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A MATHEMATICAL ANALYSIS OF THERMAL EXPLOSIONS
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Abstract. This paper is devoted to the study of semilinear degenerate elliptic boundary
value problems arising in combustion theory which obey the simple Arrhenius rate law and
a general Newton law of heat exchange. We prove that ignition and extinction phenomena
occur in the stable steady temperature profile at some critical values of a dimensionless
rate of heat production.
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1. Introduction and main results. In a reacting material undergoing an exothermic

reaction in which reactant consumption is neglected, heat is being produced in accor-

dance with Arrhenius rate law and Newtonian cooling. Thermal explosions occur when

the reactions produce heat too rapidly for a stable balance between heat production

and heat loss to be preserved. In this paper, we are concerned with the localization of

the values of a dimensionless heat evolution rate at which such critical phenomena as

ignition and extinction occur. For detailed studies of thermal explosions, the reader

might be referred to Aris [3, 4], Bebernes-Eberly [5], Boddington-Gray-Wake [6], and

Warnatz-Maas-Dibble [22].

Let D be a bounded domain of Euclidean space RN , N ≥ 2, with smooth bound-

ary ∂D; its closure D = D∪∂D is an N-dimensional, compact smooth manifold with

boundary. We let

Au(x)=−
N∑
i=1

∂
∂xi

( N∑
j=1

aij(x)
∂u
∂xi

(x)
)
+c(x)u(x) (1.1)

be a second-order, elliptic differential operator with real coefficients such that:

(1) aij(x) ∈ C∞(D) with aij(x) = aji(x), 1 ≤ i, j ≤ N , and there exists a constant

a0 > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ a0|ξ|2, x ∈D, ξ ∈RN. (1.2)

(2) c(x)∈ C∞(D) and c(x) > 0 in D.

In this paper, we consider the following semilinear elliptic boundary value problem

stimulated by a small fuel loss steady-state model in combustion theory:

Au= λexp
[

u
1+εu

]
in D, Bu= a(x′)∂u

∂ν
+(1−a(x′))u= 0 on ∂D. (1.3)
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Here:

(1) λ and ε are positive parameters.

(2) a(x′)∈ C∞(∂D) and 0≤ a(x′)≤ 1 on ∂D.

(3) ∂/∂ν is the conormal derivative associated with the operator A

∂
∂ν

=
N∑

i,j=1

aij
(
x′
)
nj

∂
∂xi

, (1.4)

where n = (n1,n2, . . . ,nN) is the unit exterior normal to the boundary ∂D (see

Figure 1.1).

The nonlinear term

f(t) := exp
[

t
1+εt

]
(1.5)

describes the temperature dependence of reaction rate for exothermic reactions obey-

ing the simple Arrhenius rate law in circumstances in which heat flow is purely con-

ductive, and the parameter ε is a dimensionless inverse measure of the Arrhenius

activation energy or a dimensionless ambient temperature. The equation

Au= λexp
[

u
1+εu

]
= λf(u) in D (1.6)

represents heat balance with reactant consumption ignored, where the function u is

a dimensionless temperature excess of a combustible material and the parameter λ,

called the Frank-Kamenetskii parameter, is a dimensionless rate of heat production.

On the other hand, the boundary condition

Bu= a(x′)∂u
∂n
+(1−a(x′))u= 0 on ∂D (1.7)

represents the exchange of heat at the surface of the reactant by Newtonian cooling.

Moreover the boundary condition Bu is called the isothermal condition (or Dirichlet

condition) if a(x′) ≡ 0 on ∂D, and is called the adiabatic condition (or Neumann

condition) if a(x′)≡ 1 on ∂D. It should be emphasized that problem (1.3) becomes a

degenerate boundary value problem from an analytical point of view. This is due to

the fact that the so-called Shapiro-Lopatinskii complementary condition is violated at

the points x′ ∈ ∂D where a(x′) = 0. In the non-degenerate case or one-dimensional

case, problem (1.3) has been studied by many authors (see Brown-Ibrahim-Shivaji [7],
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Cohen [8], Cohen-Laetsch [9], Parter [15], Tam [21], Wiebers [23, 24], and Williams-

Leggett [25]).

A function u(x) ∈ C2(D) is called a solution of problem (1.3) if it satisfies the

equation Au−λf(u)= 0 in D and the boundary condition Bu= 0 on ∂D. A solution

u(x) is said to be positive if it is positive everywhere in D.

This paper is devoted to the study of the existence of positive solutions of problem

(1.3), and is an expanded and revised version of the previous paper Taira-Umezu [20].

First it follows from an application of Taira-Umezu [19, Theorem 1] that problem (1.3)

has at least one positive solution u(λ) ∈ C2(D) for each λ > 0. Furthermore, by [18,

Example 7] we know that problem (1.3) has a unique positive solution u(λ) ∈ C2(D)
for each λ > 0 if ε ≥ 1/4. In other words, if the activation energy is so low that the

parameter ε exceeds the value 1/4, then only a smooth progression of reaction rate

with imposed ambient temperature can occur; such a reaction may be very rapid but it

is only accelerating and lacks the discontinuous change associated with criticality and

ignition. The situation may be represented schematically by Figure 1.2 (cf. Boddington-

Gray-Wake [6, Figure 6]).

The purpose of this paper is to study the case where 0 < ε < 1/4. Our main result

gives sufficient conditions for problem (1.3) to have three positive solutions, which

suggests that the bifurcation curve of problem (1.3) is S-shaped (see Figure 1.4).

First, to state our multiplicity theorem for problem (1.3) we introduce a function

ν(t) := t
f (t)

= t
exp

[
t/(1+εt)] , t ≥ 0. (1.8)

It is easy to see (see Figure 1.3) that if 0< ε < 1/4, then the function ν(t) has a unique

local maximum at t = t1(ε)

t1(ε)= 1−2ε−√1−4ε
2ε2

, (1.9)

and has a unique local minimum at t = t2(ε)

t2(ε)= 1−2ε+√1−4ε
2ε2

. (1.10)
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Wiebers [23, 24] proved a rigorous qualitative connection between the positive solu-

tion set of problem (1.3) and the solution set of the so-called Semenov approximation

λ= ν(t), λ > 0.

On the other hand, let φ(x) ∈ C∞(D) be the unique positive solution of the linear

boundary value problem

Aφ= 1 in D, Bφ= 0 on ∂D, (1.11)

and let

‖φ‖∞ =max
D
φ(x). (1.12)

Now we can state our multiplicity theorem for problem (1.3).

Theorem 1.1. There exists a constant β > 0, independent of ε, such that if

0< ε < 1/4 is so small that

ν
(
t2(ε)

)
β

<
ν
(
t1(ε)

)
‖φ‖∞

, (1.13)

then problem (1.3) has at least three distinct positive solutions u1(λ), u2(λ), u3(λ) for

all λ satisfying the condition

ν
(
t2(ε)

)
β

< λ<
ν
(
t1(ε)

)
‖φ‖∞

. (1.14)

It should be noticed that, as ε ↓ 0, the local maximum ν(t1(ε)) and the local mini-

mum ν(t2(ε)) behave, respectively, as follows:

ν
(
t1(ε)

)∼ exp
[ −1

1+ε
]
, ν

(
t2(ε)

)∼ 1
ε2

exp
[ −1
ε+ε2

]
. (1.15)

This implies that condition (1.13) makes sense.

Theorem 1.1 is a generalization of Wiebers [23, Theorem 4.3] and [24, Theorem 3.1]

to the degenerate case. The situation may be represented schematically by Figure 1.4

(cf. Boddington-Gray-Wake [6, Figure 6]).

Secondly, we state two existence and uniqueness theorems for problem (1.3). Let

λ1 be the first eigenvalue of the linear eigenvalue problem

Au= λu in D, Bu= 0 on ∂D. (1.16)
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The next two theorems assert that problem (1.3) is uniquely solvable for λ suffi-

ciently small and sufficiently large if 0< ε < 1/4 (see Figures 1.5 and 1.6).
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Theorem 1.2. Let 0< ε < 1/4. If the parameter λ is so small that

0< λ<
λ1 exp

[
(2ε−1)/ε

]
4ε2

, (1.17)

then problem (1.3) has a unique positive solution u(λ)∈ C2(D).

Theorem 1.3. Let 0< ε < 1/4. There exists a constant Λ> 0, independent of ε, such

that if the parameter λ is so large that λ >Λ, then problem (1.3) has a unique positive

solution u(λ)∈ C2(D).

Theorems 1.2 and 1.3 are generalizations of Wiebers [23, Theorems 2.6 and 2.9] to

the degenerate case, respectively, although we only treat the nonlinear term f(t) =
exp[t/(1+εt)].

Moreover, if φ(x) is the unique positive solution of problem (1.11), then we can

prove the following asymptotic behavior of positive solutions of problem (1.3) as λ ↓ 0

and as λ ↑ ∞, for any 0< ε < 1/4.

Theorem 1.4. Let 0< ε < 1/4, and let u(λ)∈ C2(D) be the unique positive solution

of problem (1.3) for λ sufficiently small or for λ sufficiently large as in Theorems 1.2

and 1.3. Then the following asymptotics hold:

u(λ)∼ λφ(x) as λ ↓ 0, u(λ)∼ λe1/εφ(x) as λ ↑ ∞. (1.18)

More precisely,

u(λ)
λ

�→φ(x) in C1(D) as λ ↓ 0, (1.19)

u(λ)
λ

�→ e1/εφ(x) in C1(D) as λ ↑ ∞. (1.20)

By virtue of Theorems 1.1, 1.2, and 1.3, we can define two positive numbers µI and

µE by the formulas

µI = inf
{
µ > 0 : problem (1.3) is uniquely solvable for each λ > µ

}
,

µE = sup
{
µ > 0 : problem (1.3) is uniquely solvable for each 0< λ< µ

}
.

(1.21)

Then certain physical conclusions may be drawn (cf. [5, 22]). If the system is in a

state corresponding to a point on the lower branch and if λ is slowly increased, then

the solution can be expected to change smoothly until the point µI is reached. Rapid

transition to the upper branch will then presumably occur, corresponding to ignition.

A subsequent slow decrease in λ is likewise anticipated to produce a smooth decrease

in burning rate until extinction occurs at the point µE . In other words, the minimal

positive solution u(λ) is continuous for λ > µI but is not continuous at λ= µI , while

the maximal positive solution u(λ) is continuous for 0< λ< µE but is not continuous

at λ = µE . The situation may be represented schematically by Figures 1.5 and 1.6 (cf.

Boddington-Gray-Wake [6, Figure 6]).

By the maximum principle and the boundary point lemma, we can obtain from the

variational formula (4.5) that the first eigenvalue λ1 = λ1(a) of problem (1.16) satisfies

the inequalities

λ1(1) < λ1(a) < λ1(0). (1.22)
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Moreover, it follows that the unique solution φ=φ(a) of problem (1.11) satisfies the

inequalities

φ(0) < φ(a) <φ(1) in D, (1.23)

so that,

1∥∥φ(1)∥∥∞ < 1∥∥φ(a)∥∥∞ < 1∥∥φ(0)∥∥∞ . (1.24)

On the other hand, we find from formula (3.29) that the critical value β = β(a) in

Theorem 1.1 satisfies the inequalities

1
β(1)

≤ 1
β(a)

≤ 1
β(0)

, (1.25)

and further from formulas (5.54) and (5.63) that the critical valueΛ=Λ(a) in Theorem

1.3 depends essentially on the first eigenvalue λ1 = λ1(a).
Therefore, we can conclude that the extinction phenomenon in the isothermal con-

dition case occurs at the largest critical value µE(0), while the extinction phenomenon

in the adiabatic condition case occurs at the smallest critical value µE(1). Similarly, we

find that ignition phenomenon in the adiabatic condition case occurs at the smallest

critical value µI(1), while the ignition phenomenon in the isothermal condition case

occurs at the largest critical value µI(0).

Remark 1.5. Minamoto-Yamamoto-Nakao [14] studied the case whereD is the unit

ball in R3 under the Dirichlet condition a(x′) ≡ 0 on ∂D. The following numerical

analysis of the critical value µI(0) is due to them (cf. [15, 24]):

ε µI(0)
0.01 3.359

0.02 3.399

0.05 3.526

0.20 4.510

The rest of this paper is organized as follows. In Section 2 we collect the basic

definitions and notions about the theory of positive mappings in ordered Banach

spaces. This section is adapted from Amann [2]. Section 3 is devoted to the proof

of Theorem 1.1. We reduce the study of problem (1.3) to the study of a nonlinear op-

erator equation in an appropriate order Banach space just as in Taira-Umezu [20]. The

methods developed here are based on a multiple positive fixed point technique formu-

lated by Leggett-Williams [13] (see Lemma 3.2). This technique is intended to reduce

the usually difficult task of establishing the existence of multiple positive solutions of

problem (1.3) to the verification of a few elementary conditions on the nonlinear term

f(u) and the resolvent K, just as in Wiebers [23, Theorem 4.3]. In Section 4 we make

use of a variational formula (4.5) to prove Theorem 1.2, since the linear operator U as-

sociated with the eigenvalue problem (1.16) is selfadjoint in the Hilbert space L2(D).
In Section 5 the proof of Theorem 1.3 may be carried out by adapting the proof of

Wiebers [23, Theorems 2.6 and 2.9] to the degenerate case. In particular, we establish
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an a priori estimate for all positive solutions of problem (1.3) (see Proposition 5.1)

which plays an important role in the proof of Theorem 1.3. The final Section 6 is de-

voted to the proof of Theorem 1.4. Our proof of Theorem 1.4 is inspired by Dancer

[10, Theorem 1].

2. Ordered Banach spaces and the fixed point index. One of the most important

tools in nonlinear functional analysis is the Leray-Schauder degree of a compact per-

turbation of the identity mapping of a Banach spaces into itself. In connection with

nonlinear mappings in ordered Banach spaces, it is natural to consider mappings de-

fined on open subsets of the positive cone. Since the positive cone is a retract of the

Banach space, one can define a fixed point index for compact mappings on the positive

cone as is shown in Amann [2, Section 11].

2.1. Ordered Banach spaces. Let X be a nonempty set. An ordering ≤ in X is a

relation in X that is reflexive, transitive and antisymmetric. A nonempty set together

with an ordering is called an ordered set.

Let V be a real vector space. An ordering ≤ in V is said to be linear if the following

two conditions are satisfied:

(i) If x,y ∈ V and x ≤y , then we have x+z ≤y+z for all z ∈ V .

(ii) If x,y ∈ V and x ≤y , then we have αx ≤αy for all α≥ 0.

A real vector space together with a linear ordering is called an ordered vector space.

If x,y ∈ V and x ≤ y , then the set [x,y] = {z ∈ X : x ≤ z ≤ y} is called an order

interval.

If we let

Q= {x ∈ V : x ≥ 0}, (2.1)

then it is easy to verify that the set Q has the following two conditions:

(iii) If x,y ∈Q, then αx+βy ∈Q for all α,β≥ 0.

(iv) If x ≠ 0, then at least one of x and −x does not belong to Q.

The set Q is called the positive cone of the ordering ≤.

Let E be a Banach space with a linear ordering ≤. The Banach space E is called an

ordered Banach space if the positive cone Q is closed in E. It is to be expected that

the topology and the ordering of an ordered Banach space are closely related if the

norm is monotone: if 0≤u≤ v , then ‖u‖ ≤ ‖v‖.

2.2. Retracts and retractions. Let X be a metric space. A nonempty subset A of

X is called a retract of X if there exists a continuous map r : X → A such that the

restriction r |A to A is the identity map. The map r is called a retraction.

The next theorem, due to Dugundji [11, 12], gives a sufficient condition in order

that a subset of a Banach space be a retract.

Theorem 2.1. Every nonempty closed convex subset of a Banach space E is a re-

tract of E.

2.3. The fixed point index. Let E and F be Banach spaces, and let A be a nonempty

subset of E. A map f : A→ F is said to be compact if it is continuous and the image

f(A) is relatively compact in F .
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Theorem 2.1 tells us that the positive cone Q is a retract of the Banach space E.

Therefore one can define a fixed point index for compact mappings defined on the

positive cone; more precisely, the next theorem asserts that one can define a fixed

point index for compact maps on closed subsets of a retract of E.

Theorem 2.2. Let E be a Banach space and let X be a retract of E. If U is an open

subset of X and if f :U →X is a compact map such that f(x)≠ x for all x ∈ ∂U , then

define an integer i(f ,U,X) satisfying the following four conditions:

(i) (Normalization): for every constant map f :U →U , we have

i(f ,U,X)= 1. (2.2)

(ii) (Additivity): for every pair (U1,U2) of disjoint open subsets ofU such that f(x)≠
x for all x ∈U\(U1∪U2), we have

i(f ,U,X)= i(f |U1
,U1,X

)+i(f |U2
,U2,X

)
. (2.3)

(iii) (Homotopy invariance): for every bounded, closed interval Λ and every compact

map h :Λ×U →X such that h(λ,x)≠ x for all (λ,x)∈Λ×∂U , the integer

i
(
h(λ,·),U,X) (2.4)

is well defined and independent of λ∈Λ.

(iv) (Permanence): if Y is a retract of X and f(U)⊂ Y , then we have

i(f ,U,X)= i(f |U∩Y ,U∩Y ,Y ). (2.5)

The integer i(f ,U,X) is called the fixed point index of f over U with respect to X.

In fact, the integer i(f ,U,X) is defined by the formula

i(f ,U,X)= deg
(
I−f ◦r ,r−1(U),0

)
, (2.6)

where r : E → X is an arbitrary retraction and deg(I −f ◦ r ,r−1(U),0) is the Leray-

Schauder degree with respect to zero of the map I−f ◦r defined on the closure of

the open subset r−1(U) (see Figure 2.1).

The fixed point index enjoys further important and useful properties.

Corollary 2.3. Let E be a Banach space and let X be a retract of E. If U is an open

subset of X and if f :U →X is a compact map such that f(x)≠ x for all x ∈ ∂U , then

the fixed point index i(f ,U,X) has the following two properties:

(v) (Excision): for every open subset V ⊂ U such that f(x) ≠ x for all x ∈ U\V ,

we have

i(f ,U,X)= i(f |V ,V ,X). (2.7)

(vi) (Solution property): if i(f ,U,X)≠ 0, then the map f has at least one fixed point

in U .
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3. Proof of Theorem 1.1. This section is devoted to the proof of Theorem 1.1. First

we transpose the nonlinear problem (1.3) into an equivalent fixed point equation for

the resolvent K in an appropriate ordered Banach space, just as in Taira-Umez [20].

To do this, we consider the following linearized problem: for any given function

g ∈ Lp(D), find a function u in D such that

Au= g in D, Bu= 0 on ∂D. (3.1)

Then we have the following existence and uniqueness theorem for problem (3.1) in

the framework of Lp spaces (see [17, Theorem 1]).

Theorem 3.1. Let 1<p <∞. Then the mapping

� :W 2,p
B (D) �→ Lp(D), u � �→Au (3.2)

is an algebraic and topological isomorphism. Here W 2,p(D) is the usual Sobolev space

of Lp style and

W 2,p
B (D)= {u∈W 2,p(D) : Bu= 0 on ∂D

}
. (3.3)

(I) By Theorem 3.1, we can introduce a continuous linear operator

K : Lp(D) �→W 2,p
B (D) (3.4)

as follows: for any g ∈ Lp(D), the function u = Kg ∈W 2,p(D) is the unique solution

of problem (3.1). Then, by the Ascoli-Arzelà theorem we find that the operator K,

considered as

K : C
(
D
)
�→ C1(D), (3.5)

is compact. Indeed it follows from an application of Sobolev’s imbedding theorem that

W 2,p(D) is continuously imbedded into C2−N/p(D) for all N <p <∞.

For u,v ∈ C(D), we write u � v if u(x) ≥ v(x) in D. Then the space C(D) is an

ordered Banach space with the linear ordering �, and with the positive cone

P = {u∈ C(D) :u� 0
}
. (3.6)
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For u,v ∈ C(D), the notation u� v means that u−v ∈ P\{0}. Then it follows from an

application of the maximum principle (cf. [16]) that the resolvent K is strictly positive,

that is, Kg is positive everywhere in D if g � 0 (see [18, Lemma 2.7]). Moreover it

is easy to verify that a function u(x) is a solution of problem (1.3) if and only if it

satisfies the nonlinear operator equation

u= λK(f(u)) in C
(
D
)
. (3.7)

(II) The proof of Theorem 1.1 is based on the following result on multiple posi-

tive fixed points of nonlinear operators on ordered Banach spaces essentially due to

Leggett-Williams [13] (cf. Wiebers [23, Lemma 4.4]).

Lemma 3.2. Let (X,Q,�) be an ordered Banach space such that the positive cone

Q has nonempty interior. Moreover, let η : Q → [0,∞) be a continuous and concave

functional and let G be a compact mapping of Qτ := {w ∈ Q : ‖w‖ ≤ τ} into Q for

some constant τ > 0 such that

∥∥G(w)∥∥< τ ∀w ∈Qτ satisfying ‖w‖ = τ. (3.8)

Assume that there exist constants 0< δ< τ and σ > 0 such that the set

W := {w ∈
◦
Qτ : η(w) > σ

}
(3.9)

is nonempty, where
◦
A denotes the interior of a subset A of Q, and that

∥∥G(w)∥∥< δ ∀w ∈Qδ satisfying ‖w‖ = δ, (3.10)

η(w) < σ ∀w ∈Qδ, (3.11)

η
(
G(w)

)
>σ ∀w ∈Qτ satisfying η(w)= σ. (3.12)

Then the mapping G has at least three distinct fixed points.

Proof. Let i(G,U,Q) denote the fixed point index of the mapping G(·) over an

open subset U with respect to the positive cone Q as is stated in Theorem 2.2.

We let

G̃(w)= tG(w)+(1−t)·0= tG(w), 0≤ t ≤ 1. (3.13)

Then we have, by condition (3.8),

∥∥G̃(w)∥∥= t∥∥G(w)∥∥< τ ∀‖w‖ = τ. (3.14)

This implies that

w ≠ G̃(w) ∀w ∈ ∂
◦
Qτ. (3.15)

Therefore, by the homotopy invariance (iii) and the normalization (i) of the index we

obtain that

i
(
G,

◦
Qτ,Q

)= i(0, ◦Qτ,Q
)= 1. (3.16)
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Similarly, by condition (3.10) it follows that

i
(
G,

◦
Qδ,Q

)= 1. (3.17)

Next we show that

i(G,W,Q)= 1. (3.18)

By the continuity of η we find that the set W is open, so that the index i(G,W,Q) is

well defined. Moreover, by condition (3.9) one can choose a point w0 ∈W . We notice

that if w ∈ ∂W , then it follows that either ‖w‖ = τ or η(w)= σ .

(i) First, if ‖w‖ = τ , we let

Ĝ(w)= tG(w)+(1−t)w0, 0≤ t ≤ 1. (3.19)

Then we have, by condition (3.8),

∥∥Ĝ(w)∥∥≤ t∥∥G(w)∥∥+(1−t)∥∥w0

∥∥< τ. (3.20)

This implies that

w ≠ Ĝ(w) ∀‖w‖ = τ. (3.21)

(ii) Secondly, if η(w)= σ , it follows from condition (3.12) that

η
(
Ĝ(w)

)= η(tG(w)+(1−t)w0
)

≥ tη(G(w))+(1−t)η(w0
)

> tσ +(1−t)σ = σ,
(3.22)

since the functional η is concave. Hence we have

w ≠ Ĝ(w) ∀η(w)= σ. (3.23)

Summing up, we have proved that

w ≠ Ĝ(w) ∀w ∈ ∂W. (3.24)

Therefore, by the homotopy invariance (iii) and the normalization (i) of the index it

follows that

i(G,W,Q)= i(w0,W ,Q
)= 1. (3.25)

Now, if we let

U = {w ∈
◦
Qτ : η(w) < σ, ‖w‖> δ}, (3.26)

then we find from condition (3.11) that the sets
◦
Qδ, U , and W are disjoint (see

Figure 3.1).

Thus, by the additivity (ii) of the index it follows from assertions (3.16), (3.17), and

(3.18) that

i(G,U,Q)= i(G, ◦Qτ,Q
)−i(G, ◦Qδ,Q

)−i(G,W,Q)=−1. (3.27)
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Qδ

u1

u3

u2

Qτ
U

W

Figure 3.1

0 t1(ε) t2(ε) t1(ε)
t

ν(t)= t/f (t)

Figure 3.2

Therefore, by the solution property (vi) of the index we can find three distinct fixed

points u1,u2,u3 of G(·) such that

u1 ∈
◦
Qδ, u2 ∈W, u3 ∈U. (3.28)

The proof of Lemma 3.2 is now complete.

(III) End of proof of Theorem 1.1. The proof of Theorem 1.1 may be carried out just

as in the proof of Wiebers [23, Theorem 4.3].

Let � be the set of all subdomains Ω of D with smooth boundary such that

dist(Ω,∂D) > 0, and let

β= sup
Ω∈�

CΩ, CΩ = inf
x∈Ω

(
KχΩ

)
(x), (3.29)

where χΩ denotes the characteristic function of a set Ω. It is easy to see that the

constant β is positive, since the resolvent K of problem (3.1) is strictly positive.

Since limt→∞ν(t)= limt→∞ t/f (t)=∞, one can find a constant t1(ε) such that (see

Figure 3.2)

t1(ε)=min
{
t > t2(ε) : ν(t)= ν(t1(ε))}. (3.30)

It should be noticed that

t1(ε) < t2(ε) < t1(ε), (3.31)
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and that

ν
(
t1(ε)

)= ν(t1(ε)
)= t1(ε)

f
(
t1(ε)

) . (3.32)

Now we apply Lemma 3.2 with

X := C(D), Q := P = {u∈ C(D) :u� 0
}
,

G(·) := λK(f(·)), δ := t1(ε), σ := t2(ε), τ := t1(ε).
(3.33)

To do this, it suffices to verify that conditions of Lemma 3.2 are fulfilled for all λ
satisfying condition (1.14).

(III-a) If t > 0, we let

P(t)= {u∈ P : ‖u‖∞ ≤ t
}
. (3.34)

If u ∈ P(t1(ε)) and ‖u‖∞ = t1(ε) and if φ(x) = K1(x) is the unique solution of

problem (1.11), then it follows from condition (1.14) and formula (3.32) that

∥∥λK(f(u))∥∥∞ < ν
(
t1(ε)

)
‖φ‖∞

∥∥K(f(u))∥∥∞
≤ ν

(
t1(ε)

)
‖φ‖∞

f
(
t1(ε)

)‖K1‖∞

= ν(t1(ε))f (t1(ε)
)= t1(ε),

(3.35)

since f(t) is increasing for all t ≥ 0. This proves that the mapping λK(f(·)) satisfies

condition (3.8) with Qτ := P(t1(ε)).
Similarly, one can verify that if u∈ P(t1(ε)) and ‖u‖∞ = t1(ε), then we have

∥∥λK(f(u))∥∥∞ < t1(ε). (3.36)

This proves that the mapping λK(f(·)) satisfies condition (3.10) with Qδ := P(t1(ε)).
(III-b) If Ω ∈�, we let

η(u)= inf
x∈Ω

u(x). (3.37)

Then it is easy to see thatη is a continuous and concave functional of P . Ifu∈ P(t1(ε)),
then we have

η(u)≤ ‖u‖∞ ≤ t1(ε) < t2(ε). (3.38)

This verifies condition (3.11) for the functional η.

(III-c) If we let

W = {u∈ ◦
P
(
t1(ε)

)
: η(u) > t2(ε)

}
, (3.39)

then we find that

W ⊃
{
u∈ P :

t1(ε)
2

≤u< t1(ε) on D, η(u) > t2(ε)
}
≠∅, (3.40)

since t2(ε) < t1(ε). This verifies condition (3.9) for the functional η.
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(III-d) Now, since λ > ν(t2(ε))/β, by formula (3.29) one can find a subdomain Ω ∈�

such that

λ >
ν
(
t2(ε)

)
CΩ

. (3.41)

If u∈ P(t1(ε)) and η(u)= t2(ε), then we have

η
(
λK
(
f(u)

))= inf
x∈Ω

λK
(
f(u)

)
(x)

≥ inf
x∈Ω

λK
(
f(u)χΩ

)
(x)

>
ν
(
t2(ε)

)
CΩ

inf
x∈Ω

K
(
f(u)χΩ

)
(x).

(3.42)

However, since infΩu= η(u)= t2(ε) and f(t) is increasing for all t ≥ 0, it follows that

ν
(
t2(ε)

)
CΩ

inf
x∈Ω

K
(
f(u)χΩ

)
(x)≥ ν

(
t2(ε)

)
CΩ

inf
x∈Ω

K
(
f
(
t2(ε)

)
χΩ
)
(x)

= ν
(
t2(ε)

)
CΩ

f
(
t2(ε)

)
inf
x∈Ω

(
KχΩ

)
(x)

= ν(t2(ε))f (t2(ε))
= t2(ε).

(3.43)

Therefore, combining inequalities (3.42) and (3.43) we obtain that

η
(
λK
(
f(u)

))
> t2(ε). (3.44)

This verifies condition (3.12) for the mapping λK(f(·)).
The proof of Theorem 1.1 is now complete.

4. Proof of Theorem 1.2. We let

f(t)= exp
[

t
1+εt

]
, t ≥ 0. (4.1)

If u1 = u1(λ) and u2 = u2(λ) are two positive solutions of problem (1.3), then we

have, by the mean value theorem,

∫
D
A
(
u1−u2

)·(u1−u2
)
dx =

∫
D
λ
(
f
(
u1
)−f (u2

))(
u1−u2

)
dx

= λ
∫
D
G(x)

(
u1−u2

)2dx,
(4.2)

where

G(x)=
∫ 1

0
f ′
(
u2(x)+θ

(
u1(x)−u2(x)

))
dθ. (4.3)
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We will prove Theorem 1.2 by using a variant of variational method. To do this, we

introduce an unbounded linear operator U from the Hilbert space L2(D) into itself as

follows:

(a) The domain of definition D(U) of U is the space

D(U)= {u∈W 2,2(D) : Bu= 0
}
. (4.4)

(b) Uu=Au, u∈D(U).
Then it follows from [18, Theorem 2.6] that the operator U is a positive and selfad-

joint operator in L2(D), and has a compact resolvent. Hence we obtain that the first

eigenvalue λ1 of U is characterized by the following variational formula:

λ1 =min
{∫

D
Au(x)·u(x)dx :u∈W 2,2(D),

∫
D

∣∣u(x)∣∣2dx = 1, Bu= 0
}
. (4.5)

Thus it follows from formulas (4.2) and (4.5) that

λ1

∫
D

(
u1−u2

)2dx ≤
∫
D
A
(
u1−u2

)·(u1−u2
)
dx

= λ
∫
D
G(x)

(
u1−u2

)2dx

≤ λsupf ′(t)
∫
D

(
u1−u2

)2dx.

(4.6)

However, it is so easy to see that

supf ′(t)= f ′
(

1−2ε
2ε2

)
= 4ε2 exp

[
1−2ε
ε

]
. (4.7)

Hence, combining formula (4.7) with inequality (4.6) we obtain that

λ1

∫
D

(
u1−u2

)2dx ≤ 4λε2 exp
[

1−2ε
ε

]∫
D

(
u1−u2

)2dx. (4.8)

Therefore we find thatu1(x)≡u2(x) inD if the parameter λ is so small that condition

(1.17) is satisfied, that is, if we have

λ1−4λε2 exp
[

1−2ε
ε

]
> 0. (4.9)

The proof of Theorem 1.2 is complete.

5. Proof of Theorem 1.3. This section is devoted to the proof of Theorem 1.3. Our

proof of Theorem 1.3 is based on a method inspired by Wiebers [23, Theorems 2.6

and 2.9].

5.1. An a priori estimate. In this subsection, we will establish an a priori estimate

for all positive solutions of problem (1.3) which will play an important role in the

proof of Theorem 1.3.
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First we introduce another ordered Banach subspace of C(D) for the fixed point

equation (3.7) which combines the good properties of the resolvent K of problem

(3.1) with the good properties of natural ordering of C(D).
Let φ(x) = K1(x) be the unique solution of problem (1.11). Then it follows from

[18, Lemma 2.7] that the functionφ(x) belongs to C∞(D) and satisfies the conditions

φ(x)

> 0 if either x ∈D or x ∈ ∂D, a(x) > 0,

= 0 if x ∈ ∂D, a(x)= 0,

∂φ
∂ν
(x) < 0 if x ∈ ∂D, a(x)= 0.

(5.1)

By using the function φ(x), we can introduce a subspace of C(D) as follows:

Cφ
(
D
)

:= {u∈ C(D) : ∃ a constant c > 0 such that −cφ�u� cφ}. (5.2)

The space Cφ(D) is given a norm by the formula

‖u‖φ = inf
{
c > 0 :−cφ�u� cφ}. (5.3)

If we let

Pφ := Cφ
(
D
)∩P = {u∈ Cφ(D) :u� 0

}
, (5.4)

then it is easy to verify that the space Cφ(D) is an ordered Banach space having the

positive cone Pφ with nonempty interior. For u,v ∈ Cφ(D), the notation u� v means

that u−v is an interior point of Pφ. It follows from [18, Proposition 2.8] that K maps

Cφ(D) compactly into itself, and that K is strongly positive, that is, Kg � 0 for all

g ∈ Pφ\{0}.
It is easy to see that a function u(x) is a solution of problem (1.3) if and only if it

satisfies the nonlinear operator equation

u= λK(f(u)) in Cφ
(
D
)
. (5.5)

However we know from [18, Theorem 0] that the first eigenvalue λ1 of U is positive

and simple, with positive eigenfunction ϕ1(x):

Aϕ1 = λ1ϕ1 in D, ϕ1 > 0 in D, Bϕ1 = 0 on ∂D. (5.6)

Without loss of generality, one may assume that

max
D
ϕ1(x)= 1. (5.7)

We let

γ =min
{
f
(
t1(ε)

)
t1(ε)

: 0< ε <
1
4

}
. (5.8)

Here we remark that t1(ε)→ 1 as ε ↓ 0, so that the constant γ is positive.
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t1(ε) t2(ε) λε−2

f(t)/t

Figure 5.1

Then we have the following a priori estimate for all positive solutions u of problem

(1.3).

Proposition 5.1. There exists a constant 0 < ε0 ≤ 1/4 such that if λ > λ1/γ and

0< ε ≤ ε0, then for all positive solutions u of problem (1.3),

u� λε−2ϕ1. (5.9)

Proof. (i) Let c be a parameter satisfying 0< c < 1. Then

A
(
λcε−2ϕ1

)−λf (λcε−2ϕ1
)= λcε−2ϕ1

(
λ1−λf

(
λcε−2ϕ1

)
λcε−2ϕ1

)
in D. (5.10)

However, since we have (see Figure 5.1)

f(t)
t

�→ 0 as t �→∞, f (t)
t

�→∞ as t �→ 0, (5.11)

it follows that

f
(
λcε−2ϕ1

)
λcε−2ϕ1

≥min
{
f
(
t1(ε)

)
t1(ε)

,
f
(
λε−2

)
λε−2

}
in D. (5.12)

First we obtain from formula (5.8) that

λ1−λf
(
t1(ε)

)
t1(ε)

≤ λ1−λγ < 0 ∀λ > λ1

γ
, 0< ε <

1
4
. (5.13)

Secondly we have, for all λ > λ1/γ,

λ1−λf
(
λε−2

)
λε−2

= λ1−ε2 exp
[

1
ε+ε2/λ

]
≤ λ1−ε2 exp

[
1

ε+ε2γ/λ1

]
. (5.14)

However, one can find a constant ε0 ∈ (0,1/4] such that, for all 0< ε ≤ ε0,

λ1−ε2 exp
[

1
ε+ε2γ/λ1

]
< 0. (5.15)
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Hence it follows that

λ1−λf
(
λε−2

)
λε−2

< 0 ∀λ > λ1

γ
, 0< ε ≤ ε0. (5.16)

Therefore, combining inequalities (5.12), (5.13), and (5.16) we obtain that, for all

λ > λ1/γ and 0< ε ≤ ε0,

A
(
λcε−2ϕ1

)−λf (λcε−2ϕ1
)= λcε−2ϕ1

(
λ1−λf

(
λcε−2ϕ1

)
λcε−2ϕ1

)

≤ λcε−2ϕ1

(
λ1−λmin

{
f
(
t1(ε)

)
t1(ε)

,
f
(
λε−2

)
λε−2

})
< 0 in D,

(5.17)

so that

λf
(
λcε−2ϕ1

)
>A

(
λcε−2ϕ1

)
in D. (5.18)

By applying the resolvent K to the both sides, we have, for all λ > λ1/γ and 0< ε ≤ ε0,

λK
(
f
(
λcε−2ϕ1

))� λcε−2ϕ1. (5.19)

(ii) Now we need the following lemma (cf. Wiebers [23, Lemma 1.3]).

Lemma 5.2. If there exist a function ũ � 0 and a constant s0 > 0 such that

λK(f(sũ))� sũ for all 0≤ s < s0, then for each fixed pointu of the mappingλK(f(u)),

u� s0ũ. (5.20)

Proof. Assume to the contrary that there exists a fixed point u of λK(f(·)) with

u� s0ũ. Then we can choose a constant 0≤ s̃ < s0 such that

u− s̃ũ∈ ∂Pφ. (5.21)

However, since s̃ũ satisfies the condition

λK
(
f
(
s̃ũ
))� s̃ũ, (5.22)

it follows from condition (5.21) that

u= λK(f(u))� λK(f (s̃ũ))� s̃ũ, (5.23)

so that

u− s̃ũ∈ ◦
Pφ. (5.24)

This contradicts condition (5.21).

(iii) Since λK(f(0))� 0 and estimate (5.19) holds for all 0 < c < 1, it follows from

an application of Lemma 5.2 with ũ := λε−2ϕ1, s0 := 1, and s := c (and also (5.5)) that
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1

Figure 5.2

every positive solution u of problem (1.3) satisfies the estimate

u� λε−2ϕ1 ∀λ > λ1

γ
, 0< ε ≤ ε0. (5.25)

The proof of Proposition 5.1 is complete.

5.2. End of proof of Theorem 1.3. (I) First we introduce a function

F(t) := f(t)−f ′(t)t = ε
2t2+(2ε−1)t+1

(1+εt)2 exp
[

t
1+εt

]
, t ≥ 0. (5.26)

The next lemma summarizes some elementary properties of the function F(t).

Lemma 5.3. Let 0< ε < 1/4. Then the function F(t) has the properties

F(t)


> 0 if either 0≤ t < t1(ε) or t > t2(ε),

= 0 if t = t1(ε), t = t2(ε),
< 0 if t1(ε) < t < t2(ε).

(5.27)

Moreover, the function F(t) is decreasing in the interval (0,(1− 2ε)/2ε2) and is in-

creasing in the interval ((1−2ε)/2ε2,∞), and has a minimum at t = (1−2ε)/2ε2 (see

Figure 5.2).

(II) The next proposition is an essential step in the proof of Theorem 1.3 (cf. Amann

[1, Lemma 7.8]).

Proposition 5.4. Let 0 < ε < 1/4. Then there exists a constant α > 0, independent

of ε, such that for all u�αε−2ϕ1,

K
(
F(u)

)� 0. (5.28)

Proof. First, since t2(ε) < 2ε−2, it follows from Lemma 5.3 that

F(t)≥ F(2ε−2)> 0 ∀t ≥ 2ε−2. (5.29)
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We define two functions

z−(u)(x)=
−F

(
u(x)

)
if u(x)≥ 2ε−2,

0 if u(x) < 2ε−2,

z+(u)(x)= F
(
u(x)

)+z−(u)(x).
(5.30)

Moreover, we define two sets

M :=
{
x ∈D :ϕ1(x) >

1
2

}
, L := {x ∈D :u(x)≥ 2ε−2}. (5.31)

Then M ⊂ L for all u� 4ε−2ϕ1, and so

z−(u)≤−F
(
2ε−2)χL ≤−F(2ε−2)χM. (5.32)

By using Friedrichs’ mollifiers, we can construct a function v(x) ∈ C∞(D) such that

v � 0 and that

z−(u)≤−F
(
2ε−2)v ∀u� 4ε−2ϕ1. (5.33)

On the other hand, by Lemma 5.3 we remark that

min
{
F(t) : 0≤ t ≤ 2ε−2}= F(1−2ε

2ε2

)
< 0. (5.34)

Since we have

z+(u)(x)=
0 if x ∈ L,
F
(
u(x)

)
if x ∉ L,

(5.35)

it follows that

z+(u)≥ F
(

1−2ε
2ε2

)
χD\L. (5.36)

If α is a constant greater than 4, we define a set

Mα :=
{
x ∈D :ϕ1(x) <

2
α

}
. (5.37)

Then we have, for all u�αε−2ϕ1,

D\L= {x ∈D :u(x) < 2ε−2}⊂Mα, (5.38)

and hence

z+(u)≥ F
(

1−2ε
2ε2

)
χMα ∀u�αε−2ϕ1. (5.39)
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Thus, combining inequalities (5.33) and (5.39) we obtain that

K
(
F(u)

)=K(z+(u)−z−(u))
≥ F

(
1−2ε
2ε2

)
K
(
χMα

)+F(2ε−2)Kv ∀u�αε−2ϕ1.
(5.40)

However, by [18, estimate (2.11)] it follows that there exists a constant c0 > 0

such that

Kv � c0ϕ1. (5.41)

Furthermore, since χMα → 0 in Lp(D) as α→∞, it follows that K(χMα)→ 0 in C1(D)
and so K(χMα) → 0 in Cφ(D). Hence, for any positive integer k one can choose the

constant α so large that

K
(
χMα

)� c0

k
ϕ1. (5.42)

Thus, carrying inequalities (5.41) and (5.42) into the right-hand side of inequality

(5.40) we obtain that

K
(
F(u)

)=K(z+(u)−z−(u))
≥ F

(
1−2ε
2ε2

)
c0

k
ϕ1+F

(
2ε−2)c0ϕ1

= F(2ε−2)c0ϕ1

1+ F
(
(1−2ε)/2ε2

)
F
(
2ε−2

) 1
k

 ∀u�αε−2ϕ1.

(5.43)

However we have, as ε ↓ 0,

F
(
(1−2ε)/2ε2

)
F
(
2ε−2

) = (4ε−1)(ε+2)2

ε2+4ε+2
exp

[−2ε−3
ε+2

]
�→−2e−3/2. (5.44)

Therefore the desired inequality (5.28) follows from inequality (5.43) if we take the

positive integer k so large that

k >− min
0<ε<1/4

F
(
(1−2ε)/2ε2

)
F
(
2ε−2

) . (5.45)

The proof of Proposition 5.4 is complete.

(III) Proposition 5.4 implies the following important property of the nonlinear map-

ping K(f(·)) (cf. Wiebers [23, Lemma 2.2]).

Lemma 5.5. Let 0 < ε < 1/4 and let α be the same constant as in Proposition 5.4.

Then for all u�αε−2ϕ1 and all s > 1,

sK
(
f(u)

)�K
(
f(su)

)
. (5.46)
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Proof. By Taylor’s formula, it follows that

sK
(
f(u)

)−K(f(su))
= sK(f(u))−K(f(u))+K(f ′(u)(su−u)+o(‖su−u‖))
= (s−1)

(
K
(
F(u)

)− o(‖su−u‖)
s−1

)
.

(5.47)

However Proposition 5.4 tells us that there exists an element v̂ ∈ ◦
Pφ such that

K
(
F(u)

)� v̂ ∀u�αε−2ϕ1. (5.48)

Now let � be an arbitrary compact subset of αε−2ϕ1 + Pφ. Then, by combining

inequalities (5.47) and (5.48) one can find a constant s0 > 1 such that

sK
(
f(u)

)−K(f(su))� (s−1)
(
v̂− o

(‖su−u‖)
s−1

)
∀u∈�, ∀1< s ≤ s0. (5.49)

In particular, if s > 1 and u�αε−2ϕ1, we let

� := {σu : 1≤ σ ≤ s}, s := t. (5.50)

By inequality (5.49), we have, for all 1< t ≤ s0 and all 1≤ σ ≤ s,

tK
(
f(σu)

)�K(f(tσu)
)
. (5.51)

It should be noticed that, for given s > 1, there exist numbers 1< t1 ≤ t2 ≤ ··· ≤ tm ≤
s0 with

m∏
i=1

ti = s. (5.52)

Therefore, by using inequality (5.51) m-times we obtain that

K
(
f(su)

)=K(f( m∏
i=1

tiu
))

� t1K
(
f
( m∏
i=2

tiu
))
···�

m∏
i=1

tiK
(
f(u)

)
= sK(f(u)).

(5.53)

This proves Lemma 5.5.

(IV) If ε0 and α are the constants as in Propositions 5.1 and 5.4, respectively, then

we let

Λ1 :=max
{
λ1

γ
,α
}
. (5.54)

If u1 =u1(λ) and u2 =u2(λ) are two positive solutions of problem (1.3) with λ >Λ1

and 0<ε≤ε0, then combining Proposition 5.1 and Lemma 5.5 we find that, for all s>1,

sK
(
f
(
ui
))�K

(
f
(
sui

))
, i= 1,2, (5.55)



604 KAZUAKI TAIRA

so that

sui = sλK
(
f
(
ui
))� λK

(
f
(
sui

))
, i= 1,2. (5.56)

Therefore we obtain that u1 =u2, by applying the following lemma with ũ :=u1 and

u :=u2 and with ũ :=u2 and u :=u1 (see Wiebers [23, Lemma 1.3]).

Lemma 5.6. If there exists a function ũ� 0 such that sũ� λK(f(sũ)) for all s > 1,

then ũ�u for each fixed point u of the mapping λK(f(·)).

Proof. Assume to the contrary that there exists a fixed point u of λK(f(·)) with

ũ�u. Then we can choose a constant s̃ > 1 such that

s̃ũ−u∈ ∂Pφ. (5.57)

However, since s̃ũ satisfies the condition

s̃ũ� λK
(
f
(
s̃ũ
))
, (5.58)

it follows from condition (5.57) that

s̃ũ� λK
(
f
(
s̃ũ
))� λK(f(u))=u, (5.59)

so that

s̃ũ−u∈ ◦
Pφ. (5.60)

This contradicts condition (5.57).

(V) Finally it remains to consider the case where ε0 < ε < 1/4. If u(λ) is a positive

solution of problem (1.3), then

A
(
u(λ)− λ

λ1
ϕ1

)
= λf (u(λ))−λϕ1 ≥ λ

(
1−ϕ1

)≥ 0 in D. (5.61)

By the positivity of the resolvent K, it follows that

u(λ)� λ
λ1
ϕ1 � α

ε2
ϕ1 ∀λ≥ αλ1

ε2
. (5.62)

Therefore, just as in the case 0 < ε ≤ ε0, we can prove that the uniqueness result for

positive solutions of problem (1.3) holds true if we take the parameter λ so large that

λ≥Λ2 := αλ1

ε2
. (5.63)

Now the proof of Theorem 1.3 is complete if we take Λ=max{Λ1,Λ2}.

6. Proof of Theorem 1.4. Our proof is based on a method inspired by Dancer [10,

Theorem 1].

(I) First we prove assertion (1.19). Let u(λ) be the unique positive solution of

problem (1.3) for λ sufficiently small as in Theorem 1.2

0< λ<
λ1 exp

[(
2ε−1)

/
ε
]

4ε2
. (6.1)
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Let φ(x) = K1(x) be the unique positive solution of the linear eigenvalue problem

(1.11). Then it is easy to see that, for all λ > 0, the functions λφ(x) and λe1/εφ(x)
are a subsolution and a supersolution of problem (1.3), respectively. Indeed, since the

function

f(t)= exp
[

t
1+εt

]
(6.2)

is increasing for all t ≥ 0, and satisfies the condition

f(0)= 1< f(t) < f(∞)= e1/ε, t > 0. (6.3)

it follows that

A(λφ)= λ < λf(λφ) in D, B(λφ)= 0 on ∂D, (6.4)

and that

A
(
λe1/εφ

)= λe1/ε > λf
(
λe1/εφ

)
in D, B

(
λe1/εφ

)= 0 on ∂D. (6.5)

Hence, by applying the method of super-subsolutions (see [18, Theorem 2]) to our

situation one can find a solution v(λ)∈ C2(D) of problem (1.3) such that

λφ(x)≤ v(λ)(x)≤ λe1/εφ(x) on D. (6.6)

However, Theorems 1.2 and 1.3 tell us that problem (1.3) has a unique positive solution

u(λ)∈ C2(D) if λ is either sufficiently small or sufficiently large. Therefore it follows

from assertion (6.6) that v(λ) = u(λ) in D, and so we have, for λ sufficiently small

and sufficiently large,

λφ(x)≤u(λ)(x)≤ λe1/εφ(x) on D. (6.7)

By assertion (6.7), we have, for all x ∈D,

u(λ)(x) �→ 0 as λ ↓ 0. (6.8)

Hence, applying the Lebesgue convergence theorem we obtain from condition (6.3) that

f
(
u(λ)

)
�→ f(0)= 1 in Lp(D) as λ ↓ 0. (6.9)

On the other hand, it follows from Theorem 3.1 that the resolvent K maps Lp(D)
continuously into W 2,p(D).

Hence we have, by assertion (6.9),

u(λ)
λ

=Kf (u(λ)) �→K1=φ in W 2,p(D) as λ ↓ 0. (6.10)

By Sobolev’s imbedding theorem, this proves that

u(λ)
λ

�→φ in C1(D) as λ ↓ 0. (6.11)

Indeed, it suffices to note that W 2,p(D)⊂ C1(D) if we take p >N and so 2−N/p > 1.
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(II) Secondly we prove assertion (1.20). The proof is carried out in the same way as

in the proof of assertion (1.19).

Let u(λ) be the unique positive solution for λ sufficiently large as in Theorem 1.3

λ >Λ, Λ∼ ν
(
t1(ε)

)
‖φ‖∞

. (6.12)

Since we have, for all x ∈D,

φ(x) > 0, (6.13)

it follows from assertion (6.7) that, for all x ∈D,

u(λ)(x) �→∞ as λ ↑ ∞. (6.14)

Therefore, just as in step (I) we obtain assertion (6.3) that

u(λ)
λ

=Kf (u(λ)) �→Kf(∞)= e1/εφ in C1(D) as λ ↑ ∞. (6.15)

The proof of Theorem 1.4 is complete.
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