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Abstract. We study occupation time on hypersurface for Markov n-dimensional jump
processes. Solvability and uniqueness of integro-differential Kolmogorov-Fokker-Planck
with generalized functions in coefficients are investigated. Then these results are used
to show that the occupation time on hypersurfaces does exist for the jump processes as
a limit in variance for a wide class of piecewise smooth hypersurfaces, including some
fractal type and moving surfaces. An analog of the Meyer-Tanaka formula is presented.
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1. Introduction. The local time or the occupation time of stochastic processes have

been studied by many authors (cf. bibliography in survey papers [2, 5]). For example,

the local time has been studied for the scalar Brownian motion and scalar semimartin-

gales (cf. [9, 11]), for general one-dimensional diffusions (see [13]), for stable processes

(see [10]).

For vector continuous processes, the distribution of the occupation time is also well

studied. McGill [8] derived an analog of Tanaka formula for a solution of a scalar homo-

geneous nonlinear diffusion equation. Bass [1] investigated occupation time of multi-

dimensional non-Markovian continuous semimartingales of general type and proved

the existence of local time. Rosen and Yor [12] considered the occupation time for

processes in the plain at points of intersections. Dokuchaev [3] studied occupation

time for degenerating diffusion vector processes.

It appears that many important properties of Brownian local time do not hold for a

case the occupation time ofn-dimensional diffusion processes on (n−1)-dimensional

hypersurfaces. For example, this occupation time cannot be presented as occupational

measure in a case n> 1. Hence it is not a perfect analog of Brownian local time.

The paper studies occupation time on hypersurface for Markovn-dimensional jump

processes. As is known, analogs of Kolmogorov-Fokker-Planck equations for the prob-

ability distribution for jump processes are second-order integro-differential equations

(cf. [4]). We extend solvability and uniqueness results for these equations for a case

when there are generalized functions in coefficients (Sections 3 and 4). Then we show

that the occupation time exists as a limit in variance, and an analog of the Meyer-

Tanaka formula is derived, that is, the occupation time is presented as a stochastic

integral (Section 6). Equations for the characteristic function of the occupation time

are derived in Section 7.
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2. Definitions. Consider a standard probability space (Ω,�,P), a standard n-

dimensional Wiener process with independent components such thatw(0)= 0, and a

Poisson measure ν(·, t) in Rm such that the process w(·) and the measure ν(·, t) are

independent of each other. We assume that there exists a measure Π(·) in Rm such

that Eν(A,t)= tΠ(A) for each measurable set A⊂Rm.

Set ν̃(A,t) ∆= ν(A,t)−tΠ(A).
Let a be a random real n-dimensional vector such that a does not depend on w(·)

and ν(·). We assume also that E|a|2 <+∞.

We consider an n-dimensional stochastic differential equation

dy(t)= f (y(t),t)dt+β(y(t),t)dw(t)+∫
Rm
θ
(
y(t),u,t

)
ν̃(du,dt),

y(0)= a.
(2.1)

The functions f(x,t) : Rn×R → Rn, β(x,t) : Rn×R → Rn×n, and θ(x,u,t) : Rn×
Rm ×R → Rn×n are bounded and Borel measurable. We assume that the function

θ(x,u,t) is continuous in u, the derivatives ∂f(x,t)/∂x, ∂β(x,t)/∂x, θ(x,u,t)/∂x
are bounded, and there exists a number δ>0 such that b(x,t)=(1/2)β(x,t)β(x,t)� ≥
δIn > 0 (for all x,t), where In is the unit matrix inRn×n. Also, we assume thatΠ(Rm) <
+∞.

Under these assumptions, (2.1) has the unique strong solution (cf. [6, Theorem 2,

page 242]).

Let a bounded hypersurface Γ(t) of dimension n−1 be given for a.a. t ∈ [0,T ], and

let ∂Γ(t) be its edge (it can happen that ∂Γ(t)=∅). Let some number T > 0 be given.

Let Ind denote the indicator function, and let |·| denote the Euclidean norm.

We will study the occupation time of y(t) in Γ(t). More precisely, we will study the

limit of the random variables

lε(T)
∆= 1
ε

∫ T
0

Ind
{
y(t)∈ Γ(ε,t)}dt (2.2)

as ε→ 0+, where

Γ(ε,t) ∆=
{
x ∈Rn : inf

y∈Γ(t)
|x−y|< ε

2

}
. (2.3)

Spaces and classes of functions. Below ‖ ·‖X denotes a norm in a space X,

and (·,·)X denotes the scalar product in a Hilbert space X.

Introduce some spaces of (complex-valued) functions. Let H0 ∆= L2(Rn), H1 ∆=
W 1

2 (Rn), where Wm
q (Rn) is the Sobolev space of functions which belong to Lq(Rn)

together with first m derivatives, q ≥ 1.

LetH−1 be the dual space toH1, with the norm ‖·‖H−1 such that ‖u‖H−1 , for u∈H0,

is the supremum of (u,v)H0 over all v ∈H0 such that ‖v‖H1 ≤ 1. Let �m denote the

Lebesgue measure in Rm, and let �̄m be the σ -algebra of the Lebesgue sets in Rm. We

introduce the following spaces:

C0 ∆= C([0,T ];H0), Xk ∆= L2([0,T ],�̄1,�1;Hk), k= 0,±1, (2.4)

and Y 1 ∆=X1∩C0, with the norm ‖u‖Y1
∆= ‖u‖X1+‖u‖C0 .
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The scalar product (u,v)H0 is assumed to be well defined for u∈H−1 and v ∈H1

as well (extending it in a natural manner from u∈H0 and v ∈H1).

Let µ be a real number such that

µ ∈
(1,2) if n= 1,(

1,n(n−1)−1
)

if n> 1.
(2.5)

We introduce the space �=W 1
µ (Rn) with the norm

‖u‖�
∆= ‖u‖Lµ(Rn)+

n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lµ(Rn)

(2.6)

and its conjugate space �∗, as well as the space �
∆= L∞([0,T ],�̄1,�1;�∗).

3. On solvability of integro-differential equations. In this section, an integro-

differential analog of the Kolmogorov-Fokker-Planck equation is studied. Existence

results theorems for these equations can be found in Carrany and Menaldy [4]. How-

ever, we will need to extend the existence results for a case when there are generalized

functions in coefficients.

Let �=�(t) be the parabolic operator generated by the process y(t),

�
∆=�c+�, (3.1)

where

�cv =�c(t)v
∆=

n∑
i,j=1

bij(x,t)
∂2v
∂xi∂xj

(x)+
n∑
i=1

f̂i(x,t)
∂v
∂xi

(x), (3.2)

�v ∆= �′(t)v−Π(Rm)v, �′(t)v ∆=
∫
Rm
v
(
x+θ(x,u,t))Π(du), (3.3)

and where

f̂ (x,t) ∆= f(x,t)−
∫
Rm
θ(x,u,t)Π(du). (3.4)

Here bij , f̂i, xi are the components of the matrix b and the vectors f̂ , x.

Let Q ∆=Rn×[0,T ]. Consider a boundary value problem in Q

∂V
∂t
+�V +gV =−ϕ, V(x,T)= R(x). (3.5)

As is known, problem (3.5) is uniquely solvable in the class Y 1 for ϕ ∈ X−1, R ∈ H0

and g ∈ L∞(Q) (cf. [7]).

Condition 3.1. There exists a constant cπ > 0 such that

P(η∈ B)≤ cπ�n(B)�n(D)−1 (3.6)

for any t ∈ [0,T ], any bounded measurable set D ⊂ Rn, and any measurable set

B ⊆ D, where η ∆= η1+θ(η1,η2, t), and where η1 : Ω → Rn and η2 : Ω → Rm are inde-

pendent random vectors such that η2 has the distribution described by the measure

Π(·)/Π(Rm), and P(η1 ∈ B)= �n(B)�n(D)−1.



640 N. G. DOKUCHAEV

Notice that Condition 3.1 is satisfied if, for example, θ(x,u,t) ≡ θ(u,t), that is,

does not depend on x. Another example is described in the following proposition.

Proposition 3.2. Let there exist an integerK > 0,p1, . . . ,pK ∈R andu1, . . . ,uK∈ Rm

such that ∫
Rm
ξ(u)Π(du)=

K∑
i=1

ξ
(
ui
)
pi (3.7)

for any ξ(·) ∈ C(Rm). Set Fi(x,t)
∆= x+θ(x,ui,t), Di ∆= Fi(Rn,t). Let there exists the

inverse function F−1(x,t) :Di→Rn for any given t (i.e., F−1(F(x,t),t)≡ x). Moreover,

let there exists a constant c > 0 such that �n(F−1
i (B,t)) ≤ c�n(B) for any measurable

set B ⊂Di, i= 1,2, . . . ,n. Then Condition 3.1 is satisfied.

Proof. Let D ⊂ Rn, η and η1 be such as in Condition 3.1. For any measurable set

B ⊂D, we have

P(η∈ B)=
n∑
i=1

piP
(
Fi
(
η1
)∈ B)= n∑

i=1

piP
(
η1 ∈ F−1

i (B)
)

= �n
(
F−1
i (B)

)
�n(D)

≤ c �n(B)
�n(D)

.

(3.8)

This completes the proof.

The following proposition will be useful.

Proposition 3.3 (see [3]). (i) If ξ ∈ H1 and η ∈ H0, then ξη ∈ � and ‖ξη‖� ≤
c‖ξ‖H1‖η‖H0 , where c = c(n,µ) is a constant.

(ii) If ξ ∈H1 and g ∈�∗∩H0, then ξg ∈H−1 and ‖ξg‖H−1 ≤ c‖ξ‖H1‖g‖�∗ for a

constant c = c(n,µ).

Introduce the following parameter:

�
∆=
{
n,T ,δ,sup

x,t

∣∣f(x,t)∣∣,sup
x,t

∣∣β(x,t)∣∣,sup
x,t,i

∣∣∣∣∂β(x,t)∂xi

∣∣∣∣,Π(Rm),cπ }. (3.9)

Theorem 3.4. Let Condition 3.1 be satisfied. Let g ∈ �, ϕ ∈ X−1, and R ∈ H0 be

given. Let gε ∈ L∞(Q)∩� be such that ‖gε−g‖� → 0 as ε→ 0+. Then,

(i) for any ε > 0, there exists the unique solution V = Vε ∈ Y1 of the problem (3.5)

with g = gε;
(ii) the sequence Vε has a limit V in Y 1 as ε→ 0+. This limit is uniquely defined by

ϕ, g, and V does not depend on the sequence {gε}. Moreover, gV ∈X−1 and

‖V‖Y1 ≤ c(‖ϕ‖X−1+‖R‖H0
)
, (3.10)

where c > 0 is a constant which depends only on the parameters �, µ, and ‖g‖�.

Remark 3.5. It can be seen from the proof of Theorem 3.4 that this theorem holds

even if the derivatives ∂f(x,t)/∂x and ∂θ(x,t)/∂x do not exist.

Definition 3.6. The limit V , defined in Theorem 3.4, is said to be the solution in

Y 1 of the problem (3.5) with g ∈�, ϕ ∈X−1 and R ∈H0.
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Note thatV depends linearly on (ϕ,R) for any giveng. Moreover, by (3.10), it follows

that V = 0 ifϕ = 0 and R = 0. Hence it follows that the operator assigning the solution

V to the pair (ϕ,R)∈X−1×H0 is also linear and homogeneous.

Definition 3.7. For every g ∈ �, define the linear continuous operators L(g) :

Y−1 → Y 1 and �(g) : H0 → Y 1 such that V = L(g)R for V which is the solution in Y 1

of the problem (3.5) with g ∈�, ϕ = 0, and R ∈H0, and V =�(g)R for V which is the

solution in Y 1 of the problem (3.5) with g ∈�, ϕ ∈X−1 and R = 0.

The fact that these operators are continuous follows immediately from Theorem

3.4. Clearly, V = L(g)ϕ+�(g)R for V which is the solution in Y 1 of the problem (3.5)

with g ∈�, ϕ ∈X−1, and R ∈H0.

To prove Theorem 3.4, we need first a preliminary lemma.

Lemma 3.8. Let ε > 0 be such that there exists a solution V = Vε ∈ Y1 of the prob-

lem (3.5) with g = gε. Then ∥∥Vε∥∥Y1 ≤ c
(‖ϕ‖X−1+‖R‖H0

)
, (3.11)

where c > 0 is a constant which depends only on the parameters �, µ, and ‖g‖�.

Proof of Lemma 3.8. We use below the elementary estimate uv ≤ u2/(2γ) +
v2γ2 (for all u,v,γ ∈R, γ > 0).

Let v ∈H1∩C2(Rn). For t ∈ [0,T ], we have

(
v,�c(t)v

)
H0 =

(
v,

n∑
i,j=1

bij
∂2v
∂xi∂xj

)
H0

+
(
v,

n∑
i=1

f̂i
∂v
∂xi

)
H0

=−
n∑

i,j=1

(
∂v
∂xi

,bij
∂v
∂xj

)
H0

−
n∑

i,j=1

(
v,
∂bij
∂xi

∂v
∂xj

)
H0

+
n∑
i=1

(
v,f̂i

∂v
∂xi

)
H0

≤−δ
n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

H0
+

n∑
i,j=1

‖v‖H0

∥∥∥∥∂bij∂xi

∥∥∥∥
L∞(Q)

∥∥∥∥ ∂v∂xj
∥∥∥∥
H0

+
n∑
i=1

‖v‖H0

∥∥f̂i∥∥L∞(Q)
∥∥∥∥ ∂v∂xi

∥∥∥∥
H0

≤−δ
n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

H0
+ δ

4

n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

H0

+ C
δ
‖v‖2

H0

n∑
i,j=1

(∥∥∥∥∂bij∂xi

∥∥∥∥2

L∞(Q)
+
∥∥fi∥∥2

L∞(Q)

)
,

(3.12)

where C = C(n) is a constant. Hence we obtain the inequality

(
v,�c(t)v

)
H0 ≤−3δ

4

n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

H0
+C′1‖v‖2

H0 (3.13)

for all v ∈H1, t ∈ [0,T ], where a constant C′1 depends only on �.
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Let DK
∆= {x ∈Rn : |x| ≤K}. By Condition 3.1,

∥∥�′(t)v
∥∥2
H0 =

∫
Rn
dx
∣∣∣∣∫

Rm
v
(
x+θ(t,x,u))Π(du)∣∣∣∣2

≤
∫
Rn
dx
∫
Rm

∣∣v(x+θ(t,x,u))∣∣2Π(du)

= lim
K→+∞

∫
DK
dx
∫
Rm

∣∣v(x+θ(t,x,u))∣∣2Π(du)

= lim
K→+∞

�n
(
DK
)∫

Rn
µK(dy)

∣∣v(y)∣∣2

≤ cπ
∫
Rn

∣∣v(y)∣∣2dy = cπ‖v‖2
H0 ,

(3.14)

where µK(·) is the probability measure which describes the distribution of a random

vector η= ηK such as in Condition 3.1, where D =DK . Then∥∥�(t)v
∥∥2
H0 ≤

(
cπ +Π

(
Rm

))‖v‖2
H0 . (3.15)

Thus, (
v,�(t)v

)
H0 ≤−3δ

4

n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

H0
+C1‖v‖2

H0 (3.16)

for all v ∈H1 and t ∈ [0,T ], where a constant C′1 depends only on �.

Furthermore, we have(
v,ϕε(·, t)

)
H0 ≤ ‖v‖H1

∥∥ϕε(·, t)
∥∥
H−1

≤ δ
4

( n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

H0
+‖v‖2

H0

)
+C2

∥∥ϕε(·, t)
∥∥2
H−1

(3.17)

for all v ∈H1 and t ∈ [0,T ], where a constant C2 also depends only on �.

Proposition 3.3(i) yields(
v,gεv

)
H0 ≤

∥∥v2
∥∥

�

∥∥gε∥∥�∗ ≤ C3‖v‖H1‖v‖H0

∥∥gε∥∥�∗

≤ δ
4

n∑
i=1

‖v‖2
H1+ Ĉ3‖v‖2

H0

≤ δ
4

n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

H0
+C3‖v‖2

H0
∀v ∈H1,

(3.18)

where constants Ĉ3 and C3 depend on ‖gε‖�∗ , δ, and n.

For the solution V = Vε of the problem (3.5) with g = gε, ε ∈ (0,ε1], we have from

(3.12), (3.15), (3.16), (3.17), and (3.18) that∥∥Vε(·, t)∥∥2
H0−

∥∥Vε(·,T )∥∥2
H0

= 2
∫ T
t

(
Vε(·,s),�Vε(·,s)+gεVε(·,s)+ϕ(·,s)

)
H0ds

≤
∫ T
t

{
−δ

n∑
i=1

∥∥∥∥∂Vε∂xi
(·,s)

∥∥∥∥2

H0
+C4

(∥∥Vε(·,s)∥∥2
H0+

∥∥ϕ(·,s)∥∥2
H−1

)}
ds,

(3.19)
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where a constant C4 depends on �, µ, and ‖g‖�. Thus,

∥∥Vε∥∥Y1 ≤ C∗
(‖ϕ‖X−1+‖R‖H0

) ∀ε ∈ (0,ε1
]
, (3.20)

where a constant C∗ also depends on �, µ, and ‖g‖�. This completes the proof of

Lemma 3.8.

Proof of Theorem 3.4. We prove (i). Consider a boundary value problem

∂V
∂t
+�cV +gεV =−ϕ, V(x,T)= R(x). (3.21)

The solution V ∈ Y 1 of this problem is well defined. For every g ∈ L∞(Q), introduce

linear continuous operators Lc(g) : X−1 → Y 1 and �c(g) : H0 → Y 1 such that V =
Lc(g)ϕ+�c(g)R for V which is the solution in Y 1 of the problem (3.21) with given g,

ϕ, and R.

The solution V of (3.5) (if exists) has the form V = Lc(g)ϕ+�c(g)R+Lc(g)�V . Let

V0
∆= 0∈ Y 1,

Vk
∆= Lc(g)ϕ+�c(g)R+Lc(g)�Vk−1, Uk

∆= Vk−Vk−1, k= 1,2, . . . .
(3.22)

It suffices to prove that Uk→ 0 in Y 1 as k→+∞. Set

yk(t)
∆=
∥∥Uk(·, t)∥∥H0+δ

n∑
i=1

∫ T
t

∥∥∥∥∂Uk∂xi
(·,s)

∥∥∥∥2

H0
ds. (3.23)

Similar to (3.19), we have

yk(t)≤ c1+C4

∫ T
t

(
yk(s)+yk−1(s)

)
ds, (3.24)

where c1
∆= ‖R(·)‖H0 . By the Bellman inequality,

yk(t)≤ c1eC4(T−t)
∫ T
t
yk−1(s)ds. (3.25)

It is easy to see that yk(t) ≤ Ck, where C > 0 is a constant independent of k and t.
After standard iterations, we have that supt∈[0,T ] yk(t)→ 0 as k→+∞. Thus, {Vk} is

a Cauchy sequence in Y 1. Then (i) follows.

We show that the sequence {Vε}, ε → 0, is a Cauchy sequence in the space Y 1. Let

ε1 → 0, ε2 → 0 and let W = Vε1−Vε2 , then

∂W
∂t

+�W +gε1W =−ξ, W(x,T)= 0, (3.26)

where ξ ∆= (gε1−gε2)Vε2 . Furthermore,

∥∥gε1−gε2∥∥�∗ �→ 0, (3.27)
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because {gε} is a Cauchy sequence. By Proposition 3.3(ii) and (3.20), (3.27),

∥∥(gε1−gε2)Vε2∥∥X−1 =
∫ T

0

∥∥(gε1−gε2)Vε2(·, t)∥∥H−1 dt

≤
∫ T

0

∥∥gε1−gε2∥∥�∗
∥∥Vε2(·, t)∥∥H1dt

≤
∥∥gε1−gε2∥∥�

∫ T
0

∥∥Vε2(·, t)∥∥H1dt

=
∥∥gε1−gε2∥∥�∗

∥∥Vε2∥∥X1 �→ 0

(3.28)

as ε1 → 0, ε2 → 0. Hence ‖ξ‖X−1 → 0. The estimate (3.20) applied to the solution W of

the boundary value problem (3.26) yields

‖W‖Y1 ≤ C∗‖ξ‖X−1 �→ 0. (3.29)

Hence the sequence {Vε}, ε→ 0, is a Cauchy sequence (and has a limit) in the Banach

space Y 1. The estimate (3.10) and the uniqueness of V follows from (3.20) and (3.26).

This completes the proof of Theorem 3.4.

Corollary 3.9. Let Vε
∆= L(gε)ϕε+�(gε)Rε, and V ∆= L(g)ϕ+�(g)R, where g,gε∈

�, ϕ,ϕε ∈ X−1 are such that ‖gε−g‖� → 0, ‖ϕε−ϕ‖X−1 → 0 and ‖Rε−R‖H0 → 0 as

ε→ 0+. Then ‖Vε−V‖Y1 → 0.

Proof. For the sake of simplicity, assume that ϕε ≡ ϕ. Let ‖�(gε)‖ denote the

norm of the operator �(gε) :H0 → Y 1. By Theorem 3.4, supε ‖�(gε)‖ ≤ const. Then∥∥Vε−V∥∥Y1 ≤
∥∥�
(
gε
)
Rε−�

(
gε
)
R
∥∥
Y1+

∥∥�
(
gε
)
R−�(g)R

∥∥
Y1

≤ sup
ε

∥∥�
(
gε
)∥∥∥∥Rε−R∥∥H0+

∥∥�
(
gε
)
R−�(g)R

∥∥
Y1 .

(3.30)

By Theorem 3.4, it also follows that ‖�(gε)R−�(g)R‖Y1 → 0 as ε→ 0. Then the proof

follows.

4. Adjoint equations. Let �∗
c =�∗

c (t) be the operator which is formally adjoint to

the operator �c(t) defined by (3.2),

A∗c (t)p =
n∑

i,j=1

∂2

∂xi∂xj

(
bij(x,t)p(x)

)− n∑
i=1

∂
∂xi

(
f̂i(x,t)p(x)

)
. (4.1)

Let �∗ = �∗(t) : H0 → H0 be the operator which is adjoint to the operator � = �(t) :

H0 → H0 defined by (3.3). Let �∗ ∆= �∗
c +�∗. Consider the following boundary value

problem in Q:

∂p
∂t
=�∗p+gp+ϕ, p(x,0)= ρ(x). (4.2)

Theorem 4.1. Assume that Condition 3.1 is satisfied. Letg ∈�,ϕ ∈X−1, and ρ ∈H0

be given. Let gε ∈ L∞(Q)∩� be such that∥∥gε−g∥∥� �→ 0 as ε �→ 0+ . (4.3)
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Then,

(i) for any ε > 0, there exist the unique solution pε of (4.2) with g = gε;
(ii) the sequence pε has a unique limit p in Y 1 as ε→ 0+, and

‖p‖Y1 ≤ c(‖ϕ‖X−1+‖ρ‖H0
)
, (4.4)

where a constant c > 0 depends only on the parameters �, µ, and ‖g‖�.

The proof of Theorem 4.1 is similar to the proof of Theorem 4.4. Note only that,

by Remark 3.5, it follows that the coefficients of the operator �∗
c are smooth enough,

and, by (3.15), ‖�∗v‖2
H0 ≤ (cπ +Π(Rm))‖v‖2

H0 for all v ∈H0.

For g ∈ �, introduce a linear continuous operators L̂(g) : X−1 → H0 and L0(g) :

H0 → H0 such that V(·,0) = L̂(g)ϕ+LT (g)R, where V = L(g)ϕ+�R is the solution

of the problem (3.5).

Proposition 4.2. For p, g, ϕ, and ρ from Theorem 4.1, p = L(g)∗ϕ+ L̂(g)∗ρ and

p(·,T ) = L(g)∗ϕ+LT (g)∗ρ, where L(g)∗ : X−1 → X1, L̂(g)∗ : H0 → X1 and LT (g)∗ :

H0 → H0 are linear continuous operators which are adjoint to the operators L(g) :

X−1 →X1 and L̂(g) :X−1 →H0 and LT (g) :H0 →H0 correspondingly.

Proof. Let φ∈X0, R ∈H0 be arbitrary, V = L(g)φ+�(g)R. Then(
p(·,T ),R)H0−

(
ρ, L̂(g)φ+LTR

)
H0

= (p(·,T ),V(·,T ))H0−
(
p(·,0),V(·,0))H0

=
(
∂p
∂t
,V
)
X0
+
(
p,
∂V
∂t

)
X0

= (�∗p+gp+ϕ,V)X0+(p,−�V −gV −φ)X0

= (ϕ,V)X0−(p,φ)X0

= (ϕ,L(g)φ+�(g)R
)
X0−(p,φ)X0 .

(4.5)

Then(
p(·,T ),R)H0+(p,φ)X0 = (ρ, L̂(g)φ+LTR

)
H0+

(
ϕ,L(g)φ+�(g)R

)
X0 . (4.6)

Then the proof follows.

Condition 4.3. There exists uniformly bounded derivatives ∂kβ(x,u,t)/∂xk,
∂kf (x,t)/∂xk, and ∂kθ(x,u,t)/∂xk for k= 1,2.

Theorem 4.4. Let Conditions 3.1 and 4.3 be satisfied, let g(x,t) :Q→R be a Borel

measurable function which belongs to � and is bounded together with the derivatives

∂kg(x,t)/dxk for k= 1,2. Let the vector a in (2.1) have the probability density function

ρ ∈H0, and let p ∆= L̂(g)∗ρ. Then

ER
(
y(T)

)
exp

(∫ T
0
g
(
y(t),t

)
dt
)
=
∫
Rn
p(x,T)R(x)dx (4.7)

for all Borel measurable R(·)∈H0. In particular, if g = 0 then p(x,t) is the probability

density function of the solution y(t) of (2.1).
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Proof. It suffices to prove (4.7) with R(·)∈H0∩C2(Rn). For (x,s)∈Q, set V(x,s)
∆= E{R(y(T)) | y(s) = x}. By [6, Theorem 4, page 296], it follows that V = L(0)R. By

Proposition 4.2, it follows that

ER
(
y(T)

)= (V(·,0),ρ)H0 =
(
LTR,ρ

)
H0 =

(
R,L∗T ρ

)
H0 =

(
R,p(·,T ))H0 (4.8)

for all R(·)∈H0∩C2(Rn). This completes the proof.

Corollary 4.5. Let V =�(g)R, where R ∈H0. Then there exist a version of V such

that esssupx,t V(x,t)≤maxx R(x) and essinfx,t V(x,t)≥minx R(x).

Proof. If R(·)∈H0∩C2(Rn) then V(x,s)= E{R(y(T)) |y(s)= x} and the proof

follows. For the general case R ∈H0, the proof can be obtained by a standard approx-

imation.

Condition 4.6. (i) There exist uniformly bounded derivatives ∂mβ(x,u,t)/∂xm

for m≤ 4, ∂lf (x,t)/∂xl for l= 1,2,3, and ∂kθ(x,u,t)/∂xk for k= 1,2.

(ii) There exist c∗ ∈ R, a measure Π∗(·) in Rm, and a bounded and Borel measur-

able function θ∗(x,u,t) : Rn×Rm ×R → Rn×n which is continuous in u, such that

Π∗(Rm) <+∞ and �∗(t)v =
∫
Rm v(x+θ∗(x,u,t))Π∗(du)+c∗v for any v ∈H0.

(iii) The derivatives ∂kθ∗(x,u,t)/∂xk are bounded for k= 1,2 and Condition 3.1 is

satisfied with substituting (Π(·),θ(·))= (Π∗(·),θ∗(·)).

Note that if the mapping z = x+θ(x,u,t) maps Rn one-to-one onto itself for any

(u,t), then θ∗(·) can be found such that x = z−θ∗(z,u,t) is the inverse mapping. If

the last one is differentiable, then Π∗(·) can be found as Π∗(dx)= J(x)Π(dx), where

J(x) is the Jacobian of the transformation y = x−θ∗(x,u,t) (see [6, page 299]).

Corollary 4.7. Let Conditions 3.1, 4.3, and 4.6 be satisfied. Let ρ ∈ L∞(Rn)∩H0,

and let p ∆= L̂(0)∗ρ. Then p ∈ L∞(Q).

Proof. It can be seen that equation (4.7) after a change of time variable can be

rewritten in the form (3.2), and then Corollary 4.5 is satisfied. This completes the

proof.

5. On a class of acceptable hypersurfaces. We will use the equations from Sections

3 and 4 for the distributions of the occupation time on hypersurfaces. In this section

we describe a class of acceptable hypersurfaces.

Let Γ ⊂D be some (n−1)-dimensional hypersurface. By e(i) we denote the ith unit

vectors in Rn, i= 1, . . . ,n. Let n(x) be the normal to Γ in x, and let αi(x) be the angle

between e(i) and n(x).
Introduce the functions γi : Γ →R, i= 1, . . . ,n, such that

γi(x)=


∣∣cosαi(x)

∣∣ if the normal n(x) at x is uniquely defined,

0 if the normal at x is not defined.
(5.1)

(In fact, n(x) is not defined at points of violation of smoothness of Γ .)
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Denote by N(x,j,Γ) the number of intersections of the hypersurface Γ with the ray

from x = (x1,x2, . . . ,xn) to (x1, . . . ,xj−1,−∞,xj+1, . . . ,xn). Let x̂k(x,j) be the corre-

sponding intersection points.

We assume that N(x,j,Γ)=+∞, if the ray is tangential to Γ .
Set

Gj(x)
∆=
N(x,j,Γ)∑
k=1

γj
(
x̂k(x,j)

)
, g =

n∑
j=1

∂Gj
∂xj

,

Γ(ε) ∆=
{
x ∈Rn : inf

y∈Γ
|x−y| ≤ ε

2

}
,

gε(x)
∆= 1
ε

Ind
{
x ∈ Γ(ε)}.

(5.2)

Definition 5.1. A set Γ̂ ∈ Rn is said to be an (n−1)-dimensional polyhedron if

there exist an integer N and ci ∈ Rn, δi ∈ R, i = 0,1, . . . ,N such that Γ̂ = {x ∈ Rn :

c′0x = δ0, c′ix ≤ δi, i = 1, . . . ,N}. The set {x ∈ Rn : c′0x = δ0, c′ix < δi, i = 1, . . . ,N} is

said to be the interior of Γ̂ .

Lemma 5.2 (see [3]). Let a hypersurface Γ ⊂ Rn be bounded and such that there

exists a set Γ̂ ⊂ Rn and a continuous bijection 	 : Rn → Rn which satisfy the following

assumptions:

(i) Γ =	(Γ̂);
(ii) Γ̂ =∪


i=1Γ̂i, where 
 is an integer, Γ̂i is (n−1)-dimensional polyhedron;

(iii) 	 : Γ̂i→Rn are C1-smooth bijections, i= 1, . . . ,
;

(iv) |n(x)−ni| ≤ δ0, if 	−1(x) belongs to the interior of Γ̂i, i= 1, . . . ,
, where x ∈ Γ ,
δ0 ≤ n−2/2 is a constant, n(x) is the normal to Γ in x, and ni is the normal to

Γ̂i; it is assumed that the orientations of these normals are fixed and |n(x)| = 1,

|ni| = 1;

(v) 	(x)= x, if x is a top point of some Γ̂i.
Then N(j,x,Γ) <+∞ for a.e. x. Moreover, g ∈�∗∩H−1 and gε(·)→ g in �∗.

6. Existence of the occupation time density and an analog of Meyer-Tanaka for-

mula. Set

gε(x,t)
∆= 1
ε

Ind
{
x ∈ Γ(ε,t)}, lε(t)

∆=
∫ t

0
gε
(
y(s),s

)
. (6.1)

It is natural to interpret the limit of lε(T) as the occupation time of y(t) on Γ(t).

Condition 6.1. (i) The hypersurface Γ(t) is such that the assumptions of Lemma

5.2 hold for Γ = Γ(t) for a.e. t ∈ [0,T ] and g = g(t) ∈ X−1, where g(t) ∆= limε→0gε(t)
(by Lemma 5.2, the limit exists in H−1 for a.e. t ∈ [0,T ]).

(ii) The initial vector a=y(0) has probability density function ρ ∈ L∞(Rn).
(iii) The function β(x,t) in (2.1) is continuous.

Note that the assumptions of Lemma 5.2 hold for disks, spheres, and many other

piecewise C1-smooth (n−1)-dimensional surfaces. Moreover, it can be easy to find

examples when the surface Γ(t) changes in time, approaching a fractal, but g ∈X−1.
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Example 6.2. Let n = 2, T = 2, Γ(t) = {(x1,x2) : x2 = sin(x1(1− t)−1/3), x1 ∈
[−1,1]}. Then N((2,x2),2,Γ(t))≡ 1 and

‖g‖2
X−1 =

∫ T
0

∥∥g(t)∥∥2
H−1dt

≤ const
∫ T

0

[
1+sup

x2

N
((

2,x2
)
,1,Γ(t)

)2
]
dt

≤ const
(

2+
∫ 2

0
(1−t)−2/3dt

)
<+∞.

(6.2)

Hence g = g(t)∈X−1.

The following example presents a fractal Γ which is constant in time.

Example 6.3. Let n = 2, Γ(t) ≡ Γ = {(x1,x2) : x2 = x1 sin(x−1/3
1 ), x1 ∈ [−1,1]}.

Then N((2,x2),2,Γ(t))≡ 1 and

‖g‖2
H−1 ≤

(
1+

∫ 1

−1
dx2N

((
2,x2

)
,1,Γ(t)

)2
)
≤ const

(
1+

∫ 1

−1
x−2/3

1 dx1

)
<+∞. (6.3)

Hence g ∈H−1.

Denote by βj the columns of the matrix β, j = 1, . . . ,n. Let �t be the filtration of

complete σ -algebras of events, generated by {a,w(s),ν(B,s), s ≤ t, B ∈ �̄n}.
Introduce the set �̃ of all bounded functions ξ(t)= ξ(t,ω) : [0,T ]×Ω→Rn which

are progressively measurable with respect to �t , and introduce the set �̃ of all bounded

functions ψ(u,t)=ψ(u,t,ω) : Rn×[0,T ]×Ω→ Rn which are progressively measur-

able with respect to �t for all u.

Introduce the Hilbert space �2 as the completion of �̃ with respect to the norm

‖ξ‖�2

∆= E
∫ T
0 |ξ(t)|2dt, and introduce the Hilbert space �2 as the completion of �̃ with

respect to the norm ‖ψ‖�2

∆= E
∫ T
0 dt

∫
Rn |ψ(u,t)|2Π(du).

We present now an analog of the Meyer-Tanaka formula (cf. [9] or [11, page 169]).

Theorem 6.4. Assume that Conditions 3.1, 4.3, 4.6, and 6.1 are satisfied. Let V ∆=
L(0)g (by definition, this V belongs Y 1). Let V and ∂V/∂x be Borel measurable repre-

sentatives V and ∂V/∂x of corresponding equivalence classes in L2(Q). Then

∂V
∂x
(
y(t),t

)
βj
(
y(t),t

)∈�2, V
(
y(t)+θ(y(t),u,t), t)−V(y(t),t)∈�2, (6.4)

and E|lε(T)− t̂(T)|2 → 0 as ε→ 0, where

t̂(T) ∆= V(a,0)+
n∑
j=1

∫ T
0

∂V
∂x
(
y(t),t

)
βj
(
y(t),t

)
dwj(t)

+
∫ T

0
dt
∫
Rm

(
V
(
y(t)+θ(y(t),u,t), t)−V(y(t),t))ν̃(du,dt).

(6.5)
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Corollary 6.5. Let p ∆= L(0)∗ρ. In the assumptions and notation of Theorem 6.4,

Et̂(T)2 =
∫
Rn

∣∣V(x,0)∣∣2ρ(x)dx

+
∫
Q

( n∑
j=1

∣∣∣∣∂V∂x (x,t)βj(x,t)
∣∣∣∣2

+
∫
Rm

∣∣V(x+θ(x,u,t),t)
−V(x,t)

∣∣2Π(du)
)
p(x,t)dxdt.

(6.6)

Note that if Condition 6.1(ii) is satisfied, then ‖ρ‖2
H0 =

∫
Rn ρ(x)2dx ≤ ‖ρ‖L∞(Rn),

and ρ ∈ H0. By definition, p in Corollary 6.5 is the solution of the boundary value

problem (4.2) with ϕ = 0, g = 0. Moreover, by Theorem 4.1, it follows that p(x,t) is

the probability density function of the process y(t), and, by Corollary 4.7, p ∈ L∞(Q).

Proof of Theorem 6.4. Set

ξj(t)
∆= ∂V
∂x
(
y(t),t

)
βj
(
y(t),t

)
,

ψ(u,t) ∆= V(y(t)+θ(y(t),u,t), t)−V(y(t),t). (6.7)

Let hε(x,t)∈X0∩C([0,T ];C2(Rn)) be such that ‖hε−gε‖X0 ≤ ε. Set

Vε
∆= L(0)hε, λε(t)

∆=
∫ t

0
hε
(
y(s),s

)
ds,

ξj,ε(t)
∆= ∂Vε
∂x

(
y(t),t

)
βj
(
y(t),t

)
,

ψε(u,t)
∆= Vε

(
y(t)+θ(y(t),u,t), t)−Vε(y(t),t).

(6.8)

By definition, we have that hε = −∂Vε/∂t−�Vε and Vε(x,T) = 0. By the generalized

Itô formula (cf. [6, page 272]), it follows that

−Vε(a,0)= Vε
(
y(T),T

)−Vε(a,0)
=−

∫ T
0
hε
(
y(t),t

)
dt+

n∑
j=1

∫ T
0
ξj
(
y(t),t

)
dwj(t)

+
∫ T

0
dt
∫
Rm

(
Vε
(
y(t)+θ(y(t),u,t), t)−Vε(y(t),t))ν̃(du,dt).

(6.9)

Hence

λε(T)= Vε(a,0)+
n∑
j=1

∫ T
0

∂Vε
∂x

(
y(t),t

)
βj
(
y(t),t

)
dwj(t)

+
∫ T

0
dt
∫
Rm

(
Vε
(
y(t)+θ(y(t),u,t), t)−Vε(y(t),t))ν̃(du,dt).

(6.10)

By [6, Lemmas 2, 3 and Theorem 4, pages 293–296], it follows that the functions Vε
and ∂Vε(x,t)/∂x are bounded and continuous, then ξε,j(t)∈�0 and ψε(u,t)∈�0.
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By Theorem 4.1, p = p(x,t) ∆= L̂(0)∗ρ is the probability density function of the

process y(t). Let Wε
∆= Vε−V . By Corollary 3.9, ‖Wε‖Y1 → 0 as ε→ 0. Then

E
∣∣Vε(a,0)−V(a,0)∣∣2 =

∫
Rn

∥∥Wε(x,0)∥∥2ρ(x)dx

≤ ‖ρ‖L∞(Rn)
∥∥Wε∥∥X0 �→ 0,

E
∫ T

0

∣∣ξj,ε(t)−ξj(t)∣∣2dt=
n∑
j=1

E
∫ T

0

∣∣∣∣∂Wε∂x
(
y(t),t

)
βj
(
y(t),t

)∣∣∣∣2

dt

=
∫
Q

∣∣∣∣∂Wε∂x
(x,t)

∣∣∣∣2

p(x,t)dxdt

≤ const‖p‖L∞(Q)
∥∥Wε∥∥Y1 �→ 0,

E
∫ T

0
dt
∫
Rn

∣∣ψε(u,t)−ψ(u,t)∣∣2Π(du)= E
∫ T

0

∣∣(�(t)Wε)(y(t),t)∣∣2dt

=
∫
Q

∣∣(�(t)Wε)(x,t)∣∣2p(x,t)dxdt

≤ const‖p‖L∞(Q)
∥∥�Wε

∥∥
X0 �→ 0.

(6.11)

Then

E
∣∣t̂(T)−λε(T)∣∣2 = E

∣∣Vε(a,0)−V(a,0)∣∣2

+
n∑
j=1

E
∫ T

0

∣∣ξj,ε(t)−ξj(t)∣∣2dt

+E
∫ T

0
dt
∫
Rn

∣∣ψε(u,t)−ψ(u,t)∣∣2Π(du) �→ 0.

(6.12)

Furthermore,

E
∣∣lε(T)−λε(T)∣∣2 =

∫ T
0

∫
Rn

∣∣gε(x,t)−hε(x,t)∣∣2p(x,t)dt

≤ ‖p‖L∞(Q)
∥∥gε−hε∥∥X0 �→ 0.

(6.13)

This completes the proof of Theorem 6.4.

Proof of Corollary 6.5. The proof can be easily obtained similar to (6.12).

7. Equations for the characteristic function of the occupation time

Theorem 7.1. Assume that Conditions 3.1, 4.3, 4.6, and 6.1 are satisfied, and that

g ∈ �. Let ν ∈ R be given, and let z ∆= iν , where i = √−1. Let V ∆= zL(zg)g. Then

V ∈ Y 1, and

1+(V(·,0),ρ)H0 = Eexp
{
zt̂(T)

}
. (7.1)
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Proof. Let hε be such that hε(x,t) ∈ X0∩C([0,T ];C2(Rn)) and ‖hε−gε‖� ≤ ε.
Set λε(t)

∆=
∫ t
0 hε(y(s),s)ds. Let

Vε(x,s)
∆= E
{
z
∫ T
s
hε
(
y(t),t

)
exp

(
z
∫ t
s
hε
(
y(r),r

)
dr
)
dt |y(s)= x

}
. (7.2)

It is easy to see that

Vε(x,s)= E
{

exp
(
z
∫ T
s
hε
(
y(t),t

)
dt
)
|y(s)= x

}
−1. (7.3)

By [6, Theorem 1, page 301], applied after a small modification for a non-homogeneous

integro-differential equation, it follows that Vε = zL(zhε)hε, that is, Vε is the solution

of the problem

∂Vε
∂t

+�Vε+zhεVε =−zhε, Vε(x,T)= 0. (7.4)

By Lemma 5.2 it follows that ‖g−gε‖� → 0 as ε→ 0+. Hence ‖g−hε‖� → 0 as ε→ 0+.

By Corollary 3.9, it follows that ‖V −Vε‖Y1 → 0. Hence (Vε(·,0),ρ)H0 → (V(·,0),ρ)H0 .

It was shown in the proof of Theorem 6.4 that E|λε(T)− t̂(T)|2 → 0. Then λε(T) con-

verges to t̂(T) in distribution, and Eezλε(T) → Eezt̂(T) for each z = iν , ν ∈ R. Then the

proof follows.
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