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Abstract. For a pair of point vortices in an inviscid, incompressible fluid in the plane, the
relative and absolute motion are determined when the vortices move under the influence
of (1) each other, and (2) a steady, linear, and elliptical background flow.
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1. Introduction. The point vortex model [1, 4, 5] is an idealization of the motion of

a collection of vortices in an inviscid, incompressible fluid in the plane. Each vortex is

assumed to be a point, and to induce in the surrounding fluid a velocity field, namely

that of a Rankine vortex whose core has shrunk to a point. Each such point P moves

with a velocity equal to the sum of the velocities induced by the other points, and the

velocity field induced by P moves, without change of form, with the same velocity as

P itself.

We investigate the absolute and relative motion in the plane of a pair of point

vortices that are embedded in a steady flow whose velocity field has the form

〈−αy,βx〉, (1.1)

where α and β are constants such that α≥ β > 0. The flow (1.1) carries fluid particles

counterclockwise around the origin, in elliptical trajectories. Kimura and Hasimoto [3]

have analyzed a similar problem in which two vortices move in a simple shear flow

〈αy,0〉. They require their vortices to be identical; here that requirement is dropped.

Here are the basic equations and notation needed for our analysis.

First, we need some information about the flow (1.1) (henceforth called the “back-

ground flow”). The position 〈x,y〉 of a given fluid particle in the background flow

satisfies the equations
dx
dt

=−αy, dy
dt

= βx, (1.2)

which have a general solution

x = x0 cosωt−Dy0 sinωt, y =D−1x0 sinωt+y0 cosωt, (1.3)

where x0 = x(0), y0 =y(0), and

D =
√
α
β
, ω=

√
αβ. (1.4)
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Thus, a fluid particle that begins at (x0,y0) will complete one counterclockwise

revolution around the ellipse x2/α+y2/β= x2
0/α+y2

0/β in time 2π/
√
αβ.

It follows from (1.3) that the linear transformation Lt :R2 →R2, defined by

Lt

([
X
Y

])
=
[

cosωt −Dsinωt
D−1 sinωt cosωt

][
X
Y

]
, (1.5)

takes as input the location of a given fluid particle in the background flow at time 0,

and gives as output the particle’s location at time t. The inverse transformation

L−1
t

([
x
y

])
=
[

cosωt Dsinωt
−D−1 sinωt cosωt

][
x
y

]
(1.6)

takes as input the location of a given fluid particle in the background flow at time t,
and gives as output the particle’s location at time 0.

Next, we introduce the equations of motion of the vortices. Denote by 〈xj,yj〉
(j = 1,2) the position of the jth vortex, and put

r =
√(
x2−x1

)2+(y2−y1
)2. (1.7)

Then, because the velocity of each vortex is the sum of the background flow’s veloc-

ity and the velocity induced by the other vortex, the vortices’ positions satisfy the

following differential equations:

dx1

dt
= κ2

y2−y1

r 2
−αy1; (1.8)

dy1

dt
=−κ2

x2−x1

r 2
+βx1; (1.9)

dx2

dt
=−κ1

y2−y1

r 2
−αy2; (1.10)

dy2

dt
= κ1

x2−x1

r 2
+βx2; (1.11)

here κ1 and κ2 are nonzero constants.

Finally, to obtain differential equations for the vortices’ relative position, we first

define

ξ = x2−x1, η=y2−y1, κ = κ1+κ2; (1.12)

then, by subtracting (1.8) from (1.10) and (1.9) from (1.11), we get

dξ
dt

=−
(
κ
r 2
+α

)
η, (1.13a)

dη
dt

=
(
κ
r 2
+β
)
ξ. (1.13b)

The system (1.13) has a Hamiltonian

H =−1
2

[
κ log

(
ξ2+η2)+βξ2+αη2]; (1.14)

that is, ∂H/∂η equals the right-hand side of (1.13a) and−∂H/∂ξ equals the right-hand

side of (1.13b). Each solution curve of (1.13) is contained in a level curve of H. (Cf. [6,

pages 43–45] for an introduction to Hamiltonians.)
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In polar coordinates r and θ defined by

ξ = r cosθ, η= r sinθ, (1.15)

where r satisfies (1.7), equations (1.13) and (1.14) take the form

dr
dt

=−2−1(α−β)r sin2θ, (1.16a)

dθ
dt

= κ
r 2
+αsin2θ+βcos2θ, (1.16b)

H =−2−1[2κ logr +βr 2 cos2θ+αr 2 sin2θ
]
. (1.17)

We are now ready to begin our analysis. In Section 2, we consider absolute motion; we

consider relative motion in Sections 3.1, 3.2, 3.3, and 3.4. The character of the relative

motion depends on whether α= β (when the background flow is solid-body rotation)

or α> β (when the background flow is elliptical but not circular); in the latter case the

behavior depends on the sign of κ.

2. Absolute motion. Theorems 2.1 and 2.2 below describe the absolute motion in

the cases κ ≠ 0 and κ = 0, respectively.

For κ ≠ 0, the center of vorticity of the vortices 〈xj,yj〉 (j = 1,2) is defined to be

〈xc,yc〉, where

xc = κ−1(κ1x1+κ2x2
)
, yc = κ−1(κ1y1+κ2y2

)
. (2.1)

Theorem 2.1. Fix α and β, where α≥ β > 0, and let 〈xj,yj〉 (j = 1,2) be a solution

of the system (1.8), (1.9), (1.10), and (1.11). If κ defined by (1.12) is nonzero, then the

center of vorticity moves with the background flow.

Proof. By computing κ−1{κ1[(1.8)]+κ2[(1.10)]}, we find that dxc/dt = −αyc .
Similarly, dyc/dt = βyc . Thus, since the background flow is given by (1.1), the proof

is complete.

Theorem 2.2. Fix α and β, with α ≥ β > 0, and pick real numbers κ1 and κ2 such

that κ = κ1+κ2 = 0. DefineD,ω, and Lt by (1.4) and (1.5). Finally, choose real numbers

X1, Y1,X2, and Y2, with (X2−X1)2+(Y2−Y1)2 ≠ 0, and set ξ0 =X2−X1 and η0 = Y2−Y1.

Then the system (1.7), (1.8), (1.9), (1.10), and (1.11) has a unique solution satisfying

xj(0)=Xj and yj(0)= Yj (j = 1,2); that solution is

[
xj
yj

]
= Lt

([
Xj
Yj

])
+ κ1

D−1ξ2
0+Dη2

0

{
tLt

([
−Dη0

D−1ξ0

])
+G(t)Lt

([
ξ0

η0

])}
, (2.2)

where

G(t)=−D−D
−1

2(α−β) log
{(
ξ2

0+η2
0

)−1 ·[(ξ2
0+η2

0

)
cos2ωt−(D−D−1)ξ0η0 sin2ωt

+(D−2ξ2
0+D2η2

0

)
sin2ωt

]}
.

(2.3)
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Proof. We will rewrite the system (1.8), (1.9), (1.10), and (1.11) in terms of new

variables x̂j and ŷj defined by

[
x̂j
ŷj

]
= L−1

t

([
xj
yj

])
. (2.4)

We hope in this way to simplify the system by eliminating (or at least reducing) the

effect of the background flow.

To convert (1.8), (1.9), (1.10), and (1.11) to the new variables, we first rewrite (2.4) as

x̂j = xj cosωt+Dyj sinωt, ŷj =−D−1xj sinωt+yj cosωt. (2.5)

We then differentiate the four equations in (2.5) with respect to t, use (1.8), (1.9), (1.10),

and (1.11) to eliminate the derivatives of xj and yj , and apply (1.12), (1.4), and the

condition κ = 0; the result is

dx̂j
dt

= κ1
(−ηcosωt+Dξ sinωt)

r 2
,

dŷj
dt

= κ1

(
D−1ηsinωt+ξ cosωt

)
r 2

. (2.6)

Now by (1.13),
dξ
dt

=−αη, dη
dt

= βξ. (2.7)

This last system is just (1.2) with x and y replaced by ξ and η; thus, by (1.3), the

definitions of ξ0 and η0, and (1.12), the general solution of (2.7) is

ξ = ξ0 cosωt−Dη0 sinωt, η=D−1ξ0 sinωt+η0 cosωt. (2.8)

After solving (2.8) for cosωt and sinωt and substituting the result into (2.6), we

obtain

dx̂j
dt

= κ1
(
D−1ξ2

0+Dη2
0

)−1
[
−Dη0+

(
D−D−1)ξ0

ξη(
ξ2+η2

)],
dŷj
dt

= κ1
(
D−1ξ2

0+Dη2
0

)−1
[
D−1ξ0+

(
D−D−1)η0

ξη(
ξ2+η2

)].
(2.9)

But by (2.7), (d/dt)(ξ2+η2)=−2(α−β)ξη. This last equation allows us to integrate

(2.9), after which, using (2.3) and (2.8), we find that

x̂j = x̂j(0)+κ1
(
D−1ξ2

0+Dη2
0

)−1[−Dη0t+ξ0G(t)
]
,

ŷj = ŷj(0)+κ1
(
D−1ξ2

0+Dη2
0

)−1[D−1ξ0t+η0G(t)
]
.

(2.10)

Finally, we put (2.10) into matrix form and apply Lt to both sides; (2.2) then fol-

lows because, by (2.5), x̂j(0)= xj(0) and ŷj(0)= yj(0). This completes the proof of

Theorem 2.2.

Corollary 2.3. Under the hypotheses of Theorem 2.2,

[
xj
yj

]
= κ1t
D−1ξ2

0+Dη2
0

Lt

([
−Dη0

D−1ξ0

])
+O(1). (2.11)
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Proof. This follows trivially from (2.2), (2.3), and (2.5).

From Corollary 2.3, along with (1.4) and the interpretation of Lt given in Section 1,

it follows that, when κ = 0, the two vortices move in a spiral around and away from

the origin. More precisely, each vortex stays a bounded distance from a moving point

which behaves as follows:

(a) it moves counterclockwise around the origin with period 2π/
√
αβ;

(b) it lies, at time t, on the ellipse

x2

α
+ y

2

β
= (κ1t

)2
(
D2η2

0/α+D−2ξ2
0/β

)
(
D−1ξ2

0+Dη2
0

)2 . (2.12)

3. Relative motion

3.1. The case α= β. The following theorem is a direct consequence of (1.16).

Theorem 3.1. Fix real numbers α, β, and κ such that α= β > 0, and consider a pair

of vortices whose positions satisfy equations (1.7), (1.8), (1.9), (1.10), and (1.11). The line

segment joining the two vortices has constant length and rotates with constant, possibly

zero, angular velocity κr−2
0 +α, where r0 is the segment’s length.

3.2. The case κ = 0. From the proof of Theorem 2.2 (see (2.7) and (2.8)) we have

the following result.

Theorem 3.2. Fix real numbers α, β, κ1, and κ2 such that α ≥ β > 0 and κ =
κ1+κ2 = 0, and consider a pair of vortices whose positions satisfy equations (1.7), (1.8),

(1.9), (1.10), and (1.11). In (ξ,η)-coordinates (1.12), the second vortex moves around

the first, with period 2π/
√
αβ, on the ellipse ξ2/α+η2/β= ξ2

0/α+η2
0/β.

Theorems 3.1 and 3.2 agree in the case where α= β and κ = 0.

3.3. The case α> β, κ > 0. Our investigation of the motion when α> β and κ ≠ 0

depends on understanding the level curves of the Hamiltonian H in (1.17), which in

turn requires us to analyze the function

gw(r)= (α−β)−1[4r−2(κ logr +w)+α+β]. (3.1)

For κ > 0, the following lemma gives the information we need.

Lemma 3.3. Pick α, β, and κ, with α> β> 0 and κ > 0, and define gw(r) by (3.1). Set

r∗ = r∗(w)= e1/2−w/κ. (3.2)

Then,

(a) gw is increasing on (0,r∗]; limr→0+ gw(r)=−∞; gw(r) > 1 for r ≥ r∗;

(b) given a number u in [−1,1], the equation gw(r)=u has exactly one solution r
in (0,∞], namely, r = fw(u), where fw is the inverse function of the restriction

of gw(r) to the interval (0,r∗];
(c) 0< fw(u)≤ r∗ for all real w and all u in [−1,1];
(d) for each real w, and each fixed u in [−1,1], fw(u) is a decreasing function

of w;

(e) limw→∞fw(u)= 0 and limw→−∞fw(u)=+∞, uniformly for u in [−1,1].
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Proof. The first two statements in (a) are obvious; the third holds because (i) gw
is decreasing for r ≥ r∗, while (ii) limr→∞gw(r) > 1. Part (b) follows immediately from

(a), and (c) from (b).

To prove (d), we fix u in [−1,1] and pick real numbers z and w such that z < w.

Then fz(u) > fw(u); otherwise, since gw(r) is an increasing function of r ≤ r∗ for

fixed w, and an increasing function of w for fixed r , we would have

u= gz
(
fz(u)

)≤ gz(fw(u))< gw(fw(u))=u. (3.3)

The first limit in (e) is a consequence of (c) and (3.2). To establish the second limit,

we first calculate, using (3.1), that gw(3
√−w) → −∞ as w → −∞; thus, when w is a

sufficiently large negative, u > gw(3
√−w) for all u in [−1,1]. The second limit then

follows when we apply fw to this last inequality. This completes the proof of (e) and

of Lemma 3.3.

Theorem 3.4. Fix real numbersα,β, κ1, and κ2 such thatα> β> 0 and κ = κ1+κ2 >
0, and consider a pair of vortices whose positions satisfy (1.7), (1.8), (1.9), (1.10), and

(1.11). In (ξ,η)-coordinates, the second vortex moves around the first counterclockwise

in a simple closed curve, with period

T = 8
∫ π/2

0

dθ
2κ/

[
fw(cos2θ)

]2+(α+β)−(α−β)cos2θ
. (3.4)

The period T is a decreasing function of w such that T → 2π/
√
αβ as w → −∞, and

T → 0 as w →∞. The maximum separation r of the vortices occurs when θ = 0,π , and

the minimum when θ =π/2, 3π/2.

Proof. The identities sin2θ = (1−cos2θ)/2 and cos2θ = (1+cos2θ)/2 allow us

to rewrite (1.16b) and (1.17) as

dθ
dt

= κ
r 2
+ (α+β)

2
− [(α−β)cos2θ]

2
,

H =−κ logr − (α+β)r
2

4
+
[
(α−β)r 2 cos2θ

]
4

.
(3.5)

Using (3.1), the equation H(r ,θ) = w can be rewritten as gw(r) = cos2θ, or, by

Lemma 3.3(b), as

r = fw(cos2θ). (3.6)

The latter is a simple closed curve, symmetric with respect to the ξ- and η-axes, and

enclosing the origin. Each trajectory of (1.16) lies on a curve (3.6) for somew. By (3.5),

dθ
dt

>
(α+β)

2
− (α−β)

2
> 0, (3.7)

so the motion is counterclockwise. By (3.5) and (3.6), the period T is given by (3.4).

By (3.4), along with Lemma 3.3(d), (e), T is a decreasing function of w such that

T → 2π/
√
αβ as w →−∞, and T → 0 as w →∞. Finally, the statements about the sep-

aration of the vortices (which, by symmetry, need only be verified for θ in [0,π/2]),
follow from (1.16a) since the motion is counterclockwise. This completes the proof of

Theorem 3.4.
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Because fw is a decreasing function ofw, smaller values ofw correspond to larger

curves; that is, if z<w, then the curve r =fz(cos2θ) encloses the curve r =fw(cos2θ).
Thus a consequence of Theorem 3.4 is that, if two vortices are close to each other,

then their period of rotation around each other is what it would be if there were no

background flow, while, if the vortices are far apart, then that period is approximately

what it would be if the vortices did not affect each others’ motion.

3.4. The case α> β, κ < 0. The Hamiltonian H defined by (1.14) has maxima at the

points ±P , where, in (ξ,η) coordinates, P = (√−κ/β,0). Also, H has saddle points at

±Q, where Q = (0,√−κ/α). The points ±P and ±Q are the only stationary points of

the system (1.13). If the pair of vortices begin with relative position given by ±P or

±Q, then they maintain that relative position while their center of vorticity revolves

about the origin. The values of H at those points are

M ≡H(±P)= κ
[
1− log(−κ/β)]

2
>
κ
[
1− log(−κ/α)]

2
=H(±Q)≡ S, (3.8)

and the behavior of a trajectory lying on a level curve H =w depends on wherew lies

in relation to M and S. As in Section 3.3, we use the function gw of (3.1) to explore

that behavior. The following lemma gives the information we need; I omit the proof,

which is similar to that of Lemma 3.3.

Lemma 3.5. Pick α, β, and κ, with α> β > 0 and κ < 0; define gw(r), r∗, M , and S
by (3.1), (3.2), and (3.8). Then,

(a) gw is decreasing on (0,r∗] and increasing on [r∗,∞); limr→0+ gw(r) = +∞;

limr→∞gw(r) > 1;

(b) gw(r∗(w)) is an increasing function ofw such that (i) gM(r∗(M))= 1; (ii)−1<
gw(r∗(w)) < 1 if S <w <M ; (iii) gS(r∗(S))=−1; and (iv) gw(r∗(w)) <−1 if

w < S;

(c) given w < M and u in (g(r∗),1], the equation gw(r) = u has exactly two

solutions r in (0,∞], namely, r1 = fw(u) and r2 = hw(u), where fw and hw
are the inverse functions of the restrictions of gw(r) to the intervals (0,r∗]
and [r∗,∞); if u = g(r∗) then the equation has exactly one solution, namely

fw(u)= hw(u)= r∗;

(d) 0< fw(u) < r∗ and hw(u) > r∗ for all w <M and all u in (g(r∗),1];
(e) for each fixed u in [−1,1], fw(u) is an increasing function of w and hw(u) is

a decreasing function of w;

(f) limw→−∞fw(u)= 0 and limw→−∞hw(u)=∞.

The following definitions are helpful in describing the level curves of H. With ξ and

η given by (1.12), and polar coordinates r , θ given by (1.7) and (1.15), we define four

curves in the ξη-plane (see Figure 3.1):

C1 : r = fS(cos2θ), −π
2
< θ <

π
2

; C2 : r = hS(cos2θ), −π
2
< θ <

π
2

;

C3 : r = fS(cos2θ),
π
2
< θ <

3π
2

; C4 : r = hS(cos2θ), −π
2
< θ <

3π
2
.

(3.9)

We also define four open, connected sets: R1 is the inside of C1 ∪ C2 ∪ {Q,−Q},
excluding P ; R2 is the inside of C3 ∪ C4 ∪ {Q,−Q}, excluding −P ; R3 is the inside
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C4

−P 0 P

R2

−Q

R3

C3

Q

C1

R1

C2

R4

Figure 3.1

of C1∪C3∪{Q,−Q}, excluding the origin; and R4 is the outside of C2∪C4∪{Q,−Q}.
(The curve C1∪C2∪{Q,−Q} encloses P because fS(1) <

√−κ/β < hS(1) by (3.8) and

Lemma 3.5(a).) Then H(R1) = H(R2) = (S,M) and H(R2) = H(R3) = (−∞,S); this re-

sults from (3.8) along with (i) lim(ξ,η)→∞H(ξ,η)=−∞, (ii) H ≡ S on {Q,−Q}∪⋃4
i=1Ci,

and (iii) H has no critical points in
⋃4
i=1Ri.

By the Poincaré-Bendixson theorem and a corollary [2, Theorem, page 248 and Theo-

rem 3, page 252], each region Ri is a union of periodic orbits of (1.13). The following

theorem gives more detail.

Theorem 3.6. Fix real numbers α, β, κ1, and κ2 such that α > β > 0 and κ =
κ1+κ2 < 0, define M and S by (3.8), let H be given by (1.14), (1.15), (1.16), and (1.17),

and consider a pair of vortices whose positions satisfy (1.7), (1.8), (1.9), (1.10), and (1.11).

For those vortices, define ξ and η by (1.12), and put ξ0 = ξ(0) and η0 = η(0). Then:

(a) If (ξ0,η0) ∈ R1∪R2, then the line segment joining the vortices periodically rocks

from side to side in such a way that its maximum and minimum angels with the positive

ξ-direction are ±θ∗, where

θ∗ = 2−1 cos−1gw(r∗)= 2−1 cos−1 [(α−β)−1(2κe2w/κ−1+α+β)] (3.10)

and w =H(ξ0,η0). The period is

T = 4(α−β)−1
∫ hw(1)
fw(1)

r−1
{
1−[gw(r)]2}−1/2

dr. (3.11)

The maximum and minimum length of the segment occur at the two instants in the

cycle when the segment is horizontal.

(b) If (ξ0,η0)∈
⋃4
i=1Ci then, as t→∞, the line segment joining the vortices tends to

a vertical position. The segment’s length approaches
√−κ/α.

(c) If (ξ0,η0) ∈ R3∪R4 then, in (ξ,η)-coordinates, the second vortex moves around

the first in a simple closed curve.

If (ξ0,η0)∈ R3, then the motion is clockwise, with period

T =−8
∫ π/2

0

{
2κ[

fw(cos2θ)
]2 +(α+β)−(α−β)cos2θ

}
dθ. (3.12)

The period T is an increasing function of w such that T → 0 as w →−∞. (That is, the

period is small when the vortices are close to each other.) The maximum separation r
of the vortices occurs when θ =π/2, 3π/2, and the minimum when θ = 0,π .
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If (ξ0,η0)∈ R4, then the motion is counterclockwise, and the period is

T = 8
∫ π/2

0

{
2κ[

hw(cos2θ)
]2 +(α+β)−(α−β)cos2θ

}
dθ. (3.13)

The period T is an increasing function of w such that T → 2π/
√
αβ as w →−∞. (That

is, the period is close to the background flow period when the vortices are far apart.)

The maximum separation r of the vortices occurs when θ = 0,π , and the minimum

when θ =π/2, 3π/2.

Proof. In proving (a), we can assume that (ξ0,η0) ∈ R1; this is because (1.13) is

unchanged when ξ and η are replaced by −ξ and −η. Then (ξ(t),η(t))∈ R1 for all t.
The trajectory is contained in a level set H =w such that S <w <M . As in the proof

of Theorem 3.4, the equation H = w can be written in the form gw(r) = cos2θ. By

Lemma 3.5(a), (b), and (c), this last equation has solutions r if and only if

cos2θ ≥ gw
(
r∗
)
. (3.14)

Since R1 ⊂ {−π/2< θ <π/2}, the solutions are

r = fw(cos2θ), r = hw(cos2θ), where θ ∈ [−θ∗,θ∗]. (3.15)

Equations (3.15) together represent a simple closed curve; this is a consequence of

Lemma 3.5(d) and the equation (from (3.10)) fw(cos2θ∗) = hw(cos2θ∗). Therefore

the motion is periodic, with the maximum and minimum values of θ stated in part (a)

of Theorem 3.6. To verify the formula (3.11) for the period, we first rewrite (1.16a),

for θ in [0,θ∗], as

dr
dt

=−2−1(α−β)r
√

1−[gw(r)]2. (3.16)

We then define Tf and Th to be the amounts of time spent by the second vortex in

the parts of the upper half-plane {η > 0} where r < r∗ and r > r∗, respectively. After

separating variables in (3.16), we find that

Tf =
2

α−β
∫ r∗
fw(1)

dr

r
√

1−[gw(r)]2 , Th = 2
α−β

∫ hw(1)
r∗

dr

r
√

1−[gw(r)]2 , (3.17)

which yields (3.11). Finally, by (3.15) and Lemma 3.5(a), the smallest and largest values

of r are, respectively, fw(1) and hw(1); these occur when θ = 0. Thus the minimum

and maximum separations of the vortices occur when the segment joining them is

horizontal, and the proof of (a) is complete.

Part (b) is clear since the boundary of each curve Ci is {Q,−Q}.
We prove (c) only in the case where (ξ0,η0) ∈ R3; the proof for (ξ0,η0) in R4 is

similar. Put w = H(ξ0,η0). Then, since w < S, it follows from Lemma 3.5(b), (c) that

the level set H =w consists of two disjoint simple closed curves r = fw(cos2θ) and

r = hw(cos2θ). By Lemma 3.5(d), the former is the one that lies inR3. By Lemma 3.5(a),

dr/dθ > 0 on the part of that curve in the first quadrant. But dr/dt < 0 there by

(1.16a), so the motion is clockwise. The statements about the vortices’ separation, and
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the formula (3.12) for the period, are established as in the proofs of the corresponding

facts in Theorem 3.4. The period T is an increasing function of w such that T → 0

as w →−∞ by (3.12) and Lemma 3.5(e), (f). This completes the proof of Theorem 3.6.

Under the hypotheses of Theorem 3.6, the solutions of the linearization of (1.13)

about P = (√−κ/β,0) have period 2π/
√

2β(α−β). The following statements are prob-

ably true, but we have been unable to prove them: (i) ifw ∈ (S,M), then the period T is

a decreasing function of w such that limw→M− T = 2π/
√

2β(α−β); (ii) limw→S T =∞.
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