A NEW INEQUALITY FOR A POLYNOMIAL

K. K. DEWAN, HARISH SINGH, and R. S. YADAV

(Received 7 August 2000 and in revised form 23 October 2000)

ABSTRACT. Let $p(z)=a_{0}+\sum_{j=t}^{n} a_{j} z^{j}$ be a polynomial of degree n, having no zeros in $|z|<k, k \geq 1$, then it has been shown that for $R>1$ and $|z|=1,|p(R z)-p(z)| \leq\left(R^{n}-\right.$ 1) $\left(1+A_{t} B_{t} k^{t+1}\right) /\left(1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)\right) \max _{|z|=1}|p(z)|-\left\{1-\left(1+A_{t} B_{t} k^{t+1}\right) /(1+\right.$ $\left.\left.k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)\right)\right\}\left(\left(R^{n}-1\right) m / k^{n}\right)$, where $m=\min _{|z|=k}|p(z)|, 1 \leq t<n, A_{t}=$ $\left(R^{t}-1\right) /\left(R^{n}-1\right)$, and $B_{t}=\left|a_{t} / a_{0}\right|$. Our result generalizes and improves some well-known results.

2000 Mathematics Subject Classification. 30A10, 30E15.

1. Introduction and statements of results. Let $p(z)$ be a polynomial of degree n, then

$$
\begin{align*}
& \max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| \tag{1.1}\\
& \max _{|z|=R>1}|p(z)| \leq R^{n} \max _{|z|=1}|p(z)| \tag{1.2}
\end{align*}
$$

Inequality (1.1) is a famous result known as Bernstein's inequality (see [9]) where as inequality (1.2) is a simple consequence of maximum modulus principle [7]. Here in both inequalities (1.1) and (1.2) the equality holds if and only if $p(z)$ has all its zeros at the origin.

If $p(z)$ does not vanish in $|z|<1$, then (1.1) and (1.2) can be respectively replaced by

$$
\begin{gather*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|p(z)| \tag{1.3}\\
\max _{|z|=R>1}|p(z)| \leq \frac{R^{n}+1}{2} \max _{|z|=1}|p(z)| \tag{1.4}
\end{gather*}
$$

Inequality (1.3) was conjectured by Erdös and later proved by Lax [5], whereas inequality (1.4) is due to Ankeny and Rivlin [1]. Here in both inequalities (1.3) and (1.4), the equality holds for $p(z)=\alpha+\beta z^{n},|\alpha|=|\beta|$. Inequalities (1.3) and (1.4) are, respectively, much better than inequalities (1.1) and (1.2). As a generalization of (1.3), it was shown by Malik [6] that if $p(z)$ does not vanish in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k} \max _{|z|=1}|p(z)| \tag{1.5}
\end{equation*}
$$

The result is sharp and the extremal polynomial is $p(z)=(z+k)^{n}$.
Chan and Malik [3] considered the class of polynomials $p(z)=a_{0}+\sum_{j=t}^{n} a_{j} z^{j}$, $1 \leq t \leq n$, and proved the following extension of inequality (1.5).

Theorem 1.1. If $p(z)=a_{0}+\sum_{j=t}^{n} a_{j} z^{j}$ is a polynomial of degree n, having no zeros in the disk $|z|<k$ where $k \geq 1$, then for $1 \leq t \leq n$,

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{t}} \max _{|z|=1}|p(z)| . \tag{1.6}
\end{equation*}
$$

The result is best possible and equality holds for the polynomial $p(z)=\left(z^{t}+k^{t}\right)^{n / t}$, where n is a multiple of t.

Inequality (1.6) was also independently proved by Qazi [8, Lemma 1] who, in fact, has also proved the following result.
Theorem 1.2. If $p(z)=a_{0}+\sum_{j=t}^{n} a_{j} z^{j}$ is a polynomial of degree n, having no zeros in the disk $|z|<k$ where $k \geq 1$, then for $1 \leq t \leq n$,

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \frac{1+(t / n)\left|a_{t} / a_{0}\right| k^{t+1}}{1+k^{t+1}+(t / n)\left|a_{t} / a_{0}\right|\left(k^{t+1}+k^{2 t}\right)} \max _{z \mid=1}|p(z)| . \tag{1.7}
\end{equation*}
$$

In this paper, we improve inequality (1.7) for the class of polynomials $p(z)=a_{0}+$ $\sum_{j=t}^{n} a_{j} z^{j}, 1 \leq t<n$, not vanishing in the disk $|z|<k, k \geq 1$. More precisely, we prove the following result.
Theorem 1.3. If $p(z)=a_{0}+\sum_{j=t}^{n} a_{j} z^{j}$ is a polynomial of degree n which does not vanish in $|z|<k$ where $k \geq 1$, then for every $R>1$ and $|z|=1$,

$$
\begin{align*}
|p(R z)-p(z)| \leq & \left(R^{n}-1\right) \frac{1+A_{t} B_{t} k^{t+1}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)} \max _{|z|=1}|p(z)| \tag{1.8}\\
& -\left\{1-\frac{1+A_{t} B_{t} k^{t+1}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)}\right\} \frac{\left(R^{n}-1\right) m}{k^{n}},
\end{align*}
$$

where $m=\min _{|z|=k}|p(z)|, 1 \leq t<n, A_{t}=\left(R^{t}-1\right) /\left(R^{n}-1\right)$ and $B_{t}=\left|a_{t} / a_{0}\right|$.
REmARK 1.4. If we divide the two sides of (1.8) by $(R-1)$ and let $R \rightarrow 1$, we get

$$
\begin{align*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq & n \frac{1+(t / n)\left|a_{t} / a_{0}\right| k^{t+1}}{1+k^{t+1}+(t / n)\left|a_{t} / a_{0}\right|\left(k^{t+1}+k^{2 t}\right)} \max _{|z|=1}|p(z)| \\
& -\left\{1-\frac{1+(t / n)\left|a_{t} / a_{0}\right| k^{t+1}}{1+k^{t+1}+(t / n)\left|a_{t} / a_{0}\right|\left(k^{t+1}+k^{2 t}\right)}\right\} \frac{m n}{k^{n}} \tag{1.9}
\end{align*}
$$

which is an improvement of (1.7) due to Qazi [8] for $1 \leq t<n$.
If we use the fact that

$$
\begin{equation*}
|p(R z)-p(z)| \geq|p(R z)|-|p(z)| \tag{1.10}
\end{equation*}
$$

or

$$
\begin{equation*}
|p(R z)| \leq|p(R z)-p(z)|+|p(z)|, \tag{1.11}
\end{equation*}
$$

the following corollary is an immediate consequence of the above theorem.

COROLLARY 1.5. If $p(z)=a_{0}+\sum_{j=t}^{n} a_{j} z^{j}$ is a polynomial of degree n which does not vanish in $|z|<k$ where $k \geq 1$, then for $R>1$

$$
\begin{align*}
\max _{|z|=R}|p(z)| \leq & \frac{R^{n}\left\{1+A_{t} B_{t} k^{t+1}\right\}+k^{t+1}+A_{t} B_{t} k^{2 t}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)} \max _{|z|=1}|p(z)| \\
& -\left\{1-\frac{1+A_{t} B_{t} k^{t+1}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)}\right\} \frac{\left(R^{n}-1\right) m}{k^{n}} \tag{1.12}
\end{align*}
$$

where $m=\min _{|z|=k}|p(z)|, 1 \leq t<n, A_{t}=\left(R^{t}-1\right) /\left(R^{n}-1\right)$, and $B_{t}=\left|a_{t} / a_{0}\right|$.
The inequality

$$
\begin{equation*}
\frac{R^{t}-1}{R^{n}-1} \leq \frac{t}{n} \tag{1.13}
\end{equation*}
$$

holds for all $R>1$ and $1 \leq t \leq n$. To prove this inequality, we observe that for every $R>$ 1 , it easily follows when $t=n$. Hence to establish (1.13), it suffices to consider the case $1 \leq t \leq n-1$ and $R>1$. So, we assume that $R>1$ and $1 \leq t \leq n-1$, and then we have

$$
\begin{align*}
t R^{n}-n R^{t}+(n-t)= & t R^{t}\left(R^{n-t}-1\right)-(n-t)\left(R^{t}-1\right) \\
= & (R-1)\left\{t R^{t}\left(R^{n-t-1}+R^{n-t-2}+\cdots+1\right)\right. \\
& \left.-(n-t)\left(R^{t-1}+\cdots+R+1\right)\right\} \tag{1.14}\\
= & (R-1)\left\{t(n-t) R^{t}-(n-t) t R^{t-1}\right\} \\
= & t(n-t)(R-1)^{2} R^{t-1}>0
\end{align*}
$$

This implies that $t\left(R^{n}-1\right) \geq n\left(R^{t}-1\right)$, for all values of $R>1$ and $1 \leq t \leq n-1$ which is equivalent to (1.13).

With the help of (1.13) a simple direct calculation yields

$$
\begin{align*}
& \frac{R^{n}\left\{1+A_{t} B_{t} k^{t+1}\right\}+k^{t+1}+A_{t} B_{t} k^{2 t}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)} \max _{|z|=1}|p(z)| \\
&-\left\{1-\frac{1+A_{t} B_{t} k^{t+1}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)}\right\} \frac{\left(R^{n}-1\right) m}{k^{n}} \\
& \quad \frac{R^{n}\left\{1+(t / n) B_{t} k^{t+1}\right\}+k^{t+1}+(t / n) B_{t} k^{2 t}}{1+k^{t+1}+(t / n) B_{t}\left(k^{t+1}+k^{2 t}\right)} \max _{|z|=1}|p(z)| \tag{1.15}\\
&-\left\{1-\frac{1+(t / n) B_{t} k^{t+1}}{1+k^{t+1}+(t / n) B_{t}\left(k^{t+1}+k^{2 t}\right)}\right\} \frac{\left(R^{n}-1\right) m}{k^{n}}
\end{align*}
$$

Hence from Theorem 1.3, we easily deduce the following corollary.
COROLLARY 1.6. If $p(z)=a_{0}+\sum_{j=t}^{n} a_{j} z^{j}$ is a polynomial of degree n which does not vanish in $|z|<k$ where $k \geq 1$, then for every $R>1$,

$$
\begin{align*}
\max _{|z|=R}|p(z)| \leq & \frac{R^{n}\left\{1+(t / n) B_{t} k^{t+1}\right\}+k^{t+1}+(t / n) B_{t} k^{2 t}}{1+k^{t+1}+(t / n) B_{t}\left(k^{t+1}+k^{2 t}\right)} \max _{|z|=1}|p(z)| \\
& -\left\{1-\frac{1+(t / n) B_{t} k^{t+1}}{1+k^{t+1}+(t / n) B_{t}\left(k^{t+1}+k^{2 t}\right)}\right\} \frac{\left(R^{n}-1\right) m}{k^{n}} \tag{1.16}
\end{align*}
$$

where $m=\min _{|z|=k}|p(z)|, 1 \leq t<n$, and $B_{t}=\left|a_{t} / a_{0}\right|$.

Next, if we take $t=1$ in Theorem 1.3, we get the following corollary.
COROLLARY 1.7. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n which does not vanish in the disk $|z|<k, k \geq 1$, then for every $R>1$

$$
\begin{align*}
|p(R z)-p(z)| \leq & \left(R^{n}-1\right) \frac{1+A_{1} B_{1} k^{2}}{1+k^{2}+A_{1} B_{1}\left(2 k^{2}\right)} \max _{|z|=1}|p(z)| \\
& -\left\{1-\frac{1+A_{1} B_{1} k^{2}}{1+k^{2}+A_{1} B_{1}\left(2 k^{2}\right)}\right\} \frac{\left(R^{n}-1\right) m}{k^{n}}, \tag{1.17}
\end{align*}
$$

where $m=\min _{|z|=k}|p(z)|, A_{1}=(R-1) /\left(R^{n}-1\right)$, and $B_{1}=\left|a_{1} / a_{0}\right|$.
Remark 1.8. If we divide the two sides of (1.17) by ($R-1$) and let $R \rightarrow 1$, it easily follows that, if $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n such that $p(z) \neq 0$ in $|z|<k, k \geq 1$, then for $|z| \leq 1$,

$$
\begin{align*}
\left|p^{\prime}(z)\right| \leq & n \frac{n\left|a_{0}\right|+k^{2}\left|a_{1}\right|}{n\left(1+k^{2}\right)\left|a_{0}\right|+2 k^{2}\left|a_{1}\right|} \max _{|z|=1}|p(z)| \\
& -\left\{1-\frac{n\left|a_{0}\right|+k^{2}\left|a_{1}\right|}{n\left(1+k^{2}\right)\left|a_{0}\right|+2 k^{2}\left|a_{1}\right|}\right\} \frac{m n}{k^{n}} \tag{1.18}
\end{align*}
$$

which is an improvement of a result due to Govil et al. [4].
It is known that

$$
\begin{equation*}
\frac{t}{n}\left|\frac{a_{t}}{a_{0}}\right| k^{t} \leq 1 \tag{1.19}
\end{equation*}
$$

Using this fact and inequality (1.13), it is easy to verify that

$$
\begin{equation*}
\frac{1+A_{t} B_{t} k^{t+1}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)} \leq \frac{1}{1+k^{t}} . \tag{1.20}
\end{equation*}
$$

By using these observations, the following result is an immediate consequence of Theorem 1.3.

COROLLARY 1.9. If $p(z)=a_{0}+\sum_{j=t}^{n} a_{j} z^{j}$ is a polynomial of degree n which does not vanish in the disk $|z|<k$ where $k \geq 1$, then for every $R>1$ and $|z|=1$,

$$
\begin{align*}
|p(R z)-p(z)| & \leq \frac{R^{n}-1}{1+k^{t}} \max _{|z|=1}|p(z)|-\left(1-\frac{1}{1+k^{t}}\right) \frac{\left(R^{n}-1\right) m}{k^{n}} \tag{1.21}\\
& =\frac{R^{n}-1}{1+k^{t}}\left\{\max _{|z|=1}|p(z)|-\frac{m}{k^{n-t}}\right\}
\end{align*}
$$

and in the fortiori

$$
\begin{equation*}
\max _{|z|=R}|p(z)| \leq \frac{R^{n}+k^{t}}{1+k^{t}} \max _{|z|=1}|p(z)|-\left(\frac{R^{n}-1}{1+k^{t}}\right) \frac{m}{k^{n-t}} \tag{1.22}
\end{equation*}
$$

Remark 1.10. For $k=t=1$, (1.22) reduces to

$$
\begin{equation*}
M(p, R) \leq \frac{R^{n}+1}{2} M(p, 1)-\left(\frac{R^{n}-1}{2}\right) m, \tag{1.23}
\end{equation*}
$$

which is an improvement of (1.4) due to Ankeny and Rivlin [1].
Inequality (1.23) was proved by Aziz and Dawood [2].

2. A lemma

Lemma 2.1. Let $p(z)=a_{0}+\sum_{j=t}^{n} a_{j} z^{j}$ be a polynomial of degree n which does not vanish in $|z|<k$ where $k \geq 1$, then for every $R>1$ and $|z|=1$,

$$
\begin{equation*}
|p(R z)-p(z)| \leq\left(R^{n}-1\right) \frac{1+A_{t} B_{t} k^{t+1}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)} \max _{|z|=1}|p(z)| \tag{2.1}
\end{equation*}
$$

where $1 \leq t<n, A_{t}=\left(R^{t}-1\right) /\left(R^{n}-1\right)$ and $B_{t}=\left|a_{t} / a_{0}\right|$.
This lemma is due to Shah [10].
3. Proof of Theorem 1.3. By Rouche's theorem, the polynomial $p(z)+m \beta z^{n},|\beta|<$ $1 / k^{n}$, has no zero in $|z|<k, k \geq 1$. So on applying Lemma 2.1 to the polynomial $p(z)+m \beta z^{n},|\beta|<1 / k^{n}$, we get

$$
\begin{align*}
& \left|\left(p(R z)+m \beta R^{n} z^{n}\right)-\left(p(z)+m \beta z^{n}\right)\right| \\
& \quad \leq\left(R^{n}-1\right) \frac{1+A_{t} B_{t} k^{t+1}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)} \max _{|z|=1}\left|p(z)+m \beta z^{n}\right| \tag{3.1}
\end{align*}
$$

or

$$
\begin{align*}
& \left|p(R z)-p(z)+m \beta z^{n}\left(R^{n}-1\right)\right| \\
& \quad \leq\left(R^{n}-1\right) \frac{1+A_{t} B_{t} k^{t+1}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)} \max _{z \mid=1}\left\{|p(z)|+\left|m \beta z^{n}\right|\right\} . \tag{3.2}
\end{align*}
$$

Now choosing the argument of β suitably, the above inequality becomes

$$
\begin{align*}
& |p(R z)-p(z)|+\left|m \beta z^{n}\left(R^{n}-1\right)\right| \\
& \quad \leq\left(R^{n}-1\right) \frac{1+A_{t} B_{t} k^{t+1}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)} \max _{|z|=1}\{|p(z)|+m|\beta|\} \tag{3.3}
\end{align*}
$$

or

$$
\begin{align*}
|p(R z)-p(z)| \leq & \left(R^{n}-1\right) \frac{1+A_{t} B_{t} k^{t+1}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)} \max _{|z|=1}|p(z)| \\
& -\left\{1-\frac{1+A_{t} B_{t} k^{t+1}}{1+k^{t+1}+A_{t} B_{t}\left(k^{t+1}+k^{2 t}\right)}\right\}\left(R^{n}-1\right) m|\beta| . \tag{3.4}
\end{align*}
$$

Finally letting $|\beta| \rightarrow 1 / k^{n}$, we get the desired result.

Acknowledgement. The authors are thankful to the referee for his valuable suggestions.

REFERENCES

[1] N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849-852. MR 17,833e. Zbl 0067.01001.
[2] A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory 54 (1988), no. 3, 306-313. MR 89m:30009. Zbl 0663.41019.
[3] T. N. Chan and M. A. Malik, On Erdös-Lax theorem, Proc. Indian Acad. Sci. Math. Sci. 92 (1983), no. 3, 191-193. MR 86c:30009. Zbl 0551.30002.
[4] N. K. Govil, Q. I. Rahman, and G. Schmeisser, On the derivative of a polynomial, Illinois J. Math. 23 (1979), no. 2, 319-329. MR 81e:30010. Zbl 0408.30003.
[5] P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513. MR 6,61f. Zbl 0061.01802.
[6] M. A. Malik, On the derivative of a polynomial, J. London Math. Soc. (2) 1 (1969), 57-60. MR 40\#2827. Zbl 0179.37901.
[7] G. Pólya and G. Szegö, Problems and Theorems in Analysis. Vol. I: Series, Integral Calculus, Theory of Functions, Aeppli Die Grundlehren der mathematischen Wissenschaften, vol. 193, Springer-Verlag, New York, 1972. MR 49\#8782. Zbl 0236.00003.
[8] M. A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115 (1992), no. 2, 337-343. MR 92i:30002. Zbl 0772.30006.
[9] A. C. Schaeffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc. 47 (1941), 565-579. MR 3,111a. Zbl 0027.05205.
[10] W. M. Shah, Extremal properties and bounds of the zeros of polynomials, Ph.D. thesis, submitted to the University of Kashmir, 1998.
K. K. Dewan: Department of Mathematics, Faculty of Natural Sciences, Jamia Millia ISLAMIA, New Delhi-110025, InDiA

E-mail address: kkdewan123@rediffmai1.com
Harish Singh and R. S. Yadav: Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India

