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1. Introduction. The study of functional equations with its wide range of appli-

cations is an interesting subject that dates back to the work of Abel. Mathematical

models of numerous applied problems result in either ordinary differential, partial

differential, difference or algebraic equations. It is standard to assume that the sought

variable in these equations is deterministic and can be obtained using numerical or

analytical methods. However, in modeling applied problems only partial information

may be known or there may be a degree of uncertainty in the parameters used in the

model or some measurements may be imprecise. Because of such features, we are

tempted to consider the study of functional equations in the fuzzy setting. Indeed, in

[1, 2, 3, 4, 5] the authors did initiate this study. The methods presented for solving the

fuzzy functional equations depended on having a solution to the classical equations

for end points of α-cuts. In this paper, we present a rather different approach that

will provide an upper and a lower bound of the solution. In Section 2, we will discuss

the basic background needed for the manuscript and in Section 3, we will present the

main results of the paper along with examples.

2. Preliminaries. We present, for the sake of completeness, some background ma-

terial needed in the sequel. For a detailed study, we refer the reader to [6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16]. Let X be any nonempty set. The set A is a fuzzy set on X if A
is a function from X into the interval [0,1]. The value A(x) is sometimes referred to

as the membership of x in A.

The set A is said to be convex if every t ∈ [0,1], A(tx1+ (1− t)x2) ≥ min{A(x1),
A(x2)}. A is said to be normalized if there exists an x such that A(x) = 1. By the

α-level of a fuzzy subset A, denoted by [A]α, we mean

[A]α = {x ∈X |A(x)≥α}. (2.1)

It is well known that the α-levels of a fuzzy subset A determine A. Also, it can be

easily verified that for any fuzzy subset A of X:

(C1) A is convex if and only if [A]α is convex and
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(C2) if A is continuous, then A is convex if and only if [A]α is a closed interval.

In this setting by a fuzzy number N , we mean a fuzzy subset of X, the set of posi-

tive reals, which is continuous, convex, normalized and vanishing at infinity. Define

a function g : X → X. The extension principle, in one dimension (see [12, 13, 14, 15])

states that g can be extended to fuzzy subsets of X as follows:

g(A)(y)= sup
(
A
(
y1
))
, (2.2)

where the sup is taken over all y1 such that g(y1) = y and A is a fuzzy subset of

X. Finally, we will need a basic result of Nguyen [10] which addresses the following

question. When does the relation

[
g(A)

]
α = g

(
[A]α

)
(2.3)

hold for any continuous function g and for any fuzzy subset A? It was shown in [10]

that (2.3) holds if and only if the sup in (2.2) is attained. That is, there exists x∗ such

that

g(A)(z)=A(x∗), (2.4)

where z = g(x∗).

3. Main results. Before we discuss the bounds on the fuzzy solution to a functional

equation we need the following lemmas. First, we will define the notion of the “largest”

solution. We consider the equation

sup
t

{
x(t)∧A(t)}= λ, (3.1)

where A(t) is a given function of t, λ is a known parameter, 0 ≤ λ ≤ 1 and x(t) is

an unknown function. If there is a solution x(t), 0≤ x(t)≤ 1, then we claim that the

“largest solution” to (3.1) is

x′∞(t)=



1, A(t)≤ λ,
λ, A(t) > λ.

(3.2)

First we show that x′∞ is a solution. Indeed,

x′∞(t)∧A(t)≤ λ, if A(t)≤ λ,
x′∞(t)∧A(t)≤ λ, if A(t) > λ.

(3.3)

Thus supt{x′∞(t)∧A(t)} ≤ λ and 0≤ x′∞(t)≤ 1. Moreover, if A(t) exceeds or assumes

the value of λ for some value t, then supt{x′∞(t)∧A(t)} = λ. We now show that x′∞
is the largest solution. If x(t) is any other solution satisfying (3.1), then for A(t) > λ,

x(t)≤ λ= x′∞(t) and for A(t)≤ λ, x(t)≤ 1= x′∞(t).
We have, therefore, shown the following lemma.

Lemma 3.1. The function x′∞ is the largest solution to (3.1) among all solutions x,

0≤ x(t)≤ 1, provided A(t)≥ λ for some t.



A NEW APPROACH FOR STUDYING FUZZY FUNCTIONAL EQUATIONS 735

Next, we define the notion of “smallest” solution. To this end, we consider the

equation

inf
t

{
x(t)∨B(t)}= µ, (3.4)

where B(t) is a given function of t, µ is a known parameter, 0 ≤ µ ≤ 1 and x(t) is

an unknown function. If there is a solution x(t), 0≤ x(t)≤ 1, then we claim that the

“smallest solution” to (3.4) is

x′′∞(t)=



0, B(t)≥ µ,
µ, B(t) < µ.

(3.5)

We first show that x′′∞(t) is a solution. Indeed,

x′′∞(t)∨B(t)≥ µ, if B(t)≥ µ,
x′′∞(t)∨B(t)≥ µ, if B(t) < µ.

(3.6)

Thus inft{x′′∞(t)∨B(t)} ≥ µ and 0 ≤ x′′∞(t) ≤ 1. Moreover, if B(t) is less than or as-

sumes the value of µ for some value t, then inft{x′′∞(t)∨B(t)} = µ. We now show

that x′′∞ is the smallest solution. If x(t) is any other solution satisfying (3.4), then for

B(t) < µ, µ = x′′∞(t)≤ x(t) and for B(t)≥ µ, 0= x′′∞(t)≤ x(t).
Thus we have shown the following lemma.

Lemma 3.2. The function x′′∞ is the smallest solution of (3.4) among all solutions x(t),
0≤ x(t)≤ 1, provided B(t)≤ µ for some t.

Remark 3.3. The computation of λ and µ for a specified choice of A(t) and B(t)
is central for determining the bounds on the solution. We now look at the equation

xn+1 = f
(
xn
)

(3.7)

with given initial condition x0. We assume x0 is a fuzzy subset of R and we extend f to

a fuzzy subsets ofR using the extension principle. Then the difference equation reads

xn+1(t)= f
(
xn
)
(t)= sup

(
xn
(
t1
))
, (3.8)

where the sup is taken over all t1 for which f(t1) = t. However, for simplicity of

notation we write (3.8) as

xn+1(t)= f
(
xn
)
(t). (3.9)

We assume that

(1) f :R→R is a one-to-one function. Thus f−n is also a one-to-one function for

every n (f−1 denotes the inverse of f),
(2) limn→∞f−n(t) is either∅ or a singleton for all t. If it is a point, we denote this

by f−∞(t).

We may define the fuzzy solution as

x∞(t)= x0
[
f−∞(t)

]
. (3.10)
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The motivation for this definition comes from the extension principle where

xn(t)= sup
∨∈f−n(t)

x0(∨) (3.11)

and the assumption that f is one-to-one xn(t) = x0(f−n(t)). Then as n→∞, we get

the above definition.

The problem we consider is as follows: if we put certain bounds on the initial fuzzy

set x0, what bounds do we have on the fuzzy solution x∞?

Theorem 3.4. Let f : R → R be a one-to-one function such that limn→∞f−n(t) =
f−∞(t) for all t. Assume there exist functionsA(t) and B(t)with values in [0,1] such that

sup
t

{
x0
(
f−∞(t)

)∧A(t)}= λ,
inf
t

{
x0
(
f−∞(t)

)∨B(t)}= µ, (3.12)

and A(t) ≥ λ and B(t) ≤ µ for some t. Then the largest solution, x′∞, and smallest

solution, x′′∞, are respectively the upper and lower bounds of the solution to (3.9) with

fuzzy initial condition x0.

Proof. The equation xn+1 = f(xn) with initial condition x0 has formally the so-

lution xn+1 = fn+1(x0). The fuzzy extension of this is

xn+1(t)= sup
∨∈f−(n+1)(t)

x0(∨). (3.13)

Since f−1 is one-to-one and since f−∞(t)= limn→∞f−(n+1)(t) exists, we can write the

above expression as

xn+1(t)= x0
(
f−(n+1)(t)

)
(3.14)

or write the solution as

x∞(t)= x0
(
f−∞(t)

)
. (3.15)

Thus

sup
t

{
x∞(t)∧A(t)

}= λ, inf
t

{
x∞(t)∨B(t)

}= µ. (3.16)

The proof then follows from Lemmas 3.1 and 3.2.

Example 3.5. Consider the standard equation

xn+1 =αxn (3.17)

with specified initial condition x0 and known α. The solution to this equation is given

by

x∞ = lim
n→∞α

nx0 =




0, α < 1,

x0, α= 1,

∞, α > 1.

(3.18)

In this example f(t)=αt. We consider each case separately.
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Case 1. Consider that α< 1. In this case

f−∞(t)=


∞, t ≠ 0,
0, t = 0.

(3.19)

Assume that A(t) = χa(t), the characteristic function for a given a ∈ R. We will look

for the largest

λ= sup
t

{
x0
(
f−∞(t)

)∧A(t)}= χx0(0)∧χa(0). (3.20)

If x0 ≠ 0 or a≠ 0, then λ= 0. In this case

x′∞(t)=



1, t ≠ a,
0, t = a. (3.21)

If x0 = a= 0, then λ= 1 and x′∞(t)= 1 for all t. In either case, x∞ ≤ x′∞.

Case 2. Consider α= 1. Note that f−1(t)= t. In this case,

λ= sup
t

{
χx0(t)∧χa(t)

}=



0, x0 ≠ a,
1, x0 = a.

(3.22)

Thus when x0 ≠ a, x′∞(t) = 1 and x′∞(x0) = 1; when x0 = a, x′∞(t) = 1 for all t. In

either case, x∞ ≤ x′∞.

Case 3. Consider α > 1. In this case, x∞ = ∞ means that no t is a solution to the

given equation. In this case,

λ= sup
t

{
χx0(0)∧χa(t)

}= 0, x0 ≠ 0,

x′∞(t)=



1, x ≠ a,
0, x = a.

(3.23)

Again, in this case x∞ ≤ x′∞.

We now look for the smallest solution. When α< 1 and x0 ≠ 0

µ = inf
t

{
χx0(0)∨χb(t)

}
. (3.24)

If x0 ≠ 0 and we pick t ≠ b, µ = 0. Thus x′′∞(t) = 0 for all t. If x0 ≠ 0, we have when

α= 1 or α≠ 1, µ = 0. Thus, x′′∞(t)= 0 for all t. Hence x′′∞ ≤ x∞.

The previous techniques may be applied to solutions where much less information

is given on x0 and f . The next example illustrates this situation.

Example 3.6. Assume that f is an increasing function on [0,1] with f ′′ > 0 on

[0, t∗] and f ′′ < 0 on [t∗,1]where t∗ ∈ [0,1] is such that f(t∗)= t∗. Then f−∞(t)= t∗
for t ≠ 0, t ≠ 1 and f−∞(0) = 0 and f−∞(1) = 1. Assume that x0, A, and B are fuzzy

subsets of [0,1]. Then

λ= [x0
(
t∗
)∧A(t∗)]∨[x0(0)∧A(0)

]∨[x0(1)∧A(1)
]
,

µ = [x0
(
t∗
)∨B(t∗)]∧[x0(0)∨B(0)

]∧[x0(1)∨B(1)
] (3.25)

and the previous bounds x′∞ and x′′∞ are readily computed.
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In the previous examples f was assumed to be one-to-one function, what happens

when f is not one-to-one? In the computation of λ and µ, x0[f−∞(t)]must be replaced

by sup∨∈f−(t) x0(∨). The next example illustrated this situation.

Example 3.7. Consider the equation

xn = 4xn−1
(
1−xn−1

)
(3.26)

with fuzzy initial condition x0. In this example f(x) = 4x(1−x). Assume, for sim-

plicity sake, that x0, A, and B are all fuzzy subsets of [0,1]. Then f−(t) = {(1−√
1−t)/2,(1+√1−t)/2}.
It is easy to see that f−∞(t)= {0,1/2,1} for all t. If supt A(t)= 1, then

λ= x0(0)∨x0

(
1
2

)
∨x0(1),

µ = x0(0)∨x0

(
1
2

)
∨x0(1)∨ inf

t

(
B(t)

) (3.27)

and the bound estimates are readily computed.

Note 1. The solution to (3.9) with initial condition x0 may be viewed as an interval-

valued fuzzy set.

The bounds previously obtained involve, 0, 1, λ, and µ. Can we get more precise

estimates? If we consider λ and µ as given by (3.1) and (3.4), we set

λ= poss[x,A], µ = nec
[
x,Bc

]
, (3.28)

where poss[x,A] is the largest intersection of x and A and nec[x,Bc] is the weakest

implication not B ⇒ x. It therefore makes sense that we could sharpen the bounds if

we had a family of known possibilities and known necessities. Again assume f is one-

to-one and f−n(t)→ f−∞(t) for all t. We define “an implication operator” on [0,1] by

aφb =



1, a≤ b,
b, a > b.

(3.29)

We assume that for each y ∈ Y , poss[x0f−∞,Ay] is known. We set

p(y)= poss
[
x0f−∞,Ay

]
(3.30)

and let u(x)= infy{Ay(x)φp(y)}.

Theorem 3.8. Assume that for every y ∈ Y , there exists xy such that Ay(xy) >
p(y). Then u as defined above is an upper bound for the solution of (3.30).

Proof. Consider poss[x0f−∞,Ay] = p(y) for y ∈ Y . By Theorem 3.4, for each

fixed y , the largest solution is given by

x′∞,y(t)=



1, Ay(t)≤ p(y),
p(y), Ay(t) > p(y).

(3.31)
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Therefore, by definition of the implication operator, φ,

x′∞,y(t)=Ay(t)φp(y). (3.32)

Since this is an upper bound for all y ∈ Y , the sharpest upper bound generated is

u(t)= inf
y
x′∞,y(t)= inf

y

{
Ay(t)φp(y)

}
. (3.33)

We now apply a similar approach to establish a lower bound for the solution of the

difference equation (3.30) with fuzzy initial condition x0. The operator analogous to

φ is defined as

aβb =



b, a < b,

0, a≥ b.
(3.34)

We assume nec[x0f−∞,Bcy] is known for a family of y ∈ Y . We set

nec
[
x0f−∞,Bcy

]=N(y), (3.35a)

L(t)= sup
y

{
By(t)βN(y)

}
. (3.35b)

Theorem 3.9. Assume that for every y ∈ Y , there exists xy such that By(xy) ≤
N(y). Then L as defined in (3.35b) is a lower bound of the solution to (3.35a).

Proof. Let nec[x0f−∞,Bcy] = N(y). By Theorem 3.8, for each y , the smallest so-

lution is given by

x′′∞,y(t)=




0, By(t)≥N(y),
N(y), By(t) < N(y).

(3.36)

Thus, by definition of β, x′′∞,y(t)= By(t)βN(y). This is a lower bound for all y so the

sharpest lower bound generated is

L(x)= supx′′∞,y(t)= sup
y

{
By(t)βN(y)

}
. (3.37)

The previous result can be applied when x0 is not completely determined. This is

demonstrated in the next example.

Example 3.10. Consider a function f such that we may find a partition Pi such that

f−∞(Pi) = ti, 1 ≤ i ≤ l. We also assume that f−n converges to a point for all t which

we denote by f−∞(t). Also assume given two fuzzy sets: Ay1 and Ay2 . Then

sup
i

{
x0
(
ti
)∧Ay1(t)

}= p1 = p
(
y1
)
,

sup
i

{
x0
(
ti
)∧Ay2(t)

}= p2 = p
(
y2
)
.

(3.38)
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The left-hand sides of the above two equations are poss[x∞,Ay1] and poss[x∞,Ay2]
where x∞ is a solution to (3.38) with initial fuzzy condition. Now for k= 1,2

Ayk(t)φpk =



1, Ayk(t)≤ pk
pk, Ayk(t) > pk.

(3.39)

So if t ∈ [Ay1]p∗1 ∧ [Ay2]p∗2 (p
∗
1 > p1, p∗2 > p2), then x∞(t) ≤ p1∧p2. We note that

x0(ti)∧supt∈Pt Ak(t) can be reinterpreted as follows: let Âk,i be the restriction of Ak
to Pi, thenx0(ti)∧supt∈∏i Ayk(t)= poss[Pi,Âk,i]∧x0(ti), where the set Pi is identified

with its characteristic function. The possibility of the solution and Ak is then given by

sup
1≤i≤l

{
x0
(
ti
)∧poss

[
pi,Âk,i

]∧x0
(
ti
)}

(3.40)

not knowing the precise value of x0(ti) but knowing the above expression enables us

to assign an upper bound to the solution. A similar example could be constructed for

a lower bound.

The approach we have taken here is to define the initial condition, x0(t), as a func-

tion of t with values in [0,1]. This indicates the degree to which the number t is the

initial condition. The bounds obtained on x0 along with the assumptions on f led

to a solution to the fuzzy difference equation. The novelty of this approach over the

one used in [1, 2, 3, 4, 5] is that in this approach we do not assume that the classical

equation must have an explicit solution. We rather obtain bounds on the solution. The

approach can be applied to a variety of problems.
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