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BOUNDARY CONTROL PROBLEM WITH AN INFINITE
NUMBER OF VARIABLES
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Abstract. Using a previous result by Gali and El-Saify (1983) and the theory of Kotarski
(1989), and Lions (1971), we formulate the boundary control problem for a system gov-
erned by Neumann problem involving selfadjoint elliptic operator of 2�th order with an
infinite number of variables. The inequalities which characterize the optimal control in
terms of the adjoint system are obtained, it is studied in order to construct algorithms
attainable to numerical computations for the approximation of the control.

2000 Mathematics Subject Classification. 49J20, 93C20.

1. Functions spaces. This section covers the basic notations, definitions, and prop-

erties which are necessary to present this work.

Let (pk(t))∞k=1 be a sequence of weights, fixed in all that follows, such that

0<pk(t)∈ C∞
(
R1),

∫
R1
pk(t)dt = 1, (1.1)

with respect to it we introduce on the region R∞ =R1×R1×··· , the measure dρ(x)
by setting [1, 2, 3],

dρ(x)= p1
(
x1
)
dx1⊗p2

(
x2
)
dx2⊗··· ,

(
R∞ � x = (xk)∞k=1, xk ∈R1). (1.2)

On R∞ we construct the space L2(R∞,dρ(x)) with respect to this measure [3], that is,

L2(R∞,dρ(x)) is the space of quadratic integrable functions on R∞. We will often set

L2(R∞,dρ(x))= L2(R∞).
We next consider a Sobolev space in the case of an unbounded region. For functions

which are � = 1,2, . . . times continuously differentiable up to the boundary Γ of R∞

and which vanish in a neighborhood of ∞, we introduce the scalar product

(φ,ψ)W�(R∞) =
∑
|α|≤�

(
Dαφ,Dαψ

)
L2(R∞), (1.3)

where Dα is defined by

Dα = ∂|α|(
∂x1

)α1
(
∂x2

)α2 ··· , |α| =
∞∑
i=1

αi (1.4)

and the differentiation is in the sense of generalized function, and after the comple-

tion, we obtain the Sobolev space W�(R∞).
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As in the case of a bounded region, the spacesW�(R∞) form a sequence of positive

spaces. We can construct the negative spacesW−�(R∞) with respect to the zero space

W 0(R∞)= L2(R∞) and then we have the following equipped [1, 3],

W�(R∞)⊆ L2(R∞)=W 0(R∞)⊆W−�(R∞),
‖φ‖W�(R∞) ≥ ‖φ‖L2(R∞) ≥ ‖φ‖W−�(R∞).

(1.5)

As in [7] by using the Laplace-Beltrami operator (−∆Γ ) on Γ , we choose the scalar

product on the space H�−β−1/2(Γ), fractional order Sobolev spaces, as

(φ,ψ)H�−β−1/2(Γ) =
∫
Γ

(−∆Γ )�−β−1/2φ·ψdΓ . (1.6)

2. Facts and results. Let π(φ,ψ) be a continuous bilinear form which has the rep-

resentation

π(φ,ψ)= (Aφ,ψ)L2(R∞), A∈ L(W�(R∞),W−�(R∞)), φ,ψ∈W�(R∞), (2.1)

where A is a bounded selfadjoint elliptic operator of 2�th order with an infinite num-

ber of variables which takes the form, [2, 4, 8, 9],

(Aφ)(x)=
∑
|α|≤�

∞∑
k=1

(−1)|α|
1√

pk
(
xk
) ∂2α

∂x2α
k

(√
pk
(
xk
)
φ(x)

)
+q(x)φ(x)

=
∑
|α|≤�

∞∑
k=1

(−1)|α|
(
D2α
k φ

)
(x)+q(x)φ(x),

(2.2)

where

(
Dαkφ

)
(x)= 1√

pk
(
xk
) ∂α∂xαk

(√
pk
(
xk
)
φ(x)

)
, (2.3)

and the potential q(x) is a real-valued function from L2(R∞) such that q(x)≥ c0 > 0,

c0 is a constant [5].

The above bilinear form is coercive in W�(R∞) that means

π(φ,φ)≥ c‖φ‖2
W�(R∞), φ∈W�(R∞), c constant. (2.4)

Since

π(φ,φ)=
∑
|α|≤�

∞∑
k=1

(
Dαkφ,D

α
kφ
)
L2((R∞))+(qφ,φ)L2((R∞))

≥ ‖φ‖W�(R∞)+c0‖φ‖W�(R∞)
≥ c‖φ‖W�(R∞), 1≥ c > 0.

(2.5)

From the coerciveness condition (2.4) and using the Lax-Milgram lemma [6, 7] we

have the following lemma which define the Neumann problem for the operator A and

enables us to obtain the state of our control problem.
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Lemma 2.1. If (2.4) is satisfied then there exists a unique element y ∈W�(R∞) satis-

fying Neumann problem

Ay = f , in R∞,

∂βy
∂νβA

= h on Γ ,
(2.6)

where ∂βy/∂νβA =
∑
|β|≤�−1

∑∞
k=1(D

β
ky)cos(n,xk) on Γ , cos(n,xk) = kth direction co-

sine of n, n being the normal at Γ .

Proof. From the coerciveness condition and using the Lax-Milgram lemma [6]

there exists a unique y ∈W�(R∞) such that

π(y,ψ)= L(ψ) ∀ψ∈W�(R∞) (2.7)

which is known as the variational Neumann problem where L(ψ) is a continuous linear

form on W�(R∞) and take the form

L(ψ)=
∫
R∞
fψdρ(x)+

∫
Γ
hψdΓ , f ∈ L2(R∞), h∈H�−β−1/2(Γ). (2.8)

Equation (2.7) is equivalent to

Ay = f on R∞, (2.9)

multiplying both sides by ψ and applying Green’s formula, we have∫
R∞
(Ay)dρ(x)=

∫
R∞
fψdρ(x),

∫
R∞

∑
|α|≤�

∞∑
k=1

(−1)|α|
(
D2α
k y

)
ψdρ(x)+

∫
R∞
q ·yψdρ(x)=

∫
R∞
fψdρ(x),

∫
R∞

∑
|α|≤�

∞∑
k=1

(
Dαky

)(
Dαkψ

)
dρ(x)−

∫
Γ

∑
|β|≤�−1

∞∑
k=1

ψ
(
Dαky

)
cos

(
n,xk

)
dΓ

+
∫
R∞
q ·yψdρ(x)=

∫
R∞
φψdρ(x).

(2.10)

Then

π(y,ψ)−
∫
Γ

∑
|β|≤�−1

∞∑
k=1

ψ
(
Dβky

)
cos

(
n,xk

)
dΓ =

∫
R∞
fψdρ(x), (2.11)

since π(y,ψ)= L(ψ) we have

∫
Γ

(
h− ∂

βy
∂νβA

)
ψdΓ = 0, (2.12)

so

h= ∂
βy
∂νβA

on Γ . (2.13)



60 HUSSAIN A. El-SAIFY

3. Boundary control problem. The space U =H�−β−1/2(Γ) is the space of controls.

For every control u∈U , Bu∈W−�(R∞) is given by

(Bu,ψ)=
∫
Γ
uψdΓ , ψ∈W�(R∞). (3.1)

The state y(u)∈W�(R∞) of the system is given by the solution of

π
(
y(u),ψ

)= L(ψ)+(Bu,ψ) ∀ψ∈W�(R∞) (3.2)

which may be interpreted as Lemma 2.1 to

Ay(u)= f in R∞,

∂βy(u)
∂νβA

= h+u on Γ .
(3.3)

The observation z(u)=y(u) and the cost function J(v) is given by

J(v)=
∥∥y(v)−zd∥∥2

L2(R∞)+(Nv,v)U

=
∫
R∞

(
y(v)−zd

)2dρ(x)+(Nv,v)U ,
(3.4)

where zd ∈ L2(R∞) and N ∈ L(U,U), N is Hermitian positive definite operator.

We wish to find

inf
v∈Uad

J(v), (3.5)

where Uad (set of admissible controls) is a closed convex subset of U .

Under the given consideration we have the following theorem.

Theorem 3.1. Assume that (2.4) holds and the cost function being given by (3.4).

The optimal control u is characterized by (3.3) and((−∆Γ )−�+β+1/2P(u)|Γ +Nu,v−u
)
U
≥ 0 ∀v ∈Uad, (3.6)

where P(u) is the adjoint state of y(u).

Outline of the proof. As the proof of theorems in [4, 6], the control u∈Uad is

optimal if and only if

J′(u)(v−u)≥ 0 ∀v ∈Uad (3.7)

which may be written as

(
y(u)−zd,y(v)−y(u)

)
L2(R∞)+(Nu,v−u)U ≥ 0. (3.8)

In order to transform (3.8), we define the adjoint state P(u) as the solution of the

adjoint Neumann problem

Ap(u)=y(u)−zd in R∞,

∂βP(u)
∂νβA

= 0 on Γ .
(3.9)
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Now, multiplying the first equation in (3.9) by (y(v)−y(u)) and applying Green’s

formula, finally taking into account the conditions in (3.3) and (3.9), we obtain
∫
R∞

((
y(u)−zd

)(
y(v)−y(u)))dρ(x)

=
∫
R∞
Ap(u)

(
y(v)−y(u))dρ(x)

=
∫
Γ
P(u)

(
∂βy(v)
∂νβA

− ∂
βy(u)
∂νβA

)
dΓ

−
∫
Γ

∂β

∂νβA
P(u)

(
y(v)−y(u))dΓ +

∫
R∞
P(u)A

(
y(v)−y(u))dρ(x)

=
∫
Γ
P(u)(v−u)dΓ .

(3.10)

Hence (3.8) becomes ∫
Γ
P(u)(v−u)dΓ +(Nu,v−u)U ≥ 0. (3.11)

By using the definition of the scalar product inH�−β−1/2(Γ), then (3.9) is equivalent to

((−∆Γ )−�+β+1/2P(u)|Γ +Nu,v−u
)
U
≥ 0 ∀v ∈Uad (3.12)

which is equivalent to
∫
Γ

(
P(u)+(−∆Γ )�−β−1/2Nu

)
(v−u)dΓ ≥ 0 ∀v ∈Uad (3.13)

which completes the proof.
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