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ON THE EXTREMA OF INTEGRABLE FUNCTIONS
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Abstract. This paper contains the definition of the extremum of integrable functions
(e.g., the mode of density function). It seems to be a generalization of well-known stan-
dard definition and can be applied in estimation theory to extend the maximum likelihood
method.
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1. Introduction. The notion of global (local) extremum is defined and well known

for every function f : X → R (local extremum requires topology on X). In some situ-

ations, for example, in mathematical statistics (especially in the estimation theory) it

is necessary to extend this definition to include the case of extremum of integrable

function. This paper provides the concept of such definition which can be applied to

generalize the maximum likelihood method.

2. Extremum of integrable functions. Let (X,M,µ) be a measurable space with

bounded, nonnegative, and nonatomic measure µ :M →R. Without loss of generality,

we assume that µ is a probabilistic measure (i.e., µ(X) = 1). We assume that X is

also a topological space with some topology � such that (X,�) is a Hausdorff space.

Let �(X,M,µ) denote the set of µ-integrable functions f : X → R. We identify the

functions which differ on the set with measure zero. This is equivalent to division of

�(X,M,µ) by the relation � defined by

f � g⇐⇒ µ({x ∈X : f(x)≠ g(x)
})= 0. (2.1)

Let L1(X,M,µ)=�(X,M,µ)/�. For simplicity, the elements of L1(X,M,µ) will also be

called the integrable functions. Now we define the notion of extremum for this class

of objects.

For a given function f ∈ L1(X,M,µ) and a number ε > 0, let Z+(f ,ε) (resp., Z−(f ,ε))
denote the following optimization problem:∫

S
f dµ �→max (resp., min), (2.2)

subject to

S ∈M ; µ(S)= ε. (2.3)

Definition 2.1. The function f ∈ L1(X,M,µ) has maximum (resp., minimum) in

the point x0 ∈ X if for each neighborhood U of x0, there exists a sequence (εn) de-

creasing to zero and a sequence (S∗n), such that S∗n is an optimal solution of Z+(f ,εn)
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(resp., Z−(f ,εn)), and for any n∈N

µ∗
(
U∩S∗n

)
> 0, (2.4)

where µ∗ denotes the external measure of sets (the measure µ∗ is defined by the

formula

µ∗(A)= inf
∑
n
µ
(
An
)
, (2.5)

where the infimum concerns for all finite and infinite sequences A1,A2, . . . , such that

A⊂⋃nAn (cf. [2])).

First note that the definition is well defined in L1(X,M,µ), that is, the equivalent

functions f � g have the equal sets of extrema.

Theorem 2.2. If the integrable functions f ,g are equal (µ-a.e.), then they have the

same sets of maxima (also minima).

Theorem 2.3. For any function f ∈ L1(X,M,µ) the set of maxima (resp., minima)

is closed.

Proof. Let (xσ )σ∈Σ be a generalized sequence of maxima of f ∈ L1(X,M,µ) con-

vergent to a point x̄ ∈X. For any neighborhood U of x̄, there exists σU ∈ Σ such that

if σ ≥ σU , then tσ ∈U . We consider any element σ ≥ σU . By assumption, the function

f has maximum at xσ . There exists the sequence (ε)n∈N decreasing to zero, such that

µ∗(U∩Ω∗εn) > 0.

Because U is arbitrary then the axioms of Definition 2.1 are satisfied. Then f has

maximum at x̄. For the case of minimum the proof is similar.

The optimal solutions of Z+(f ,ε) (resp., Z−(f ,ε)) consists of the points where the

values of f are sufficiently large (small). More precisely, the general optimality condi-

tions for the problems Z±(f ,ε) (cf. [3]) imply the following lemma.

Lemma 2.4. The necessary and sufficient condition for Ω∗ to be the optimal solution

of Z+(f ,ε) is the existence of a number λ∗ ∈R satisfying the following conditions:

x ∈Ω∗ �⇒ f(x)≥ λ∗, x 
∈Ω∗ �⇒ f(x)≤ λ∗, µ
(
Ω∗
)= ε. (2.6)

In the case of the problem Z−(f ,ε) the inequalities should have the reverse sense.

Theorem 2.5. If M includes the family β(X) of Borel subsets of X,f : X → R is

continuous and has at the point x0 ∈ X maximum (resp., minimum) with respect to

Definition 2.1, then f(x0)= supf(X) (resp., f(x0)= inff(X)).

Proof. Assume that f(x0) < supf(X). The set V = f−1(]f (x0),supf(X)[) is

nonempty and open, and thus λ(V) > 0. Fix the neighborhood U of x0. Consider

open and nonempty set V0 ⊂ V such that V0 ∩U = ∅. The optimal solution Ω∗ε of

the problem Z+(f ,ε), where ε = λ(V0)/2, satisfies the condition λ(Ω∗ε ∩U) = 0. If

λ(Ω∗ε ∩U) > 0, then taking the sets K,K0 such that K ⊂ U , K0 ⊂ V0, λ(K)= λ(K0) > 0,

one can construct the set

Ω̃∗ε =Ω∗ε −
(
Ω∗ε ∩U−K

)∪K0, (2.7)
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which satisfies the conditions of Z+(f ,ε) and∫
Ω̃∗ε
f dλ >

∫
Ω∗ε
f dλ, (2.8)

which is in contradiction to the definition of Ω∗ε . This completes the proof.

If the function f is continuous, the set of its global extrema includes the set of

its extrema with respect to Definition 2.1. The inverse theorem does not hold (see

Example 2.6 below).

Additionally, note that by the Weierstrass theorem, Lemma 2.4 imply that if X is

compact, f continuous, then the set of f ’s extrema (with respect to Definition 2.1), is

nonempty.

Example 2.6. Define

f :R �→R, with f(x)=




0 if x ≤ 0 or x ≥ 2,

x if x ∈
]

0,
1
2

[
,

1−x if x ∈
[

1
2
,1
[
,

1 if x ∈ [1,2].

(2.9)

The function f has “ordinary” global maximum at each point of {1/2}∪[0,1], but the

maximum with respect of Definition 2.1 is only reached at the points of [0,1]. The

optimal solution Ω∗ε of the problem (2.2) and (2.3) can be obtained from the following

conditions:

x ∈Ω∗ε �⇒ f(x)≥ λ∗ε , x 
∈Ω∗ε �⇒ f(x)≤ λ∗ε , (2.10)

where λ∗ε is chosen in order that the measure Ω∗ε equals ε (ε > 0). This implies that

(1) If ε≤ 1, thenΩ∗ε is the subset of [1,2]with measure ε (more accurately µ(Ω∗ε )= ε
and µ([1,2]−Ω∗ε )= 0).

(2) If 1 < ε < 2, then Ω∗ε = [1,2]∪[1−ε/2,ε/2] (with accuracy to a set of measure

zero).

(3) If ε ≥ 2, then Ω∗ε can be chosen as any set which contains [0,2] and with the

measure equal to ε (with accuracy to a set of measure zero, that is, µ([0,2]−Ω∗ε )= 0).

For sufficiently small ε (ε < 1) there exist the neighborhoods of the point 1/2 dis-

joint with Ω∗ε . The function f does not have a maximum at the point 1/2 in the sense

of Definition 2.1.

Example 2.7. We construct a function not equal to a constant on [0,1] and inte-

grable with respect to the Lebesgue measure λ, which has maximum at every point of

this interval. Consider the functions (Z denotes the set of integer numbers)

f :R �→R∪{+∞}, f (x)= sup
k∈Z

φ(t−k), (2.11)

where

φ :R �→R∪{+∞}, φ(x)=




1√
|x| if x ≠ 0,

+∞ if x = 0.
(2.12)
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The function f is finite in ]0,1[ and integrable on [0,1]. Let (ηk)k∈N be a sequence of

positive numbers such that
∑
k∈Nηk converges. Consider the sequences of the func-

tions (fk)k∈N and (gk)k∈N defined by

fk :R �→R∪{+∞}, fk(x)= ηkf
(

2k−1
(
x−1
2k−1

))
,

gk :R �→R∪{+∞}, gk = sup
(
f ,f1, . . . ,fk

)
.

(2.13)

It is easy to calculate that for given M > 0 the value of Lebesgue measure of set

(
fk|[0,1]

)−1([M,+∞[) (2.14)

does not excess

min

(
1,2

η2
k

M2

)
. (2.15)

Indeed, we have λ(fk|[0,1])−1([M,+∞[) ≤ 1. Because fk has the period 1/2k−1, then

directly from definition of fk we obtain

λ
(
fk|[0,1]

)−1([M,+∞[)≤2k−1λ
([

1
2k−1

− η2
k

M22k−1
,

1
2k−1

+ η2
k

M22k−1

])
= 2η2

k
M2

. (2.16)

Denoting An(M)= (gn|[0,1])−1([M,+∞[), we obtain

λ
(
An(M)

)≤min


1,

2
M2

+4
n∑
k=1

η2
k

M2


. (2.17)

For every M and n∈N we have An(M)⊂An+1(M), then

λ


 ⋃
n∈N

An(M)


= lim

n→∞λ
(
An(M)

)
. (2.18)

It follows that

λ


 ⋃
n∈N

An(M)


≤min


1,

2
M2


1+2

∑
n∈N

η2
n




, (2.19)

and particularly

lim
M→+∞

λ


 ⋃
n∈N

An(M)


= 0. (2.20)

We define g(x) = limn→+∞gn(x) for x ∈ [0,1]. The limit limn→+∞gn(x) exists and

does not excess M if

x ∈
⋃
m∈N

⋂
n>m

(
[0,1]−An(M)

)
. (2.21)

For eachn∈Nwe haveAn(M)⊂An+1(M), this implies that ifx ∈ [0,1]−⋃n∈NAn(M),
then g(x)≤M . The values of g are thus finite on

⋃
M>0


[0,1]− ⋃

n∈N
An(M)


= ⋃

m∈N

⋂
n∈N

A′n
(

1
m

)
. (2.22)
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Because

λ


 ⋃
m∈N

⋂
n∈N

A′n
(

1
m

)= lim
m→∞λ


 ⋂
n∈N

A′n
(

1
m

),

λ


 ⋂
n∈N

A′n
(

1
m

)= lim
n→∞λ

(
A′n
(

1
m

))

= lim
n→∞λ


[0,1]− ⋃

n∈N
A′n
(

1
m

)

= 1−min


1,2m2


1+

∑
k∈N

η2
k




,

(2.23)

then

λ


 ⋃
m∈N

⋂
n∈N

A′n
(

1
m

)= 1, (2.24)

thus g is finite λ-a.e. on [0,1].
Dividing, for fixed k∈N, the interval [0,1] on the family of components

[
0,

1
2k

]
,
[

1
2k
,

3
2k

]
, . . . ,

[
1− 1

2k
,1
]
, (2.25)

it is easy to see that the following inequalities hold:

∫ 1

0
fk(x)dx ≤ Cηk,

∫ 1

0
gn(x)dx ≤

∫ 1

0


f(x)+ n∑

i=1

fi(x)


dx ≤ C


1+

n∑
i=1

ηi


,

(2.26)

where C ≤
∫ 1
0 f(x)dx. The convergence of the sum

∑
i ηi implies that

sup
n∈N

∫ 1

0
gn(x)dx <∞, (2.27)

and consequently, the integrability of g on [0,1]. Additionally, for every x ∈ [0,1]
and its neighborhood U � x, the set

U∩
⋃
n∈N

g−1
n
(
]M,+∞[) (2.28)

has nonempty interior. This follows that g has the maximum in the sense of

Definition 2.1 at every point of [0,1].
Note the difference of this result from the notion of “ordinary” maximum: the func-

tion g has a maximum with respect to Definition 2.1 at every point of [0,1], but g is

not a constant, that is, λ({x ∈ [0,1] : g(x)= c})≠ 1 for any constant c.

Determining the extrema in the sense of Definition 2.1 can be applied in mathe-

matical statistics to generalize maximum likelihood method (ML). In this method the
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estimators are computed as the extrema of a special function, called likelihood func-

tion. In the case when this function is not sufficiently smooth (i.e., differentiable or

at least continuous) the above definition of extrema can be useful to construct the

generalization of ML method. We start this part of the paper by the presentation of

the basic idea of this method.

Let (Ω,�,�) be a statistical space, that is, Ω ≠ ∅—a given set, �-σ -algebra of

subsets of Ω, and a family �= {Pθ : θ ∈Θ} of probability distributions defined on �.

Suppose that

(1) Θ⊂Rw for any w ∈N;

(2) the space (Ω,�,�) is dominated, that is, there exists aσ -finite measure ν : �→R
such that every distribution from � is absolutely continuous with respect to ν .

The map

L :Θ×Ω �→R, L(θ,ω)= dPθ
dν

(ω); (2.29)

where dPθ/dν denotes the Radon-Nikodym derivative of measure Pθ with respect to

ν , is called likelihood function. “Classical” ML method requires determining the set

of maxima of the function L(·,ω) for every ω ∈ Ω. If the map, (argθ∈ΘmaxL(θ,ω)
denotes the set of elements θ ∈ Θ such that the map L(·,ω) : Θ → R reaches the

maximum).

ω � �→ argθ∈ΘmaxL(θ,ω) (2.30)

is measurable, then it determines the ML estimator of the parameter θ (equivalently

probability distribution Pθ). If L(·,ω) is integrable, but it does not have another prop-

erties (such as continuity, differentiability, etc.) it may be difficult to say about its

extrema. Definition 2.1 may be useful and allows to generalize the ML method on

mentioned class of likelihood functions. We precise the idea of this generalization.

Suppose that for every ω ∈ Ω the function L(·,ω) is integrable on Θ with re-

spect to the Lebesgue measure. Determining the maxima of L(·,ω) with respect to

Definition 2.1 requires solving the problem Z+(L(·,ω),ε) which has the following

form: ∫
S
L(θ,ω)dλ(θ) �→max, (2.31)

subject to

S ∈ β(Rw),
∫
S
dλ= ε. (2.32)

For ω∈Ω, we denote the set of maxima of L(·,ω) (with respect to Definition 2.1) by

�(ω).
If the map (multivalued in general)

Ω �ω � �→�(ω)∈Θ (2.33)

has at least one measurable selection (the µ-measurable function θ̂ : Ω → Rw , which

for ω ∈ Ω satisfies θ̂(ω) ∈ �(ω)), then any one of them may be considered as a

(generalized) ML estimator of the parameter θ.

It is well known that ML estimators have, under necessary assumptions, some prop-

erties as asymptotical consistence and normality (cf. [1, 4]). Theorem 2.5 allows to have

the hope, that the estimators obtained from generalized ML method have often little

stronger properties.
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[4] R. Zieliński, Siedem wyk/lad/ow wprowadzaj/acych do statystyki matematycznej [Intrduc-
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