3.4), where ρ = 0, the formula (3.8) is asymptotically optimal. The error of this

formula holds

RN
[
Hω

]= (1+o(1))2(2N+1)
∫ 1/(2N+1)

0
ω(t)dt lnN. (3.9)

Remark 3.6. Theorem 3.5 is valid for even number of the nodes too.
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Proof of Theorem 3.1. At first let us find the lower bound of value ζN[Hα(1)]
in computing the integral Fφ by the quadrature rule (3.2), where ρ = 0. Let S be a

vector S = (s1, . . . ,sN) of the nodes of the quadrature rule (3.2). Fix an arbitrary value

sj . Let the point sj+π belongs to the segment ̄j = [sj̄ ,sj̄+1], the endpoints of which

are neighboring nodes of the vector S.

We associate to each value sj the 2π periodic function defined forα=1 by expression

φ∗j (σ)=




0, σ ∈ ∆̄j ;
mink

(∣∣σ −sk∣∣)sgnctg
σ −sj

2
, σ ∈ [0,2π]\∆̄j ;

(3.10)

and for 0<α< 1 defined by expression

φ∗j (σ)=




0, σ ∈Ωj=
[
sj−v ,sj+1+v

]∪[sj̄−v ,sj̄+v];
mink

(∣∣σ−sk∣∣)sgnctg
σ−sj

2
, σ ∈ [0,2π]\Ωj .

(3.11)

Here v = [21/α−2]+1, j = 1,2, . . . ,N , moreover, sN+1 = 2π+s1. Similarly sN+r = 2π+sr ,

s−q = sN−q −2π for r > 0, q > 0. Introduce a designation xk = (sk+1− sk)/2. There

arises two cases:

(1) at least one of the values xv(v = 1,2, . . . ,N) is not less than 2πN−1(lnN)1/α;

(2) all of these values are separately less than 2πN−1(lnN)1/α.

In the first case assuming, without loss of generality, that 2πN−1(lnN)1/α ≤ x1 ≤π/2
we have

max
0≤s≤2π

1
2π

∫ 2π

0
φ∗1 (σ)ctg

σ −s
2

dσ ≥ 2πα−1 lnN
(1+α)Nα . (3.12)

As for the second case, divide a segment [0,2π] intoM = [N/2ln1/αN] equal portions

by the points vk = 2kπ/M , k = 0,1, . . . ,M . Then a single node of the q.r. (3.2) exists

at least in each segment [vk,vk+1]. Choose in each segment [vk,vk+1] exactly one

single node that we denote by s∗k (k= 1,2, . . . ,M). Fix an arbitrary value 1≤ j ≤M and

estimate the integral

(
Fφ∗j

)(
s∗j
)= 1

2π

∫ 2π

0
φ∗j (σ)ctg

σ −s∗j
2

dσ

≥ 1
2π

[M/2]−2∑
k=1

M
(k+1)π

(∫ vj+k+1

vj+k
φ∗(σ)dσ +

∫ vj−k+1

vj−k
φ∗(σ)dσ

)
,

(3.13)

where φ∗(σ) is 2π periodic function defined by formula φ∗(σ) = mink(|σ − sk|α).
Having averaged values (Fφ∗j )(s

∗
j ), we have

max
s,j

(
Fφ∗j

)
(s)≥ 1

M

M∑
j=1

M
2π2

[M/2]−2∑
k=1

1
k+1

(∫ vj+k+1

vj+k
φ∗(σ)dσ+

∫ vj−k+1

vj−k
φ∗(σ)dσ

)

= 1
2π2

[M/2]−2∑
k=1

1
k+1

M∑
j=1

(∫ vj+k+1

vj+k
φ∗(σ)dσ +

∫ vj−k+1

vj−k
φ∗(σ)dσ

)

= 1
π2

∫ 2π

0
φ∗(σ)dσ

[M/2]−2∑
k=1

1
k+1

∼ lnN
π2

∫ 2π

0
φ∗(σ)dσ.

(3.14)
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Thus this problem has reduced itself to finding the lower bound of the values∫ 2π
0 φ∗(σ)dσ in varying the nodes sk (k= 1,2, . . . ,N). It is obvious that

∫ 2π

0
φ∗(σ)dσ = 2

1+α
N−1∑
k=0

x1+α
k , (3.15)

where x0 = s1+2π−sN . Find the minimum of the function

ψ
(
x0, . . . ,xN

)≥ 2
1+α

N−1∑
k=0

x1+α
k (3.16)

under limitation 2
∑N−1
k=0 xk = 2π .

It is possible to show that ψ(x0, . . . ,xN)≥ 2π1+α/(1+α)Nα and maxs,j(Fφ∗j )(s)≥
(1+o(1))2πα−1 lnN/(1+α)Nα.

The error estimate of the quadrature rule (1.1) is given by the inequality RN[Ψ] ≤
(2+o(1)) lnN/π1−α(1+α)Nα. This completes the proof.

Proofs of Theorems 3.2, 3.3, and 3.5 are similar to that of Theorem 3.1 but technical

realization of these proofs is more difficult. These proofs are given in [6, 8].

3.3. Asymptotically optimal quadrature rules on the class Wr(1)

Theorem 3.7 (see [6, 8]). Let Ψ = W̃ r (1) (r = 1,2, . . . ,) and the integral Fφ is eval-

uated by the quadrature rule (3.2), where ρ = 0,1. Then ζN[Ψ] ≥ 2Krπ−1N−r lnN +
o(N−r ).

Theorem 3.8 (see [6, 8]). Let Ψ = W̃ rLp(1), r = 1,2, . . . , 1≤ p <∞. Let the integral

Fφ be calculated with quadrature rules of the type (3.2), where ρ = r −1, r = 1,2, . . . ,
or ρ = r −2, r = 2,4, . . . . Then

ζN[Ψ]=
(
1+o(1))2(2π)r+1/qRrq(1) lnN

πr !(rq+1)q(2N)r
. (3.17)

Consider the quadrature rule

Fφ=
∫ tj+2

tj−2

φ̃
(
σ,
[
tj−2, tj+2

])
ctg

σ −s
2

dσ

+
N−1∑
k=0

′
∫ tk+1

tk
φ̃
(
σ,
[
tk,tk+1

])
ctg

σ −s
2

dσ +RN,
(3.18)

where tk = 2kπ/N , k = 0,1, . . . ,N ; s ∈ [tj,tj+1); φ̃(t,[tk,tk+1]) is the local spline that

was constructed in Section 1.3, the prime in the summation indicate that k �= j−1, j,
j+1.

Theorem 3.9 (see [6, 8]). Let Ψ = W̃ r (1), r ≥ 3. Let s ∈ [tj,tj+1). Among all quadra-

ture rules of the type (3.2) provided ρ = r−1 the quadrature rule (3.18) is asymptotically

optimal.

Theorem 3.10 (see [6, 8]). Let Ψ =Wr
p(1), r = 1,2, . . . , 1 ≤ p ≤ ∞. Let the integral

Kf be calculated with quadrature rules of the type (3.4) provided ρ = 0. Then ζ[Ψ]≥
(1+o(1))2r+1+1/q infc ‖Br (·)−c‖Lq[0,1] lnN/Nr .
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Theorem 3.11 (see [6, 8]). Let Ψ =Wr
p(1), r = 1,2, . . . , 1 ≤ p ≤ ∞. Let the integral

Kf be calculated with quadrature rules of the type (3.4), where ρ = r −1, r = 1,2, . . . ,
or ρ = r −2, r = 2,4, . . . . Then ζ[Ψ] ≥ 2(1+o(1))Rrq(1)(lnN)/2r r !(rq+!)1/q(N−1+
(Rrq(1))1/r )r .

Consider a quadrature rule

Kf =
∫ tj+2

tj−2

f̃
(
τ,
[
tj−2, tj+2

])
τ−t dτ+

j−3∑
k=0

f̃
(
τ,
[
tk,tk+1

])
τ−t dτ

+
N−1∑
k=j+2

f̃
(
τ,
[
tk,tk+1

])
τ−t dτ+RN,

(3.19)

where tk = −1+2k/N , k = 0,1, . . . ,N ; t ∈ [tj,tj+1), f̃ (τ,[tk,tk+1]) is local spline that

was constructed in Section 1.3

Theorem 3.12 (see [6, 8]). Let Ψ =Wr(1), r = 1,2, . . . . Among all quadrature rules

of the type (3.4), where ρ = r −1, the quadrature rule (3.19) is asymptotically optimal

and has the error RN[Ψ]= (1+o(1))Rrq(1)(ln((N−j−1)(j−1)))/(r +1)!(2N)r .

Consider a quadrature rule

Kf = 1
vj−1−t

(
QM,r,∞

(
f ,
[
vj−1,vj

])+QM,r,∞(f ,[vj,vj+1
])+QM,r,∞(f ,[vj+1,vj+2

]))

+
L−1∑
k=0

′ 1
vk−t

(
f ,
[
vk,vk+1

])+
∫ vj+2

vj−1

DN,r ,∞
(
Tr−1

(
f ,
[
vj−1,vj+2

]
,vj−1

)) dτ
τ−t

+
L−1∑
k=0

′
∫ vk+1

vk
DN,r ,∞

(
Tr−1

(
f ,
[
vk,vk+1

]
,vk
)) dτ
τ−t +RN,

(3.20)

where M = [ln1/2r N]; L = [N/M]; vk = −1+2k/L, k = 0,1, . . . ,L; t ∈ [vj,vj+1); the

prime in the summation indicate that k≠ j−1, j, j+1.

Theorem 3.13 (see [6, 8]). Let Ψ =Wr(1), r = 1,2, . . . . Among all quadrature rules

of the type (3.4) provided ρ = 0 the quadrature rule (3.20), where ρ = 0 is asymptotically

optimal and has the error

RN[Ψ]=
(
1+o(1))2r+2N−r lnN inf

c

∥∥Dr(·)−c∥∥L1[0,1]. (3.21)

The similar statement is correct for singular integrals with Hilbert kernels.

Proof of Theorem 3.7. We find the lower bound of the value ζN[Ψ]. There are

two possibilities:

(1) at least one of the values sk+1 − sk is not less than h0 = 2(A−1Kr(r +
1) lnN)1/2N−1;

(2) all of these values are separately less than h0.

The constant A is defined below.

In the first case assuming without loss of generality that s2− s1 ≥ h0, introduce a

functionφ∗(σ)=A((σ−s1)(s2−σ))r (s2−s1)−r on the segment [s1,s2] andφ∗(σ)=0
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on other segments. The constant A is selected such that |(φ∗)(r)| ≤ 1. Such constant

exists. It is not difficult to see that

max
0≤s≤2π

1
2π

∫ 2π

0
φ∗(σ)ctg

σ −s
2

dσ

≥ 1
2π

∫ 2π

0
φ∗(σ)ctg

σ −s1

2
dσ

≥ 1
2π

∫ (s1+s2)/2
s1

φ∗(σ)ctg
σ −s1

2
dσ + 1

2π

∫ s2
(s1+s2)/2

φ∗(σ)ctg
σ −s1

2
dσ

≥ 2Kr lnN
πNr

.

(3.22)

As for the second case. Denote by φ∗(σ) a function satisfying the following condi-

tions:

(1) φ∗(σ)∈ Ψ = W̃ r (1);
(2) minσ φ∗(σ)=φ∗(sk)= 0, (k= 1,2, . . . ,N);
(3)

∫ 2π
0 φ∗(σ)dσ ≥ 2πKr/Nr .

The existence of such functions was proved by Motornii in [32]. Divide the segment

[0,2π] intoM equal portions (M = [2π/h0]) by the pointsvk = 2kπ/M , k= 0,1, . . . ,M .

In each segment it exists at least a single node of the quadrature rule (3.2). Denote

this point by s∗k . Take an arbitrary number j (0 ≤ j ≤ M) and select the segments

[s∗j−1,s
∗
j+1], [s̄

∗
j−1, s̄

∗
j+1], moreover s∗j +π ⊂ [s̄∗j−1, s̄

∗
j+1]. Denote by ψ∗j (σ) a function

satisfying the following conditions:

(1) ψ∗j (σ)∈ Ψ = W̃ r ;

(2) on the segment [s∗j+1, s̄
∗
j−1] ψ

∗
j (σ)=φ∗(σ);

(3) on the segment [s̄∗j+1,s
∗
j−1] ψ

∗
j (σ)=−φ∗(σ).

For r = 1,2 the function ψ∗j (σ) on the segments [s∗j−1,s
∗
j+1],[s̄

∗
j−1, s̄

∗
j+1] can be

assumed to be equal to zero. It follows from the fact that at the points s∗k (k =
0,1, . . . ,N) the function φ∗(σ) and their first derivative are equal to zero. In the ex-

plicit form the function ψ∗j (σ) can be constructed for r = 3.

However it was not succeeded in making for r ≥ 4. Therefore to prove the existence

of the required function is naturally to take advantage of the “cut-off function method”

applied by Sobolev in [43, page 697] in investigating quadrature rule with boundary

layer. Select the segments [s∗j−N1
,s∗j+N1

], [s̄∗j−N1
, s̄∗j+N1

], moreover a value N1 will be

defined below.

Introduce a function

lj(s)=




1, s ∈ [s∗j+N1
, s̄∗j−N1

]
,

−1, s ∈ [s̄∗j+N1
,s∗j−N1

]
,

0, s ∈ [0,2π]\[s∗j+N1
, s̄∗j−N1

]∪[s̄∗j+N1
,s∗j−N1

]
.

(3.23)

Now construct a “cutting off” multiplier δj(s) that is equal to unit on the segment

[s∗j+3N1
,s∗j−3N1

]; that is equal to minus unit on the segment [s̄∗j+3N1
,s∗j−3N1

] and has

continuous derivatives of all orders. In addition we require that δj(s)φ(s) ∈Wr(1+
o(1)). In the capacities of function δj(s) we will take a mean function (with infinitely
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differentiable kernel of average) with average radius h = 2N1π/M for function lj(s).
It is not difficult to see that at the points vicinity s∗j , s̄

∗
j the function δj(s) is equal to

zero, on the segments [s∗j+3N1
, s̄∗j−3N1

], and [s̄∗j+3N1
,s∗j−3N1

] it is, respectively, equal to

unit and minus unit and has derivatives of all orders.

Remember that by definition a mean function is given by

δhj (s)= κh
∫ s+π
s−π

ω
(
s−σ
h

)
lj(σ)dσ, (3.24)

where ω((s−σ)/h) is the average kernel satisfying the norm requirements (Sobolev

[43, page 104]). It follows from definition of the function δhj (s) that

drδhj (s)
dsr

= κh1−r
∫ s+π
s−π

ω(r)
(
s−σ
h

)
lj(σ)dσ = 0

(
h−r

)
. (3.25)

Find norm δhj (s)φ∗(s). First of all notice that since the function φ∗(s) has deriva-

tive of order r not exceeding a unit module and at N points distant from each other

by not more than h0, is equal to zero, then its derivatives of order r−1 vanish not less

than atN−r+1 points distant each other by not more than 2r−1h0. Since |φ∗(r)(s)| ≤
1 then |φ∗(r−1)(s)| ≤ 2r−1h0, |φ∗(r−2)(s)| ≤ 22r−3h2

0, . . . , |φ∗(s)| ≤ 2r
2/2hr0. Therefore

|(δj(s)φ∗(r)(s))| = |δ(r)j (s)φ∗(s)+C1
r δ

(r−1)
j (s)φ∗(1)(s)+···+δj(s)φ∗(r)(s)|.

On the segments [s∗j+N1
, s̄∗j−N1

], [s̄∗j+N1
,s∗j−N1

], the formula |(δj(s)φ∗(r)(s))| =
|δj(s)φ∗(r)(s)| ≤ 1 is valid and for other values |(δj(s)φ(s))(r)| = o(h−rhr0+h1−rhr−1

0

+···+h−1h0)+1. Now assume h = h0 lnN . Then |(δj(s)φ∗(s))(r)| = 1+o(1) for all

j. Therefore N1 = [lnN]+1.

Fix a positive arbitrarily small ε (0< ε < 1) and let β= 1−ε. The function ψj(s)=
βδj(s)φ∗(s) satisfies all formulated requirements. Therefore having repeated the ar-

guments made in proving Theorem 3.1, we have

sup
s,j
Fψj(s)≥ 2

(
1+o(1))(1−ε)Kr lnN

πNr
. (3.26)

It follows from arbitrariness of ε that the final estimation holds

sup
φ∈W̃ r (1)

Fφ≥
(
2+o(1))Kr lnN

πNr
. (3.27)

This completes the proof.

3.4. Optimal with respect to order quadrature rules. In computing singular inte-

grals by asymptotically optimal quadrature rules constructed in the Sections 3.2, 3.3

it is necessary to evaluate the coefficients pk(s) for every value of s.
Construct less exact but more easy realizable algorithms. Divide the segment [0,2π]

into N equal parts by the points tk = 2kπ/N , k = 0,1, . . . ,N . Let t′k = (2k+1)π/N ,

k = 0,1, . . . ,N . Let the point s lies in the segment [tj,tj+1]. The integral Fφ we shall

calculate by the formula

1
2π

∫ 2π

0
φ(σ)ctg

σ −s
2

dσ = 1
π

N∑
k=1

φ(t′k) ln
sinπ

(
(2k−2j−1)/2N

)
sin
(
π(2k−2j−3)/2N

) +RN. (3.28)
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Theorem 3.14 (see [6, 8]). Let Ψ =Hα(1) (0< α≤ 1). Among all quadrature rules

of the type (3.2) with ρ = 0 the quadrature rule (3.28) is asymptotically optimal for

0 < α < 1 and optimal with respect to order for α = 1. Its error is equal to RN[Ψ] ≤
2lnN/π1−α(1+α)Nα+O(N−α).

In computing singular integrals, the quadrature rules is based on the change of

the integrand function by some approximating assembly. Changing of the integrand

function by Lagrange interpolated polynomial constructed on 2N+1 equidistant point

sk = 2kπ/(2N + 1), k = 0,1, . . . ,2N is used particularly often in (see [23, 27]). The

interpolated polynomial is given in [34, 35] by the formula

PN[φ]=
2N∑
k=0

φ
(
sk
)
ψk(s),ψk(s)= 1

2N+1
sin(2N+1/2)

(
s−sk

)
sin
(
s−sk/2

) . (3.29)

The quadrature rule has the form

Fφ= 1
2π

∫ 2π

0
PN
[
φ(σ)

]
ctg

σ −s
2

dσ +RN(s). (3.30)

This quadrature rule can be represented as the finite summation

Fφ=− 2
2N+1

2N∑
k=0

φ
(
sk
)sin(N+1

)(
s−sk/2

)
sinN

(
s−sk/2

)
sin
(
s−sk/2

) . (3.31)

Assume that function φ(t) is representable in convolution form

φ(x)=
∫ π
−π
G(x−t)h(t)dt, (3.32)

where h(t) is continuous 2π -periodic function such that max−π≤t≤π |h(t)| ≤ 1,

essmax−π≤t≤π |h̃(t)| ≤K; h̃(t) is the function conjugateh(t);G(t) has propertyAN+1.

Definition 3.15. The function G(x) has the property AN+1 provided

(a) G(x) is even and for any ak, k = 0,1, . . . ,N , the function G(x)−∑N
0 ak coskx

cannot have more than N+1 nodes in the interval (0,π);
(b) G(x) is odd and for any ak, k = 0,1, . . . ,N , the function G(x)−∑N

1 ak sinkx
cannot have more than N nodes in the interval (0,π).

Theorem 3.16 (see [6, 8]). Let φ(t) belong to the class of functions represented in

convolution form of (3.32) and max−π≤t≤π |h(t)| ≤ 1,essmax−π≤t≤π |h̃(t)| ≤ K. Then

the quadrature rule (3.30) error is estimated by the inequality |RN | ≤ KEN,1(G) +
π−1EN(φ)(lnN + C), where EN,P (G) is the best approximation of the function G(t)
by trigonometric polynomials of degree N in the metric Lp,EN = EN,∞, C = 0,577215.

Theorem 3.17 (see [6, 8]). Let φ∈ W̃ r
p (1), 1≤ p ≤ 2. Then the error of quadrature

rule (3.30) is estimated by the inequality |RN | ≤ EN,p1(Dr )(2p′+π−r lnN), whereDr(x)
are Bernoulli polynomials, 1/p+1/p′ = 1.
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Proofs of these theorems are given in [6, 8]. At the end of the section we introduce

optimal with respect to order algorithm of evaluation of the singular integral Kf ,

which is based on Gauss quadrature rule. This algorithm is very simple in application.

Convergence of this algorithm is given in [12].

We rewrite the integral Kf as

Kf =
∫ 1

−1

f(τ)dτ
τ−t

=
∫ 1

−1

g(τ)dτ
τ−t −

(
f(1)+ 1

2
f(−1)

)

× ln
∣∣∣∣1−t

1+t

∣∣∣∣− f(1)−f(−1)
2

(
2+t ln

∣∣∣∣1−t
1+t

∣∣∣∣
)

(3.33)

and we will construct numerical algorithm for evaluation of the integral

Kg =
∫ 1

−1

g(τ)dτ
τ−t , (3.34)

where g(τ)= f(τ)−(τ+1)/2[f (1)−f(−1)]−f(−1).
We now construct continuous local spline that approximate the function Kf(t)

with accuracy An−r lnn, where n is the number of functionals f(tk), used in the

construction of the algorithm. For this purpose, we divide the segment [−1,1] into

2n parts by the points tk =−1+(k/n)v and τk = 1−(k/n)v , where k= 0,1, . . . ,n and

v = r . We construct interpolating polynomial whose interpolation points contain the

endpoints of the interpolation segment.

The polynomial Pr (f ,[a,b]) that interpolated the function f(t) on the segment

[a,b] is constructed as follows. Denote by ζk, k = 1,2, . . . ,r roots of the Legendre

polynomial of degree r . We map the segment [ζ1,ζr ] ∈ [−1,1] onto [a,b] so that

the points ζ1 and ζr map to a and b, respectively. Images of the points ζi under this

mapping are denoted by ζ′i , i = 1,2, . . . ,r . Using the points of ζ′i , i = 1,2, . . . ,r , we

construct the interpolation polynomial Pr (f ,[a,b]) of degree r −1.

We divide segments [−1, t1] and [τ1,1] ontoM = [lnN] parts by the points t0,l=−1+
lt1/M and τ0,l = 1− lτ1/M , l = 0,1, . . . ,M , respectively. The function G(t) = (Kg)(t)
is approximated by interpolation polynomials Pr (G̃(t),∆0,l) and Pr (G̃(t),∆∗0,l) on the

segments ∆0,l = [t0,l, t0,l+1] and ∆∗0,l = [τ0,l+1,τ0,l], l= 0,1, . . . ,M−1, respectively.

The function G(t) = (Kg)(t) is approximated by interpolation polynomials

Pr (G̃(t),∆k) and Pr (G̃(t),∆∗k ) on the segments ∆k = [tk,tk+1] and ∆∗k = [τk+1,τk],
l= 0,1, . . . ,n−1, respectively.

The values G̃(ζk,l) and G̃(ζ∗k,l), where ζk,l and ζ∗k,l are nodes of the interpolation

polynomials Pr (G̃(t),∆k) and Pr (G̃(t),∆∗k ), are found from quadrature rules

G̃(ζk,j)=
N−1∑
l=0

∫wl+1

wl
Pr

(
g(τ)−g(ζk,j)

τ−ζk,j
,
[
wl,wl+1

])
dτ+g(ζk,j) ln

∣∣∣∣1−ζk,j
1+ζk,j

∣∣∣∣, (3.35)

where wl =−1+2l/n, l= 0,1, . . . ,n.

The error of this algorithm is equal to A lnN/Nr .
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4. Optimal quadrature rules for calculating polysingular and many-dimensional

singular integrals

4.1. Optimal algorithms for calculating integrals with fixed singularity. Consider

quadrature rules of the following type:

Sf =
∫ 1

−1

∫ 1

−1

f
(
t1, t2

)
t1t2

dt1dt2 =
N∑

k,l=−N, k,l≠0

pklf
(
tk,tl

)+RNN(f ;pkl;tk,tl
)
, (4.1)

where tk =−t−k, pk,l = p−k,−l =−p−k,l =−pk,−l, k,l=−N,. . . ,−1,1, . . . ,N .

Theorem 4.1 (see [6]). Let Ψ =W 1,1(1). Among all quadrature rules of the type (4.1)

with t−N =−1, tN = 1 the formula

Sf =
N∑
j=1

N∑
k=1

4ln
j+1
j

ln
k+1
k
[
f
(
vj,vk

)−f (−vj,vk)−f (vj,−vk)+f (−vj,−vk)]+RNN,
(4.2)

where vk = k(k+1)/N(N+1), k= 1,2, . . . ,N is optimal and has the error

RNN[Ψ]≤ 8
N+1

. (4.3)

Remark 4.2 (see [42]). The exact value of RNN[Ψ] is equal to RNN[Ψ] = 8ln(1+
1/N)+4ln2(1+1/N).

Theorem 4.3 (see [6]). Let Ψ =W 1,1(1). Among all quadrature rules of the type (4.1)

the formula

Sf =
N∑
j=1

N∑
k=1

4ln
j+1
j

ln
k+1
k
[
f
(
vj,vk

)−f (−vj,vk)−f (vj,−vk)+f (−vj,−vk)]+RNN,
(4.4)

where vk = k(k+ 1)/(N + 1)2, k = 1,2, . . . ,N , is optimal and has the error equal to

RNN[Ψ]≤ 8/N+1+4lnN/(N+1)2.

Remark 4.4 (see [42]). The exact value of RNN[Ψ] is equal to RNN[Ψ]= 8/(N+1)+
4/(N+1)2.

Consider singular integrals

If =
∫ 1

−1
···

∫ 1

−1

f
(
t1, . . . , tl

)
t1 ···tl

dt1 ···dtl. (4.5)

We will calculate the singular integrals If with quadrature rules

If =
N∑

k1=1

···
N∑
kl=1

pk1,...,klf
(
tk1 , . . . , tkl

)+RN, (4.6)

If =
N∑

k1=1

···
N∑
kl=1

ρ1∑
i1=0

···
ρl∑
il=0

pk1,...,kl,i1,...,il
∂i1+···+ilf

(
tk1 , . . . , tkl

)
∂ti11 ···∂t

il
l

+RN, (4.7)

If =
N∑
k=1

pkf
(
Mk
)+RN, Mk ∈ [−1,1]l. (4.8)



NUMERICAL METHODS OF COMPUTATION OF SINGULAR . . . 161

Theorem 4.5 (see [6]). Let Ψ = Hα,...,α(1). Let the integral If be calculated with

quadrature rules of the type (4.6). Then

ζN[Ψ]≥
(
1+o(1))2l−2α(1+α)1−l lnl−1N

αNα
. (4.9)

Theorem 4.6 (see [6]). Let Ψ = Crl , r = 1,2, . . . . Let the integral If be calculated with

quadrature rule of the type (4.6). Then ζN[Ψ]≥AN−r lnl−1N .

Theorem 4.7 (see [6]). Let Ψ = Crl , r = 1,2, . . . . Let the integral If be calculated with

quadrature rule of the type (4.7). Then ζN[Ψ]≥A(rN)−r lnl−1N .

Theorem 4.8 (see [6]). Let Ψ = Zαi or Ψ = Hα
i , i = 1,2,3. Let the integral If be

calculated with quadrature rule of the type (4.8). Assume that the integral If is two-

dimensional integral (l = 2) when the function f belongs to the classes Hα
i , i = 2,3 or

Zαi , i= 2,3. Then ζN(Hα
i )= 2ζN(Zαi )=Di(2(l+α)/α)l+αN−α/l+o(N−α/l), where

D1 = l
(l+α)2α , D2 = 21−α/2

2+α , D3 = 12
2+α

(
1

2
√

3

)(α+2)/2∫ π/6
0

dt
cos2+α t

. (4.10)

We construct some optimal with respect to order quadrature rules for calculation

of the integral If .

Theorem 4.9 (see [6]). Let Ψ = Hα,α(1), 0 < α ≤ 1. Let l = 2. Among all possible

quadrature rules of the type (4.6) the formula

If =
N−1∑

k=−N,k≠−1,0

N−1∑
i=−N,i≠−1,0

f
(
v′k,v

′
i
)∫ ∫

∆ki

dt1dt2
t1t2

+RN, (4.11)

where v±k =±(k/N)(1+α)/α, k= 0,1, . . . ,N ; v′k = (vk+1+vk)/2,∆ij = [vi,vi+1;vj,vj+1],
i,j =−N,. . . ,−1,0,1, . . . ,N−1, is optimal with respect to order and has the error

∣∣RN∣∣≤ (8+o(1))
(

1+α
α

)2+α lnN
2αNα

. (4.12)

Let D = [−1,1]2. Let f(t1, t2)((t1, t2) ∈ D) be a function from the class Cr2 , r =
1,2, . . . . We construct a local spline for approximation of the function f(t1, t2). Let

∆ij = [vi,vi+1;vj,vj+1], i,j =−N,. . . ,N−1, where v±k =±(k/N)(r+1)/r , k= 0,1, . . . ,N .

In each domain ∆ij we approximate the function f(t1, t2) with Taylor series Tr−1×
(f,∆ij , (v′i ,v

′
j)), where v′i = (vi+vi+1)/2.

Let fN(t1, t2)(t1, t2)∈D be local spline which consists of polynomials Tr−1(f ,∆i,j),
i,j =−N,. . . ,N−1.

Theorem 4.10 (see [6]). Let Ψ = Cr2 , r = 1,2, . . . . Among all possible quadrature

rules of the type (4.7) the formula If = IfN +RN is optimal with respect to order and

has the error |RN | =AN−r lnN .

Proofs of Theorems 4.1, 4.3, 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10 are given in [6, 8].
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4.2. Approximate methods of the calculation of the polysingular integrals with

Cauchy and Hilbert kernels. In this item we investigate optimal methods of the cal-

culation of the polysingular integrals with Hilbert kernel as

Hf = 1
(2π2)l

∫ 2π

0
···

∫ 2π

0
f
(
σ1, . . . ,σl

)
ctg

σ1−s1

2
···ctg

σl−sl
2

dσ1 ···dσl, (4.13)

the polysingular integrals with Cauchy kernel as

Gf =
∫ 1

0
···

∫ 1

0

f
(
τ1, . . . ,τl

)
dτ1 ···dτl(

τ1−t1
)···(τl−tl) (4.14)

and the many-dimensional singular integrals as

Kf =
∫
D

φ(θ)f
(
τ1, . . . ,τl

)
dτ1 ···dτl((

τ1−t1
)2+···+(τl−tl)2)l/2 , D = [0,1]l, l= 2,3, . . . . (4.15)

For calculating integrals as (4.13) we will use quadrature rules of the following types:

Hf =
n1∑
k1=1

···
nl∑
kl=1

ρ1∑
i1=0

···
ρl∑
il=0

pk1···kl,i1,...,il
(
s1, . . . ,sl

)
f i1,...,il

(
xk1 , . . . ,xkl

)
+Rn

(
s1, . . . ,sl;xk1 , . . . ,xkl ;pk1,...,kl,i1,...,il ,f

)
,

(4.16)

where 0≤ x1 <x2 < ···<xm ≤ 2π , and

Hf =
N∑
k=1

pk
(
s1, . . . ,sl

)
f
(
Mk
)+RN(s1, . . . ,sl;pk,Mk,f

)
, (4.17)

where Mk ∈D = [0,2π]l, k= 1,2, . . . ,N .

For calculating the integrals (4.14) and (4.15) we will use quadrature rules of the

following types

Gf =
n∑

k1=1

···
n∑

kl=1

ρ1∑
i1=0

···
ρl∑
il=0

pk1···kl,i1···il
(
t1, . . . , tl

)
f (i1,...,il)

(
tk1 , . . . , tkl

)
+Rn

(
t1, . . . , tl;pk1···kli1···il ;tk1 , . . . , tkl ;f

)
;

(4.18)

Gf =
N∑
k=1

pk
(
t1, . . . , tl

)
f
(
Mk
)+RN(t1, . . . , tl;pk;Mk;f

)
, (4.19)

Kf =
n∑

k1=1

···
n∑

kl=1

ρ1∑
i1=0

···
ρl∑
il=0

pk1···kli1···il
(
t1, . . . , tl

)
f (i1,...,il)

(
tk1 , . . . , tkl

)
+Rn

(
t1, . . . , tl;pk1···kli1···il ;tk1 , . . . , tkl ;f

)
;

(4.20)

Kf =
N∑
k=1

pk
(
t1, . . . , tl

)
f
(
Mk
)+RN(t1, . . . , tl;pk;Mk;f

)
. (4.21)



NUMERICAL METHODS OF COMPUTATION OF SINGULAR . . . 163

4.2.1. Asymptotically optimal quadrature rules on Hölder classes of functions.

Consider the polysingular integrals of the type (4.13), where l= 2. We restricted our-

selves to two-dimensional integrals only for simplicity.

Theorem 4.11 (see [6, 8]). Let Ψ = Hα,α(D) or Ψ = Hα
3 (D). Let the integral (4.13)

be calculated with quadrature rules of the type (4.16), where n=n1 =n2, ρ1 = ρ2 = 0.

Then

ζN
[
Hα,α(D)

]≥
(
1+o(1))8πα−2

(1+α)nα ln2n,

ζN[Ψ]≥
(
4+o(1))n2 ln2n

π4

∫ π/n
0

∫ π/n
0

(
t2+τ2)α/2dtdτ.

(4.22)

Theorem 4.12 (see [6, 8]). The quadrature rule

Hf = 1
4π2

n−1∑
k=0

m−1∑
l=0

f
(
t′k,τ

′
l
)∫ ∫

∆∗kl
ctg

σ1−s1

2
ctg

σ2−s2

2
dσ1dσ2+Rnm, (4.23)

where ∆kl = [tk,tk+1;τl,τl+1]; tk = 2kπ/n, t′k = (2k + 1)π/n, k = 0,1, . . . ,n; τl =
2lπ/m, τ′l = (2l + 1)π/m, l = 0,1, . . . ,m; ∆0 = [s1 − 4π/n,s1 + 4π/n;0,2π]∪
[0,2π ;s2−4π/m,s2+4π/m], ∆∗0 =D\∆0; ∆∗kl =∆kl∩∆∗0 , has the error

Rmn
[
Hα1α2(1)

]≤ 4
π2

(
πα1(

1+α1
)
nα1

+ πα2(
1+α2

)
mα2

)

×(4+( lnn+o(lnn))( lnm+o(lnm))),
(4.24)

Rnm
[
Hα

3 (D)
]≤ 4

π4
nm

((
lnn+o(lnn))( lnm+o(lnm))+4

)

×
∫ π/n

0

∫ π/m
0

(
t2+τ2)α/2dtdτ.

(4.25)

In the case when α1 = α2 and n =m the quadrature rule (4.23) is asymptotically

optimal on classes of functions Hαα(1), Hα
3 (D) and has the error

Rnn
[
Hαα(1)

]= (1+o(1))8πα−2 ln2n
(1+α)nα ,

Rnn
[
Hα

3 (D)
]= (4+o(1))n2 ln2n

π4

∫ π/n
0

∫ π/n
0

(
t2+τ2)α/2dtdτ.

(4.26)

Theorem 4.13 (see [6, 8]). Let Ψ =Hωω(D). In the case n=m the quadrature rule

(4.23) is asymptotically optimal and has the error

Rnn
[
Hωω(D)

]= (8+o(1))n ln2n
π3

∫ π/n
0

ω(t)dt,

Rnn
[
Hω

3 (D)
]= (4+o(1))n2 ln2n

π4

∫ π/n
0

∫ π/n
0

ω
(√
t2+τ2

)
dtdτ.

(4.27)
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Theorem 4.14 (see [6, 8]). Let Ψ = Hα
i or Ψ = Zαi , i = 1,2,3. Let the integral (4.13)

be calculated with quadrature rules of type (4.17). Assume that l = 2 if i = 2,3. Then

ζN[Hα
i ] = 2ζN[Zαi ] = (1+o(1))(2l+αDiπα−l)/(llNα/l) lnl N , where constants D1, D2,

D3 was defined in Theorem 4.8.

Theorem 4.15 (see [6, 8]). Let Ψ =Hα
1 (0<α≤ 1). The quadrature rule

Hf =
n−1∑
k1=0

···
n−1∑
kl=0

f
(
t′k1
, . . . , t′kl

)∫ ···
∫
∆∗k1 ,...,kl

ctg
σ1−s1

2
···ctg

σl−sl
2

dσ1 ···dσl+Rn···n,
(4.28)

where n = [N1/l]; tk = 2kπ/n, t′k = (2k+1)π/n, k = 0,1, . . . ,n; ∆0 = [s1−6π/n,s1+
6π/n;0,2π ; . . . ;0,2π] ∪ ··· ∪ [0,2π ; . . . ;0,2π ;sl − 6π/n,sl + 6π/n]; ∆∗0 = D \ ∆0;

∆k1,...,kl=[tk1 , tk1+1; . . . ;tkl ,tkl+1], ki = 0,1, . . . ,n−1, i= 1,2, . . . , l;∆∗k1,...,kl=∆
∗
0 ∩∆k1,...,kl ,

ki = 0,1, . . . ,n−1, i = 1,2, . . . , l, is asymptotically optimal among all quadrature rules

as (4.17) and has the error

Rn···n
[
Hα

1

]= (1+o(1))2lπα−l lnl Nll−1

(l+α)Nα/l . (4.29)

Consider the quadrature rule

Hf = 1
4π2

n−1∑
k=1

n−1∑
i=1

[
f
(
tk,τi

)∫ ∫
g∗ki

ctg
σ1−s1

2
ctg

σ2−s2

2
dσ1dσ2

+f (t′k,τ′i)
∫ ∫

d∗ki
ctg

σ1−s1

2
ctg

σ2−s2

2
dσ1dσ2

]
+Rnn,

(4.30)

where (tk,τi) = (2πk/n,2πi/n), (t′k,τ
′
i ) = ((2k+1)π/n,(2i+1)π/n); ∆0 = [s1 −

2π/n,s1+2π/n;0,2π]∪[0,2π ;s2−2π/n,s2+2π/n]; gki and dki are domains which

are defined by the expressions |s1−tk|+|s2−τi| ≤π/n and |s1−t′k|+|s2−τ′i | ≤π/n,

g∗ki = ([0,2π]2\∆0)∩gki, d∗ki = ([0,2π]2 \∆0)∩dki, k,i= 0,1, . . . ,n−1.

Theorem 4.16 (see [6, 8]). Let N = 2n2, l = 2. Let Ψ =Hα
2 (0 < α ≤ 1). The quadra-

ture rule (4.30) is asymptotically optimal among all quadrature rules as (4.17) and has

the error equal to

Rnn
[
Hα

2

]∼ 21+α/2πα−2 ln2N
(2+α)Nα/2 . (4.31)

Theorem 4.17 (see [6, 8]). Let N = n2, l = 2,3, . . . . Let Ψ = Hα
j , j = 1,3, 0 < α ≤ 1.

Let the integral Gf be calculated with quadrature rule of the type (4.18), where ρi = 0,

i= 1,2. Then

ζN
[
Hα

1

]≥ (1+o(1)) 2l−α

Nα/2(1+α) ln2N,

ζN
[
Hα

3

]≥ 4
(
1+o(1))N ln2N

∫ 1/2n

0

∫ 1/2n

0
(t2+τ2)α/2dtdτ.

(4.32)

Theorem 4.18 (see [8]). Let Ψ = Hα
j , j = 1,2,3, 0 < α ≤ 1. Let the integral Gf be

calculated with quadrature rule of the type (4.19). Let l= 2 if j = 2,3. Then ζN[Hα
j ]≥

(1+o(1))2lDjN−α/l lnl N , where D1, D2, D3 are defined in Theorem 4.8.
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Consider a quadrature rule

Gf =
n−1∑
k1=1

···
n−1∑
kl

f
(
t′k1
, . . . , t′kl

)∫ ···
∫
dk1 ,...,kl

dτ1 ···dτl(
τ1−t1

)···(τl−tl) +RN, (4.33)

where dk1,...,kl =∆k1,...,kl∩∆∗0 , ∆∗0 = [0,1]l \∆0, ∆0 = [t1−1/n,t1+1/n;−1,1; . . . ;−1,1]
∪···∪ [−1,1; . . . ;−1,1;tl−1/n,tl+1/n]; tk = k/n, k = 0,1, . . . ,n; t′k = (tk+ tk+1)/2,

k= 0,1, . . . ,n−1.

Theorem 4.19 (see [6, 8]). Let Ψ = Hα
j , j = 1,3, 0 < α ≤ 1. Let 1/n ≤ t ≤ 1−1/n,

i = 1,2, . . . , l. Let l = 2 if j = 3. Among all quadrature rules of the type (4.18) provided

ρi = 0, i= 1, . . . , l, the quadrature rule (4.33) is asymptotically optimal and has the error

RN
[
Hα

1

]= (1+o(1))2l−αN−α/ll(1+α)−1 lnl N,

RN
[
Hα

3

]= 4
(
1+o(1))N2 ln2N

∫ 1/2n

0

∫ 1/2n

0

(
t2+t2

1

)α/2dtdt1.
(4.34)

We consider a quadrature rule

Gf =
n−1∑
k1=0

n−1∑
k2=0

[
f
(
vk1 ,wk2

)∫
q∗k1k2

dτ1dτ2(
τ1−t1

)(
τ2−t2

)

+f (v′k1
,w′

k2

)∫
d∗k1k2

dτ1dτ2(
τ1−t1

)(
τ2−t2

)
]
+Rnn,

(4.35)

where (vk,wl)= (k/n,l/n), (v′k,w′
l )= (k/n+1/2n,l/n+1/2n), k,l= 0,1, . . . ,n; ∆0 =

[t1−1/n,t1+1/n;0,1]∪ [0,1;t2−1/n,t2+1/n]; qkl and dkl are domains which are

defined by the expressions |t1−vk|+|t2−wl| ≤ 1/2n and |t1−v′k|+|t2−w′
l | ≤ 1/2n;

∆∗0 = [0,1]2 \∆0; q∗kl = qkl∩∆∗0 , d∗kl = dkl∩∆∗0 , k,l= 0,1, . . . ,n−1.

Theorem 4.20 (see [7, 8]). Let N = 2n2. Let Ψ =Hα
2 (0<α≤ 1). Among all quadra-

ture rules of the type (4.19) the quadrature rule (4.35) is asymptotically optimal.

Theorem 4.21 (see [7, 8]). Let Ψ = Hα
j , j = 1,3, 0 < α ≤ 1. Let the integral Kf be

calculated with quadrature rule of the type (4.20) provided ρ1 = ρ2 = 0. The estimates

occur

ζN
[
Hα

1

]≥
(
1+o(1))

2α(1+α) N
−α/2 lnN

∫ 2π

0

∣∣f(cosφ,sinφ)
∣∣dφ;

ζN
[
Hα

3

]≥ (1+o(1))4N−α/2 lnN
∫ 2π

0

∣∣f(cosφ,sinφ)
∣∣dφ.

(4.36)

Theorem 4.22 (see [7, 8]). Let Ψ =Hα
j , j = 1,2,3, and the integral Kφ be evaluated

with cubature rule as (4.21) ( l= 2 if j = 2,3). The estimate

ζN
[
Hα
j
]≥ 1

2

(
1+o(1))DjN−α/2 lnN

∫ 2π

0

∣∣f(cosφ,sinφ)
∣∣dφ (4.37)

is valid. The constants Dj are defined in Theorem 4.8.
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Theorem 4.23 (see [7, 8]). Let Ψ =Hα
j , j = 1,3, l= 2. Among the cubature rules as

(4.20) for ρ1 = ρ2 = 0 the formula

Kφ=
n−1∑
k=0

n−1∑
m=0

′φ
(
t′k,t

′
m
)∫ ∫

∆km

f(θ)dτ1dτ2(
τ1−t1

)2+(τ2−t2
)2

+φ(t′i , t′j)
∫
[ti−1,ti+2;tj−1,tj+2]

∫
f(θ)dτ1dτ2(

τ1−t1
)2+(τ2−t2

)2 +RN
(4.38)

is asymptotically optimal for 1/n ≤ ti ≤ 1−1/n, i = 1,2. Here (t1, t2) ∈ ∆ij , the prime

in the summation indicate that (k,m) �= (i− 1,j − 1),(i,j − 1), . . . ,(i+ 1,j + 1). The

cubature formula error is equal to

RN
[
Hα

1

]= 1+o(1)
2α(1+α)N

−α/2 lnN
∫ 2π

0

∣∣f(cosφ,sinφ)
∣∣dφ,

RN
[
Hα

3

]= (1+o(1))4N−α/2 lnN
∫ 2π

0

∣∣f(cosφ,sinφ)
∣∣dφ.

(4.39)

Consider a formula

Kφ=
n−1∑
k1=0

n−1∑
k2=0

(
φ
(
vk1 ,wk2

)∫ ∫
q∗k1k2

f(θ)dτ1dτ2(
τ1−t1

)2+(τ2−t2
)2

+φ(v′k1
,w′

k2

)∫ ∫
d∗k1k2

f(θ)dτ1dτ2(
τ1−t1

)2+(τ2−t2
)2

)
+RN,

(4.40)

where the definitions of formula (4.35) are used.

Theorem 4.24 (see [7, 8]). Let N = 2n2, Ψ = Hα
j , j = 1,2. Among all possible

cubature rules as (4.21) the formula (4.40) is asymptotically optimal on class Ψ for

2/n≤ ti ≤ 1−2/n, i= 1,2. The error is equal to

RN
[
Hα
j
]= 1

2

(
1+o(1))DjN−α/2 lnN

∫ 2π

0

∣∣f(cosφ,sinφ)
∣∣dφ. (4.41)

Proof of Theorem 4.11. For simplicity we assume that l = 2, n1 = n2 = n. We

introduce nodes vk = 2kπ/M , k= 0,1,2, . . . ,M , M = [n/ lnn]. The union of the nodes

(xk1 ,xk2), 1 ≤ xk1 ,xk2 ≤ n of quadrature rule (4.16) and the nodes (vk,vl), k,l =
1,2, . . . ,M , we denote by (wk1 ,wk2), k1,k2 = 1,2, . . . ,L, L≤n+M . For each node (vi,vj),
i,j = 1,2, . . . ,M , we compare the function

ψ∗ij
(
σ1,σ2

)=




0, if
(
σ1,σ2

)∈∪1
k=0

[
vi−a+kπ,vi+a+kπ ;0,2π

]
×∪1

l=0

[
0,2π ;vj−a+lπ,vj+a+lπ

]
,

ψ
(
σ1,σ2

)
sgn

(
ctg

σ1−vi
2

ctg
σ2−vj

2

)

in other points of the domain D,

(4.42)

where a= [21/α]+1, ψ(σ1,σ2)= (mini |σ1−wi|α)+(minj |σ2−wj|α) is the function

which was introduced in [34, 35].
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It is easy to see that

(
Fψ∗ij

)(
vi,vj

)

= 1
(2π)2

∫ 2π

0

∫ 2π

0
ψ∗ij

(
σ1,σ2

)
ctg

σ1−vi
2

ctg
σ2−vj

2
dσ1dσ2

≥
[M/2]−1∑
k=a

[M/2]−1∑
l=a

1
(2π)2

[
ctg

π(k+1)
M

ctg
π(l+1)
M

∫ vk+i+1

vk+i

∫ vl+j+1

vl+j
ψ(σ1,σ2)dσ1dσ2

+ctg
π(k+1)
M

ctg
π(l+2)
M

∫ vk+i+1

vk+i

∫ vj−l
vj−l−1

ψ
(
σ1,σ2

)
dσ1dσ2

+ctg
π(k+2)
M

ctg
π(l+1)
M

∫ vi−k
vi−k−1

∫ vj+l+1

vj+l
ψ
(
σ1,σ2

)
dσ1dσ2

+ctg
π(k+2)
M

ctg
π(l+2)
M

∫ vi−k
vi−k−1

∫ vj−l
vj−l−1

ψ
(
σ1,σ2

)
dσ1dσ2

]
.

(4.43)

Averaging this inequality on i and j, we have

sup
ϕ∈Hαα

max
s1s2

(Fϕ)
(
s1,s2

)≥ 1
M2

M−1∑
i=0

M−1∑
j=0

(
Fψ∗ij

)(
vi,vj

)

≥ 1
π2

∫ 2π

0

∫ 2π

0
ψ
(
σ1,σ2

)
dσ1dσ2

1
M2

[M/2]−1∑
k=a

[M/2]−1∑
j=a

ctg
π(k+2)
M

ctg
π(j+2)
M

= 1+o(1)
π4

ln2n
∫ 2π

0

∫ 2π

0
ψ
(
σ1,σ2

)
dσ1dσ2.

(4.44)

So,

sup
ϕ∈Hαα

max
s1s2

(Fϕ)
(
s1,s2

)≥ (1+o(1))8πα−2(1+α)−1n−α ln2n. (4.45)

This proves Theorem 4.11.

Other theorems of this section are proved by similar way but technically more com-

plicated.

4.3. Asymptotically optimal methods of the calculation of the polysingular inte-

grals on Sobolev classes of functions. Consider the polysingular integrals as

Ff =
∫ 1

0

∫ 1

0
f
(
σ1,σ2

)
ctgπ

(
σ1−s1

)
ctgπ

(
σ2−s2

)
dσ1dσ2. (4.46)

For evaluating the integral Ff we use the following quadrature rules

Ff =
m∑
k=1

n∑
l=1

ρ1∑
i=0

ρ2∑
j=0

pkl,ij
(
s1,s2

)
f (i,j)

(
xk,yl

)+Rnm(s1,s2;pkl,ij ;xk,yl;f
)
. (4.47)
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Theorem 4.25 (see [6, 8]). Let Ψ = C̃r2 (1), r = 1,2, . . . . Let the integral (4.46) be

calculated with quadrature rules of the type (4.47), where ρ1+ρ2 ≤ r , n=m. Then

ζnn[Ψ]≥
(
4+o(1))Rr1(1) ln2n
(r +1)!(2n)rπ2

. (4.48)

Theorem 4.26 (see [6, 8]). Let Ψ = W̃ rs(1), r ,s = 1,2, . . . . Let the integral (4.46) be

calculated with quadrature rules of the type (4.47), where ρ1 = r −1, ρ2 = s−1. Then

ζmn[Ψ]≥ 4+o(1)
π2

(
Rr1(1)

(2m)r(r +1)!
+ Rs1(1)
(2n)s(s+1)!

)
lnn lnm. (4.49)

Construct the special polynomial for approximating function f(t1, t2) belonging

to the class Wrs(1) on the rectangle [a,b;c,d]. Let t1 be fixed value. Introduce a

polynomial

fs
(
t1, t2

)= s−1∑
l=0

[
f (0,l)

(
t1,c

)
l!

(
t2−c

)l+Blδ(l)(t1,d)
]
, (4.50)

where

δ
(
t1, t2

)= f (t1, t2)−
s−1∑
l=0

f (0,l)
(
t1,c

)
l!

(
t2−c

)l. (4.51)

The coefficients Bl are defined from the equality

(
d−t2

)s− s−1∑
l=0

Bl(d−c)s!
(s−l−1)!

(
d−t2

)s−l−1 = (−1)sRs1
(
c+d

2
,
d−c

2
, t2
)
, (4.52)

where Rsp(a,h,t) is the polynomial of order s with respect to the variable t deviating

least from zero in the space Lp[a−h,a+h].
Special polynomial frs(t1, t2;[a,b;c,d]) is defined by the formula

frs
(
t1, t2;[a,b;c,d]

)= r−1∑
l=0

[
f (l,0)s

(
a,t2

)
l!

(
t1−a

)l+Blδ(l)(b,t2)
]
, (4.53)

where

δ
(
t1, t2

)= fs(t1, t2)−
r−1∑
l=0

f (l,0)s
(
a,t2

)
l!

(
t1−a

)l. (4.54)

The coefficients Bl are defined from the equality

(
b−t1

)r −r−1∑
l=0

Bl(b−a)r !
(r −l−1)!

(
b−t1

)r−l−1 = (−1)rRr1

(
a+b

2
,
b−a

2
, t1
)
. (4.55)

Cover the squareD = [0,1]2 with parallelepipeds∆kl = [tk,tk+1;τl,τl+1], k= 0,1, . . . ,
n−1, l= 0,1, . . . ,m−1, where tk = k/n, k= 0,1, . . . ,n,τl = l/m, l= 0,1, . . . ,m. Assume

that the singular integral (4.46) is calculated at the point (s1,s2). Let (s1,s2)∈∆i,j . We

approximate the function f(s1,s2) by the function frs(s1,s2;∆kl) in the parallelepiped

∆kl for (k,l) so that k ≠ i−1, i,i+1 or l ≠ j−1,j,j+1. In the parallelepiped ∆kl for

k= i−1, i,i+1, l= 0,1, . . . ,m−1 or k= 0,1, . . . ,n−1, l= j−1,j,j+1 function f(σ1,σ2)
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is approximated by Taylor series Tr−1,s−1(f ,∆kl,(tk,τl)). Local spline is constructed

in [0,1]2 thus we define as f̃n,m(σ1,σ2).
Consider the quadrature rule

Ff =
∫ 1

0

∫ 1

0
f̃rs
(
σ1,σ2

)
ctgπ

(
σ1−s1

)
ctgπ

(
σ2−s2

)
dσ1dσ2+Rnm

(
s1,s2

)
. (4.56)

Theorem 4.27 (see [6, 8]). Let Ψ = W̃ r ,s(1). Among all quadrature rules of the type

(4.47) the quadrature rule (4.56) is asymptotically optimal and has the error

Rnm[Ψ]=
(
1+o(1))4lnn lnm

(
Rr1(1)

π2(r +1)!(2n)r
+ Rs1(1)
π2(s+1)!(2m)s

)
. (4.57)

Consider a quadrature rule

Gf =
∫ 1

0

∫ 1

0

f
(
τ1,τ2

)
(
τ1−t1

)(
τ2−t2

)dτ1dτ2 =
n−1∑
k1=0

n−1∑
k2=0

∫ ∫
∆k1k2

fnn
(
τ,∆k1k2

)
(
τ1−t1

)(
τ2−t2

)dτ1dτ2+Rn,

(4.58)

where τ = (τ1,τ2); ∆ij = [ti,ti+1;tj,tj+1], ti = i/n, i= 0,1, . . . ,n.

Theorem 4.28 (see [7, 8]). LetN =n2 and Ψ =Wr,r (1). Among all possible cubature

rules as (4.18) for l= 2, ρi = r−1, i= 1,2, the formula (2.64) is asymptotically optimal.

Its estimation is RN[Ψ]= (1+o(1))2ln2N/r !4rNr/2.

Theorem 4.29 (see [7, 8]). Let Ψ =Wr,r (1) and the integral Kφ be evaluated with

cubature rule as (4.20) for l= 2, ρi = r −1, i= 1,2. It is valid the estimation

ζN[Ψ]≥
(
1+o(1)) lnN
r !4rNr/2

∫ 2π

0

∣∣f(cosφ,sinφ)
∣∣dφ. (4.59)

Theorem 4.30 (see [7, 8]). LetN =n2 and Ψ =Wr,r (1). Among all possible cubature

rules as (4.20) for l= 2, ρi = r −1, i= 1,2; 2/n≤ ti ≤ 1−2/n, i= 1,2; the formula

Kφ=
n−1∑
k=0

n−1∑
i=0

∫
∆ki

∫
φnn

(
τ1,τ2

)
f(θ)dτ1dτ2(

τ1−t1
)2+(τ2−t2

)2 +RN, (4.60)

where we use as designations as in (4.58), is asymptotically optimal on class Ψ . Its error

is equal to

RN[Ψ]=
(
1+o(1)) lnN
r !4rNr/2

∫ 2π

0

∣∣f(cosφ,sinφ)
∣∣dφ. (4.61)

Proofs of these theorems are given in [7, 8].

4.4. Optimal with respect to order quadrature rules on Hölder classes. Consider

polysingular integrals as (4.13) for calculation of which we shall use the quadrature

rules (4.16) and (4.17). For simplicity we shall put l= 2.

LetD = [0,2π]2. We cover the squareD with parallelepipeds∆kl = [tk,tk+1;τl,τl+1],
k = 0,1, . . . ,n− 1, l = 0,1, . . . ,m− 1, where tk = 2kπ/n, τl = 2lπ/m, k = 0,1, . . . ,n,

l= 0,1, . . . ,m.
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Theorem 4.31 (see [6, 8]). On classes Hα1,α2(1), H
α
1 (D) and Hα

3 (D) (0 < α,α1,
α2 ≤ 1) the quadrature rule

Hf = 1
4π2

n−1∑
k=0

m−1∑
l=0

f
(
t′k,τ

′
l
)∫∫

∆kl
ctg

σ1−t′i
2

ctg
σ2−τ′j

2
dσ1dσ2+Rnm

(
s1,s2;f

)
, (4.62)

where (s1,s2)∈∆ij ; t′k = (2k+1)π/n, k= 0,1, . . . ,n−1; τ′l = (2l+1)π/m, l= 0,1, . . . ,
m−1; is optimal with respect to order. The error holds

Rnm
[
Hα1,α2(1)

]� 4ln
n
2

ln
m
2

(
21+α1−1(

1+α1
)
π2−α1nα1

+ 21+α2−1(
1+α2

)
π2−α2mα2

)
,

Rnm
[
Hα

3 (D)
]� 4nm

π4

(
lnn+o(lnn))( lnm+o(lnm))

∫ 2π/n

0

∫ 2π/m

0

(
s2

1+s2
2

)α/2ds1ds2,

Rnm
[
Hα

1 (D)
]� 22+απα−2n−α ln2n+8eπα−2α−1n−α lnn.

(4.63)

5. Quadrature rules for Hadamard finite part integrals. In this section, we inves-

tigate the approximate methods of calculation of one-dimensional and many-dimen-

sional Hadamard finite-part integrals.

5.1. Introduction. Suppose that a function f(t) integrable over [a,b] belongs to

the classWr(M), r ≥ p, p = 1,2, . . . . The Hadamard finite part (f.p.) integral is given by

∫ b
a

f (t)dt
(b−t)p+α = lim

x→b

[∫ x
a

f(t)dt
(b−t)p+α +

B(x)
(b−x)p+α−1

]
, (5.1)

where 0<α< 1. The function B(x) is an arbitrary function which satisfies the follow-

ing conditions:

(1) limit in (5.1) exists.

(2) the function B(x) has at least the derivatives of order p in a neighbourhood of

the point b.

Sampling the function B(x) does not influence the values of the Hadamard f.p. inte-

gral. The Cauchy-Hadamard finite-part integral is given by

∫ b
a

f (t)dt
(t−c)p = lim

η→0

[∫ c−η
a

f (t)dt
(t−c)p +

∫ b
c+η

f (t)dt
(t−c)p +

B(η)
(c−η)p−1

]
, (5.2)

where p = 2,3, . . . , a < c < b. The function B(x) is chosen thus that the limit in (5.2)

exists.

5.2. Asymptotically optimal quadrature rules for the calculation of the Hadamard

finite part integrals with fixed singularity. In this section, we review the quadrature

rules for the computation of the Hadamard f.p. integrals

If =
∫ 1

−1

f(t)dt
tv

, v = 2,3, . . . , (5.3)

Lf =
∫ 1

−1

f(t)dt
|t|v+α , v = 1,2, . . . , 0<α< 1. (5.4)
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We will use the following quadrature rules:

If =
N∑

k=−N

ρ∑
l=0

pklf (l)
(
tk
)+RN(pkl,tk,f ), (5.5)

Lf =
N∑

k=−N

ρ∑
l=0

pklf (l)
(
tk
)+RN(pkl,tk,f ). (5.6)

We will use the local spline f̃ (t,∆k) that was constructed in the section preliminaries

of the introduction.

Theorem 5.1 (see [11]). Set Ψ =Wr
p(1), 1 ≤ p ≤∞. Among all possible quadrature

rules of the type (5.5), where ρ = r −1, the formula

If =
r−1∑
k=0

f (k)(0)
k!(k+1−v)t

k+1−v
1

(
1−(−1)r+1−v)

+
N−1∑

k=−N,k≠−1,0

∫ tk+1

tk

f̃
(
t,
[
tk,tk+1

])
dt

tv
+RN,

(5.7)

where tk = ±(k/N)(r+1/q)(r+1/q−v), 1/p+1/q = 1 is asymptotically optimal. The error

occurs

RN[Ψ]=
(
1+o(1))Rrq(1)

2r−1/q(rq+1)1/qr !

(
r +1/q

r +1/q−v
)r+1/q 1

Nr
. (5.8)

Theorem 5.2 (see [11]). Set Ψ =Wr
p(1), r = 1,2, . . . , 1 ≤ p ≤∞. Among all possible

quadrature rules of the type (5.6) providing ρ = r −1, the formula

Lf =
r−1∑
k=v+1

2f (k)(0)
k!(k+1−v−α)t

k+1−v−α
1

+
N−1∑

k=−N,k≠−1,0

∫ tk+1

tk

f̃
(
t,
[
tk,tk+1

])
dt

|t|v+α +RN,
(5.9)

where t±k =±(k/N)(r+1/q)(r+1/q−v−α) is asymptotically optimal. The error holds

RN
[
Wr
p(1)

]=
(
1+o(1))Rrq(1)

2r−1/q(rq+1)1/qr !Nr

(
r +1/q

r +1/q−v−α
)r+1/q

. (5.10)

Proofs of Theorems 5.1 and 5.2 are similar to the proof of Theorem 2.7.

5.3. Evaluation of the Hadamard finite part integrals on finite curves. Let L be an

arbitrary piece-continuous closed curve. Let f(t) ∈Wr(1). In this section we investi-

gate quadrature rules for the Hadamard f.p. integrals of the following type

Af =
∫
L

f (τ)dτ
(τ−t)v . (5.11)

Let tk, k= 0,1, . . . ,N are the equidistant points on the closed curve L. Let t̄k be the

equidistant point from tk and tk+1, k= 0,1, . . . ,N−1.
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Let t0 = tN . Consider a quadrature rule

Af = 1
2

N−1∑
k=0

f̄
(
t̄k
)∫ tk+1

tk

(
1

(τ−t+n̄h)v +
1

(τ−t−n̄h)v
)
dτ+RN, (5.12)

where n̄ is outside the normal vector to the curve L at the point t̄k, h= 0(N−1/v).
We assume that the values f(t) at the points t̄k can be computed up to ε : |f̄ (t̄k)−

f(t̄k)| ≤ ε.

Theorem 5.3 (see [11]). Let f ∈ Wr(1), r ≥ v . The quadrature rule (5.12) error

RN =A(N−1/v lnN+εN1−1/v) is valid.

Consider the Hadamard f.p. integrals

Hf =
∫ 1

−1

f(τ)dτ
(τ−t)v . (5.13)

Let tk = −1+2k/N , k = 0,1, . . . ,N , t′k = (tk+tk+1)/2, k = 0,1, . . . ,N−1. Let h =N−1/v .

We assume that the singular point t belongs to the segment [−1+δ,1−δ], δ≥ h. We

also assume that t ∈ [tj,tj+1). We suppose that the values f(t′k) can be calculated up

to ε : |f̄ (t′k)−f(t′k)| ≤ ε.
We will compute the integrals as (5.13) with the quadrature rule

Hf =
N−1∑

k=0,k≠j−1,j,j+1

f
(
t′k
)∫ tk+1

tk

(
1(

τ−(t−ih))v +
1(

τ−(t+ih))v
)
dτ

+f (t′j)
∫ tj+2

tj−1

(
1(

τ−(t−ih))v +
1(

τ−(t+ih))v
)
dτ+RN.

(5.14)

Theorem 5.4 (see [11]). Let f ∈ Wr(1), r ≥ v . The quadrature rule (5.14) error

RN =A(N−1/v lnN+εN1−1/v) is valid.

Application of the interpolated polynomial to the value of the Hadamard integrals

is illustrated on the example of the integral

A1f =
∫ 1

−1

f(τ)dτ(
1−τ2

)1/2(τ−t)2
. (5.15)

Approximate the function f(t) by the interpolated polynomial

fn(t)= Ln(f)=
n∑
k=0

(
1
γk

n∑
i=0

Ti
(
µk
)
Ti(t)

)
f
(
µk
)
, (5.16)

where Tm(t) =
√

2/π cos(marccost) are Chebyshev polynomials of type I of degree

m; µk = cos((2k−1)π)/(2n+2), k = 1,2, . . . ,n+1 are the nodes of the polynomial

Tn+1(t); γk =
∑n
l=0T

2
l (µk).
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Substituting fn(t) instead of f(t) into the integral A1f and having taken advantage

of the formulae [28] ∫ 1

−1

Tn(τ)dτ(
1−τ2

)1/2(τ−t)2
= 0 (5.17)

for n= 0,1 and

∫ 1

−1

Tn(τ)dτ(
1−τ2

)1/2(τ−t)2
= π

1−t2

(
− n−1

2
Un(t)+ n+2

2
Un−2(t)

)
(5.18)

for n= 2, . . . , we obtain the quadrature rule

∫ 1

−1

f(τ)dτ(
1−τ2

)1/2(τ−t)2

= π
1−t2

n∑
k=0

[
f
(
µk
)

γk

n∑
i=2

Ti
(
µk
)(− i−1

2
Ui(t)+ i+1

2
Ui−2(t)

)]
+Rn,

(5.19)

where Un(t) are Chebyshev polynomials of the type II.

Theorem 5.5 (see [14]). The quadrature rule (5.19) error |Rn|≤AEn(f)n2λn is valid.

Proof. Estimate value of the error of the quadrature rule (5.19)

∣∣Rn∣∣=
∣∣∣∣∣
∫ 1

−1

(
f(τ)−fn(τ)

)
dτ(

1−τ2
)1/2(τ−t)2

∣∣∣∣∣=
∣∣∣∣∣
∫ 1

−1

ψn(τ)dτ(
1−τ2

)1/2(τ−t)2

∣∣∣∣∣, (5.20)

where ψn(τ) = f(τ)− fn(τ). Having made use of the Taylor formula with the re-

mainder term in integral form we obtain ψn(τ) = ψn(t)+ (ψ′n(t)/1!)(τ− t)+ (1/1!)∫ τ
t (τ−v)ψ′′n(v)dv . So,

∣∣Rn∣∣=
∣∣∣∣∣
∫ 1

−1

ψn(τ)dτ(
1−τ2

)1/2(τ−t)2

∣∣∣∣∣

=
∣∣∣∣∣
∫ 1

−1

ψn(t)+ψ′n(t)(τ−t)+
∫ τ
t
(τ−v)ψ′′n(v)dv(

1−τ2
)1/2(τ−t)2

dτ

∣∣∣∣∣
≤max

t

∣∣∣∣∣ψn(t)
∫ 1

−1

dτ(
1−τ2

)1/2(τ−t)2

∣∣∣∣∣+max
t

∣∣∣∣∣ψ′n(t)
∫ 1

−1

dτ(
1−τ2

)1/2(τ−t)

∣∣∣∣∣
+max

t

∣∣ψ′′n(t)∣∣1
2

∫ 1

−1

dτ(
1−τ2

)1/2 .

(5.21)

It is known [28] that
∫ 1
−1dτ/(1−τ2)1/2(τ − t)2 = 0,

∫ 1
−1dτ/(1−τ2)1/2(τ − t) = 0,

−1< t < 1.

Therefore, ∣∣Rn∣∣≤ π
2

max
t

∣∣ψ′′n(t)∣∣. (5.22)
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The interpolation error by the polynomial fn(t) occurs |ψn(t)| = |f(t)− fn(t)| ≤
En(f)(1+λn). Using Markov inequality [34, 35] and the circuit of the Bernstein theo-

rem proof about structural properties of functionals [34, 35], it is possible to show that

∣∣ψ′′n(t)∣∣≤An2En(f)
(
1+λn

)
. (5.23)

It is known [34, 35] that for the points of Chebyshev polynomials of the type I

λn ≤A lnn. (5.24)

Collecting the estimations (5.21), (5.22), (5.23), and (5.24) we finish the proof of the

theorem.

Similar results are obtained [14] for different weight functions and for different

integer degrees of the difference (τ−t).

5.4. Weight quadrature rules for the Hadamard finite part integrals. Consider the

Hadamard f.p. integral

Hf =
∫ 1

0

ρ(τ)f(τ)
(τ−t)v dτ, v = 2,3, . . . . (5.25)

For simplicity we assume that ρ(t)= t−γ , 0≤ γ < 1.We use the interpolated polyno-

mials Pr (f ;[sk,sk+1]) for approximation of the function f(t) on the segment [sk,sk+1].
The construction of this polynomials was described in Section 1.3.

Let f ∈ Wr(1), r > p− 1. Let sk = (k/N)q, q = r/(r −γ), k = 0,1, . . . ,N . Let t ∈
[sj,sj+1]. The Hadamard f.p. integrals of the type (5.25) we evaluate with the quadra-

ture rule

Hf =
j−2∑
k=0

∫ sk+1

sk

Pr
(
f ;
[
sk,sk+1

])
τγ(τ−t)v dτ+

N−1∑
k=j+2

∫ sk+1

sk

Pr
(
f ;
[
sk,sk+1

])
τγ(τ−t)v dτ

+
∫ sj+2

sj−1

Pr
(
f ;
[
sj−1,sj+2

])
τγ(τ−t)v dτ+RN.

(5.26)

Theorem 5.6 (see [11]). Let Ψ =Wr(1). Among all possible quadrature rules of the

type Hf = ∑N
k=1

∑ρ
l=0pkl(t)f (l)(tk)+RN(t,pkl,tk,f ) with 0 ≤ ρ ≤ r the quadrature

rule (5.26) is optimal with respect to order. The error of quadrature rule (5.26) |RN | ≤
AN−r(r+1−v−γ)/(r−γ) for t ∈ [s2,sN−2] is valid.

5.5. Evaluation of the many-dimensional Hadamard finite part integrals. Con-

sider the following type of Hadamard f.p. integrals

If =
∫
L1

∫
L2

f
(
τ1,τ2

)
dτ1dτ2(

τ1−t1
)p1
(
τ2−t2

)p2
, (5.27)

where Li, i= 1,2 are piece-continuously closed curves.

Divide the closed curve L1 into N1 equal parts by nodes tk1 , k1 = 0,1, . . . ,N1, t0 =
tN1 . Divide the closed curve L2 into N2 equal parts by the nodes tk2 , k2 = 0,1, . . . ,N2,

t0 = tN2 . Let n̄i, i= 1,2 be a unit normal to the curve Li, i= 1,2.
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We will compute the integral (5.27) with the quadrature rule

If = 1
4

N1−1∑
k1=0

N2−1∑
k2=0

f
(
t′k1
, t′k2

)

×
∫ tk1+1

tk1

∫ tk2+1

tk2

[
1(

τ1−
(
t1+n̄1h1

))p1
(
τ2−

(
t2+n̄2h2

))p2

+ 1(
τ1−

(
t1+n̄1h1

))p1
(
τ2−

(
t2−n̄2h2

))p2

+ 1(
τ1−

(
t1−n̄1h1

))p1
(
τ2−

(
t2+n̄2h2

))p2

+ 1(
τ1−

(
t1−n̄1h1

))p1
(
τ2−

(
t2−n̄2h2

))p2

]
dτ1dτ2+RN1N2 ,

(5.28)

where t′ki , i = 1,2 is the point equidistant from the points tki and tki+1, i = 1,2, hi =
N−1/pi
i , i= 1,2.

Theorem 5.7 (see [11]). Let Ψ = W̃ r1r2(1), ri > 1, i = 1,2. Let p1 = p2 = 2. Let hi =
N−1/2
i , i= 1,2. The quadrature rule (5.28) error is equal to |RN1N2 | ≤Ah1h2| lnh1 lnh2|.

Consider the Hadamard f.p. integrals of the following type

Af =
∫ 1

−1

∫ 1

−1

f
(
τ1,τ2

)
(
τ1−t1

)p1
(
τ2−t2

)p2
dτ1dτ2. (5.29)

For the evaluation of the integrals of the type (5.29) we introduce the following

quadrature rule

Af = 1
4

N1−1∑
k1=0

N2−1∑
k2=0

f
(
t′k1
, t′k2

)

×
∫ tk1+1

tk1

∫ tk2+1

tk2

(
1(

τ1−
(
t1−ih1

))p1
(
τ2−

(
t2−ih2

))p2

+ 1(
τ1−

(
t1+ih1

))p1
(
τ2−

(
t2−ih2

))p2

+ 1(
τ1−

(
t1−ih1

))p1
(
τ2−

(
t2+ih2

))p2

+ 1(
τ1−

(
t1+ih1

))p1
(
τ2−

(
t2+ih2

))p2

)
dτ1dτ2+RN1N2 ,

(5.30)

where tki =−1+2ki/Ni (ki = 0,1, . . . ,Ni); t′k = (tk+tk+1)/2, hi =N−1/pi
i , i= 1,2.

Theorem 5.8 (see [11]). Let Ψ =Wr1r2(1). Let p1 = p2 = p, h1 = h2 = h, r1 = r2 = r .

The quadrature rule (5.30) error |RN1N2 | ≤Ah2| ln2h| is valid.
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Consider the Hadamard f.p. integrals of the following type

Af =
∫∞
−∞

∫∞
−∞

f
(
τ1,τ2

)
dτ1dτ2(

τ1−t1
)2(τ2−t2

)2 . (5.31)

We assume that the function f(t1, t2) can be represented as f(t1, t2) = ρi(ti,t2)
g(t1, t2), where ρi(t1, t2), i= 1,2, is a weight function, g(t1, t2) is a smooth function.

As weight functions we will use the following functions ρ1(t1, t2) = a−|t1|−|t2|,
a> 1; ρ2(t1, t2)= e−t21−t22 .

Definition 5.9. Class Wr1r2(1,k), ri = 1,2, . . . , i = 1,2, consists of the functions

f(t1, t2) which are defined on domain (−∞,∞)2. These functions have the continu-

ous derivatives f (1,0)(t1, t2),f (0,1)(t1, t2), . . . ,f (r1,r2−1)(t1, t2),f (r1−1,r2)(t1, t2) and the

piece-continuous derivative f (r1,r2)(t1, t2). Functions f(t1, t2) and its derivatives sat-

isfy the following conditions: max |f (r1,r2)(t1, t2)| ≤ 1, max(‖f(t1, t2)‖,‖f (1,0)(t1, t2)‖,
‖f (0,1)(t1, t2)‖, . . . ,‖f (r1,r2−1)(t1, t2)‖,‖f (r1−1,r2)(t1, t2)‖)≤ k.

Let N be integer. Let r1 = r2 = r . Let A1 = [r logaN], A2 = [lnN], where [a] is the

greatest integer in a. LetN1
k =N/a|k|r , k=−A1, . . . ,−1,0,1, . . . ,A1,N2

k =N/exp(k2/r),
k=−A2, . . . ,−1,0,1, . . . ,A2. Let t1

k,l=k+l/N1
k , k=−A1, . . . ,−1,0,1, . . . ,A1; l=0,1, . . . ,N1

k ,

t2
k,l = k+l/N2

k , k=−A2, . . . , −1,0,1, . . . ,A2; l= 0,1, . . . ,N2
k .

Theorem 5.10 (see [11]). Let Ψ =W(r,r)(1,k), r > p−1. Let h = N−1/p . The quad-

rature rule

A
(
ρig

)= 1
4

Ai∑
k1=−Ai

Ai−1∑
k2=−Ai

N
i1
k1∑

l1=0

N
i1
k2∑

l2=0

×
∫ tik1 ,l1+1

tik1 ,l1

∫ tik2 ,l2+1

tik2 ,l2

(
1(

τ1−t1+ih
)2(τ2−t2+ih

)2

+ 1(
τ1−t1+ih

)2(τ2−t2−ih
)2

+ 1(
τ1−t1−ih

)2(τ2−t2+ih
)2

+ 1(
τ1−t1−ih

)2(τ2−t2−ih
)2

)
dτ1dτ2+RN1N2

(5.32)

has the error |RN1N2 | =Ah| ln2h|+1/Nh2.
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