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Abstract. Let �(H) denote the algebra of operators on a Hilbert space H into itself. Let
d= δ or �, where δAB : �(H)→�(H) is the generalized derivation δAB(S)=AS−SB and
�AB : �(H)→ �(H) is the elementary operator �AB(S) = ASB−S. Given A,B,S ∈ �(H),
we say that the pair (A,B) has the property PF(d(S)) if dAB(S) = 0 implies dA∗B∗(S) =
0. This paper characterizes operators A,B, and S for which the pair (A,B) has property
PF(d(S)), and establishes a relationship between the PF(d(S))-property of the pair (A,B)
and the range-kernel orthogonality of the operator dAB .
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1. Introduction. LetH be a complex Hilbert space, and let �(H) denote the algebra

of operators (i.e., bounded linear transformations) onH into itself. Given A,B ∈�(H),
the (classical) Putnam-Fuglede commutativity theorem says that if A,B are normal op-

erators, and if X is an operator such that AX = XB, then A∗X = XB∗ [9, page 104].

Various generalizations of the Putnam-Fuglede theorem (henceforth shortened to PF-

theorem) have appeared over the past three decades (see [4, 8, 13, 14, 15, 17] and some

of the references cited in these papers). A generalization of the PF-theorem is obtained

when the normality of A and B is replaced by a weaker requirement, such as A and B∗

are subnormal or hyponormal. (Here the hypotheses on A,B are asymmetric: there ex-

ist subnormal operatorsA and B, and operators X, such thatAX =XB butA∗X ≠XB∗

[9, Problem 199, page 107].) Another such generalization of the PF-theorem, consid-

ered recently by Okuyama and Watanabe [14], is where the requirement that A and B
be normal is removed by requiring more of the intertwining operator X.

Let δAB : �(H) → �(H) (δAA = δA) denote the generalized derivation δAB(X) =
AX −XB, and let �AB : �(H) → �(H) (�AA = �A) denote the elementary operator

�AB(X) = AXB−X. Let ker(Y) denote the kernel of the operator Y . The (classical)

PF-theorem then says that if A,B are normal, then ker(δAB) = ker(δA∗B∗). There is a

natural �AB analogue, namely that if A, B are normal, then ker(�AB) = ker(�A∗B∗).
Let d denote either δ or �. We say that the pair of operators (A,B) has the property

PF(d) (the property PF(d(S))) if ker(dAB) ⊆ ker(dA∗B∗) (resp., if, given S ∈ �(H),
S ∈ ker(dAB) implies S ∈ ker(dA∗B∗)). It is then known that the pair (A,B) has the

PF(d) property for A,B∗ belonging to a number of the commonly considered classes

of operators (see [15, Theorem 3] and [8, Theorem 2]).

This paper explores the relationship between the range-kernel orthogonality of the

operator dAB and the PF(d(S)) property. Recall here that the element x of a normed

linear space �, with norm ‖·‖, is said to be orthogonal to y ∈� if ‖x−λy‖ ≥ ‖λy‖
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for all complex numbers λ. Let the operator S have the polar decomposition S =
U|S|; suppose that S belongs to the Schatten p-class �p for some 1 < p < ∞. We

prove that: min{‖dAB(X)+S‖p,‖dA∗B∗(X)+S‖p} ≥ ‖S‖p for all X ∈ �p if and only

if S ∈ ker(dAB) and (A,B) ∈ PF(d(S)) if and only if dAB(U) = 0 = dA∗B∗(U) and

min{‖δA(X)+ |S∗|‖p,‖δB(X)+ |S|‖p} ≥ ‖S‖p for all X ∈ �p (cf. [7, Theorem]). An

analogue of this result is proved for the case in which S is trace class and either S
or S∗ is injective. We also prove that if A is an isometry such that δA(S) = 0 (A is a

contraction such that �A(S) = 0), then min{‖δA(T)+S‖,‖δA∗(T)+S‖} ≥ ‖S‖ (resp.,

min{‖�A(T)+S‖,‖�A∗(T)+S‖} ≥ ‖S‖) for all T ∈�(H). Furthermore, if S ∈�(H) is

a smooth point, then there exists a rank one operator X such that δA(X)= 0= δA∗(X)
(resp., �A(X) = 0 =�A∗(X)). We start (see Section 2) by proving that the pair (A,B)
has the PF(d(S)) property if and only if |S| commutes with B, |S∗| commutes with

A and dAB(U) = 0, where the partial isometry U is as in the polar decomposition

S =U|S|. This generalizes the result(s) on pairs (A,B) having the PF(d) property and

the result of Okuyama and Watanabe [14].

2. Characterizing pairs (A,B) ∈ PF(d(S)). In addition to the notation already in-

troduced, we will use the following further notation. The closure of the range of an

operator X will be denoted by ranX. The restriction of X to an invariant subspace

M will be denoted by X|M , and the commutator AB−BA of the operators A, B will

be denoted by [A,B]. The spectrum, the point spectrum, and the approximate point

spectrum of X will be denoted by σ(X), σ0(X), and σa(X), respectively. The trace

functional will be denoted by tr. Recall that a (completely nonunitary) contraction A
is said to be of the class C.0 of contractions if ‖A∗nx‖ → 0 as n → ∞ for all x ∈ H.

Any other notation will be explained as and when required.

The following theorem characterizes pairs of operators (A,B) with the PF(d(S))
property and is the main result of this section.

Theorem 2.1. Let A,B,S ∈ �(H), where S has the polar decomposition S = U|S|.
Then the pair (A,B)∈ PF(d(S)) if and only if

(i) [A,|S∗|]= 0;

(ii) [B,|S|]= 0;

(iii) dAB(U)= 0.

Proof. We start by considering the case in which d = δ. If S ∈ ker(δAB) and

(A,B)∈ PF(δ(S)), then δAB(S)= 0= δA∗B∗(S), and so

A
∣∣S∗∣∣2 = (AS)S∗ = S(BS∗)= SS∗A= ∣∣S∗∣∣2A;

B|S|2 = (BS∗)S = S∗(AS)= S∗SB = |S|2B. (2.1)

This implies (i) and (ii). Also, since δAB(S) = 0 and [B,|S|] = 0, δAB(U)|ker⊥ S = 0.

Clearly, B : kerS(= kerU)→ kerS; hence δAB(U)= 0. Conversely, (ii) and (iii) together

imply that δAB(S) = 0. Since ranS reduces A (by (i)) and ker⊥S reduces B (by (ii)), it

follows from δAB(S) = 0 that δA1B1(S1) = 0, where A1 = A|ranS , B1 = B|ker⊥ S and the

quasi-affinity S1 : ker⊥S → ranS is defined by setting S1x = Sx for each x ∈ ker⊥S. Let

S1 have the polar decomposition S1 = U1|S1|; then U1 is a unitary and |S1| is a quasi-

affinity. Clearly, [B1,|S1|]= 0; hence δA1B1(S1)= 0 implies that δA1B1(U1)= 0, that is,
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B1 = U∗1 A1U1. Thus B∗1 |S1| = |S1|B∗1 implies U∗1 A
∗
1U1|S1| = |S1|B∗1 , or, δA∗1 B∗1 (S1)= 0.

This implies that δA∗B∗(S)= 0.

Now let d = �. If S ∈ ker(�AB) and (A,B) ∈ PF(�(S)), then �A0B0(S0) = 0 =
�A0∗B0∗(S0), ranS0 reducesA0 and ker⊥S0 reduces B0. (HereX0 denotes the Berberian

extension of the operator X to a Hilbert space H0 ⊃ H: recall that given a Hilbert

space H and an X ∈ �(H), there exists a Hilbert space H0 ⊃ H and an isometric

∗-isomorphism X →X0 preserving order such that σ(X0)= σ(X), σa(X)= σa(X0)=
σ0(X0) [18, page 15].) Let A1 = A0|ranS0 , B1 = B0|ker⊥ S0 , and let S1 : ker⊥S0 → ranS0

denote the quasi-affinity defined by setting S1y = S0y for each y ∈ ker⊥S0. Then

�A1B1(S1) = 0. As stated above, σa(B0) = σ0(B0); hence, since S1 is a quasi-affinity,

0 ∉ σ(B1). We have

�A1B1

(
S1
)= 0=�A∗1 B

∗
1

(
S1
)
�⇒ δA1B−1

1

(
S1
)= 0= δA∗1 B∗−1

1

(
S1
)

�⇒ [A1,
∣∣S∗1 ∣∣]= 0= [B1,

∣∣S1

∣∣]
�⇒ [A0,

∣∣S0∗∣∣]= 0= [B0,
∣∣S0

∣∣]
�⇒ [A,∣∣S∗∣∣]= 0= [B,|S|],

(2.2)

where the second implication follows from the one before by the d= δ case. To prove

(iii), we note that

ASB = S �⇒AU|S|B =AUB|S| =U|S| �⇒�AB(U)|ker⊥ S = 0. (2.3)

Since B : kerS → kerS, we conclude that �AB(U) = 0. To prove the sufficiency of the

conditions, we note that (ii) and (iii) imply that S ∈ ker(�AB). As before, letA1 =A|ranS ,

B1 = B|ker⊥ S and let S1 : ker⊥S → ranS be the quasi-affinity defined by setting S1x = Sx
for each x ∈ ker⊥S. Then (by (i) and (ii)) �A1B1(S1)= 0, and [A1,|S∗1 |]= 0= [B1,|S1|].
Let S1 have the polar decomposition S1 = U1|S1|; U1 unitary. Then �A1B1(U1) = 0,

A1U1B1 (in particular, B1) is invertible and A1 =U1B−1
1 U∗1 . We have

A∗1
∣∣S∗1 ∣∣= ∣∣S∗1 ∣∣A∗1 = ∣∣S∗1 ∣∣U1B∗−1U∗1 =U1

∣∣S1

∣∣B∗−1U∗1 . (2.4)

Hence A∗1 S1 =A∗1 |S∗1 |U1 = S1B∗−1, or,�A∗1 B
∗
1
(S1)= 0. This implies that�A∗B∗(S)= 0,

and the proof is complete.

Remark 2.2. The hypothesis (A,B) ∈ PF(d(S)) does not imply that [A,S] = 0 (or

[B,S]= 0, or [A,|S|]= 0, or [B,|S∗|]= 0) for S ∈ ker(dAB). Thus let U be the (forward)

unilateral shift and let

A=U⊕1, B = 1⊕U∗, S =
[

0 0(
1−UU∗) 0

]
, (2.5)

on Ĥ =H⊕H. Then A,B∗ are subnormal, S ∈ ker(dAB) and dAB(S)= 0= dA∗B∗(S). It

is easily verified that (i), (ii), and (iii) of Theorem 2.1 are satisfied, but dA(S) = −S =
dB(S)(≠ 0) and dA(|S|) ≠ 0 ≠ dB(|S∗|). The hypotheses (A,A) ∈ PF(d) and (B,B) ∈
PF(d) for a class of operators S in ker(dAB) do not guarantee (A,B)∈ PF(d(S)). Thus,

let � denote the closed unit disc in the complex plane, letA be the operator of multipli-

cation by z on �2(�) into itself and let B be the unilateral shift (on a separable Hilbert
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space H with an orthonormal basis {en}n≥1). Then the only compact operator X such

that δB(X) = 0 is the zero operator (and, trivially, (B,B) ∈ PF(δ|�(H)), where �(H) is

the ideal of compact operators). Define S : H → H by (Sen)(z) = znχ�α , where �α =
z : |z| ≤α< 1 for some fixed α. Then S ∈�p for all 1≤ p <∞, and so is, in particular,

compact. (Notice that tr(|S|2p)=∑∞
n=1

∫
�α |z|2npdz = 2πα

∑∞
n=1(α2np)/(2np+1)<∞.)

Clearly, δAB(S)= 0, but δA∗B∗(S)≠ 0: for if it were so, then we would have that B has

a nontrivial unitary direct summand. Again, the hypotheses dAB(S)= 0= dA∗B∗(S) do

not imply that A|ranS and B|ker⊥ S are normal operators: some additional hypothesis,

for example ker(dA)⊆ ker(dA∗) (or ker(dB)⊆ ker(dB∗), or more generally, ker(dAB)⊆
ker(dA∗B∗)), is required. We note here that if ker(dA) ⊆ ker(dA∗), then AA|S∗| =
A|S∗|A implies A∗A|S∗| = A|S∗|A∗ = AA∗|S∗| implies A1 = A|ranS is normal. Since

B1 (= B|ker⊥ S ) in the case in which d= δ and B−1
1 in the case in which d=� is unitarily

equivalent to A1 (see the proof of Theorem 2.1), B1 is also normal. We remark here

that if d =�, and A,B are contractions (or, d = δ, A is a contraction and B is invert-

ible with B−1 a contraction), then (A,B)∈ PF(�|�(H)) (resp., (A,B)∈ PFk(δ|�(H))), this

follows from [5, Theorem 8 and Corollary 6.4] or [6, Theorem 2(b)].

A well-known result of Barría [3, Lemma 2] says that if V1 and V2 are isometries such

that δV∗1 (V2) = 0, then δV1(V2) = 0. This (indeed more) follows from our theorem, as

the following argument shows. It is clear that hypotheses (ii) and (iii) of the theorem

are satisfied (with A = B = V∗1 and S = V2). Since V∗2 V1 = V1V∗2 , V∗2 V1V2 = V1, or,

V∗1 V
∗
2 V1V2 = 1= V∗2 V∗1 V2V1. Also∥∥(V2V1V∗2 −V1V2V∗2

)
x
∥∥2 = 2

∥∥V∗2 x∥∥2−2�
(
V∗2 V

∗
1 V2V1V∗2 x,V

∗
2 x
)

= 2
∥∥V∗2 x∥∥2−2�

(
V∗2 x,V

∗
2 x
)= 0

(2.6)

for all x ∈ H. Hence, V2V1V∗2 = V1V2V∗2 and V2V∗2 V1 = V2V1V∗2 = V1V2V∗2 , that is, (i)

of the theorem is satisfied.

Notice that V∗2 V1 = V1V∗2 implies �V∗2 V2
(V1) = 0, and the argument above shows

that �V2V∗2 (V1) = 0 also. Indeed our Theorem 2.1 generalizes a recent extension by

Okuyama and Watanabe [13, Theorem] of the result of [3], as the following corollary

shows.

Corollary 2.3 (see [13, Theorem]). LetA,B ∈�(H), and let C be a partial isometry

such that (i) dAB(C)= 0; (ii) ‖B‖ ≥ ‖A‖; (iii) [B,|C|]= 0; and (iv) C(‖B‖2−BB∗)1/2 = 0.

Then dA∗B∗(C)= 0.

Proof. With the partial isometry C replacing the operator S, it is clear that hy-

potheses (ii) and (iii) of Theorem 2.1 are satisfied. To complete the proof we have to

show that [A,|C∗|]= 0.

Dividing suitably (if it needs to), we may assume that ‖B‖ = 1; then A is a contrac-

tion. Since C = C|B∗|2 (by hypothesis (iv) above), δAA∗(|C∗|2)= δCC∗(|B∗|2)= 0. Now

extend the contraction A to a partial isometry Ã, on H̃ =H⊕H (say), by setting

Ã=
[
A

(
1−AA∗)1/2

0 0

]
(2.7)

(see [9, page 72]), and let X : H̃ → H̃ be defined by X = CC∗⊕0. Then �ÃÃ∗ = 0, where
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Ã being a partial isometry, has C.0 completely nonunitary part. Applying [6, Theo-

rem 2(a)], it follows that ranX reduces Ã and Ã|ranX is unitary. Hence δA∗(X) = 0.

This implies that [A,|C∗|2]= 0.

Let dnAB , n≥ 1 some integer, denote an n-times application of dAB . Then kerdAB ⊆
kerdnAB for all n > 1; the converse is however false in general. Additional hypothe-

ses on A and B, such as A,B∗ are normal or subnormal or hyponormal [8, 15], are

required for kerdnAB = kerdAB to hold. An example of classes of operators A,B∗ for

which kerdnAB = kerdAB has been considered in [8, Lemma 4]; the following corollary

generalizes [16, Theorem 1] and [8, Lemma 4]. Let (A,B)∈ PF[dr (S)], where r is some

natural number, denote dAB(dr (S))= 0 implies dA∗B∗(dr (S))= 0.

Corollary 2.4. Given A,B,S ∈ �(H), suppose that (A,B) ∈ PF[dr (S)]
⋂

PF [Adr (S)] for all r = 1,2, . . . ,n−1. Then dnAB(S) = 0 if and only if dAB(S) = 0, ranS
reduces A, ker⊥S reduces B, and A|ranS and B|ker⊥ S are normal operators.

Proof. We consider the case in which d = �; the case d = δ is similarly dealt

with. Let S ∈ ker�n
AB and let X = �n−1

AB (S). The hypothesis (A,B) ∈ PF[dn−1(S)]
⋂

PF [Adn−1(S)] implies that

AXB−X = 0=A∗XB∗−X;

A(AX)B−(AX)= 0=A∗(AX)B∗−(AX), (2.8)

and hence that

A∗AXB∗−AX =AA∗XB∗−AX or (A∗A−AA∗)XB∗ = 0. (2.9)

Since ranX reduces A, ker⊥X reduces B, and A1 = A|ranX and B−1
1 = (B|ker⊥X)−1 are

unitarily equivalent (see the proof of Theorem 2.1), it follows thatA1 and B1 are normal

operators. Let S : ker⊥X ⊕ kerX → ranX ⊕ (ranX)⊥ have the matrix representation

S = [Sij]2i,j=1. Letting A=A1⊕A2 and B = B1⊕B2, it then follows that

�n
A1B1

(
S11
)= 0, X =�n−1

AB (S)=
[
�n−1
AiBj

(
Sij
)]2

i,j=1
=�n−1

A1B1

(
S11
)⊕0. (2.10)

The operators A1 and B1 being normal, �n
A1B1

(S11) = 0 if and only if �A1B1(S11) = 0;

hence X = 0. Repeating this argument a finite number of times, with X = �n−1
AB (S)

replaced by X = �n−2
AB (S) and so forth, it now follows that �AB(S) = 0, where the

operators A|ranS and B|ker⊥ S are normal.

The conclusions of Corollary 2.4 remain valid if the hypothesis that (A,B) ∈
PF[dr (S)] ∩ PF[Adr (S)] is replaced by the hypothesis that (A,B) ∈ PF[dr (S)] ∩
PF[dr (S)B].

Remark 2.5. Letπ : �(H)→�(H)/�(H) denote the Calkin map. LetA,B,S ∈�(H)
be such that (π(A),π(B)) ∈ PF[π(dr (S))]∩PF[π(Adr (S))] for all r = 1,2, . . . ,n−1,

and dnAB(S) is compact for some integer n > 1. Then π(dnAB(S)) = 0, and it follows

from Corollary 2.4 that π(dAB(S))= 0, that is, dAB(S) is compact (cf. [16, Theorem 6]

and [8, Remark, page 86]).
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3. Range-kernel orthogonality and the PF-property. In this section, we explore

the relationship between the range kernel orthogonality of dAB and the PF-property

dAB(S)= 0= dA∗B∗(S). Throughout the following, we assume our Hilbert space H to

be separable. The operator S will be said to belong to the Schatten p-class �p =�p(H),
1 ≤ p ≤ ∞, if ‖S‖p = (tr|S|p)1/p < ∞. The range-kernel orthogonality of dAB , with

respect to the norms ‖·‖p and ‖·‖ (= the usual operator norm), has been considered

by a number of authors in the recent past (see [7, 10], and some of the references

cited there). A definitive result here is the following proposition. Let S have the polar

decomposition S =U|S|.

Proposition 3.1. If A,B ∈�(H), and S ∈�p for some 1<p <∞, then∥∥dAB(X)+S∥∥p ≥ ‖S‖p (3.1)

for all X ∈ �p if and only if tr(|S|p−1U∗dAB(X)) = 0 for all X ∈ �p if and only if

dBA(|S|p−1U∗)= 0.

Proof. See [10, Theorem 2] and [7, Lemma 2].

Proposition 3.1 has ‖·‖, ‖·‖1 and ‖·‖∞ analogues (see [10, Remarks, page 872] for

the case d = δ). Recall that the operator S with ‖S‖ = 1 is said to be a smooth point

of the unit ball of �(H) if ‖·‖ is Gateaux differentiable at S, that is, if the essential

norm ‖S‖e of S satisfies ‖S‖e < ‖S‖, and if S attains its norm at a unique (up to

multiplication by a constant of modulus one) unit vector f ∈ H [11]. (The space �p ,

1 < p < ∞, being uniformly convex, every S ∈ �p is a smooth point.) The following

analogue of Proposition 3.1 will be required in our considerations below.

Lemma 3.2. Let S ∈�(H) be a smooth point, and let f be the unique unit vector at

which S attains its norm. If A,B ∈�(H), then the following statements are equivalent:

(i) ‖dAB(X)+S‖ ≥ ‖S‖ for all X ∈�(H).
(ii) tr((f ⊗Sf)dAB(X))= 0 for all X ∈�(H).

(iii) dBA(f ⊗Sf)= 0.

Proof. The case dA = δA is dealt with in [10, Remarks (2), page 872]; the proof of

the general case follows from a similar argument (see also the proof of [7, Lemma 2]).

Theorem 3.3. Let S ∈�(H) be a smooth point.

(i) If V is an isometry such that δV(S)= 0, then there exists a rank one operator X
such that

δV(X)= 0= δV∗(X). (3.2)

(ii) If A is a contraction such that �A(S)= 0, then there exists a rank one operator

X such that

�A(X)= 0=�A∗(X). (3.3)

The proof of the theorem proceeds through a couple of steps, stated below as

lemmas. The first of these lemmas states that if A,B are any contractions such that

�AB(T) = 0 for some T ∈ �(H), then the range of �AB is orthogonal to T . This

result is then used in the following lemma to prove (and extend) a result of Anderson
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[2, Theorem 1] on the range-kernel orthogonality of δV for isometries V . The proof of

the theorem is then obtained by appealing to Lemma 3.2.

Lemma 3.4. Let A,B be contractions such that �AB(S)= 0 for some S ∈�(H). Then∥∥�AB(X)+S
∥∥≥ ‖S‖ (3.4)

for all X ∈�(H).

Proof. The inspiration for the following proof comes from the proof of [2, Theo-

rem 1].

Given X ∈�(H), a simple calculation shows that

n−1∑
i=0

An−i−1�AB(X)Bn−i−1 =AnXBn−X. (3.5)

Thus, if S ∈ ker(�AB), then

S =− 1
n

{
AnXBn−X−

n−1∑
i=0

An−i−1(�AB(X)+S
)
Bn−i−1

}
. (3.6)

Hence

‖S‖ ≤ 1
n
∥∥AnXBn−X∥∥+ 1

n


n−1∑
i=0

‖A‖n−i−1‖B‖n−i−1
∥∥�AB(X)+S

∥∥
≤ 1
n
∥∥AnXBn−X∥∥+∥∥�AB(X)+S

∥∥.
(3.7)

Letting n→∞, the proof follows.

Lemma 3.5. Let V be an isometry such that δV(T)= 0 for some T ∈�(H). Then

min
{∥∥δV(X)+T∥∥,∥∥δV∗(X)+T∥∥}≥ ‖T‖ (3.8)

for all X ∈�(H).

Proof. If δV(T)= 0, V is an isometry, then∥∥δV(X)+T∥∥≥ ∥∥V∗(δV (X)+T)∥∥= ∥∥−�V∗V (X)+V∗T
∥∥= ∥∥�V∗V (X)−V∗T

∥∥ (3.9)

for all X ∈ �(H). Since δV(T) = 0 implies �V∗V (T) = 0, we have (upon choosing

A= V∗, B = V and S =−V∗T in Lemma 3.4) that∥∥δV(X)+T∥∥≥ ∥∥�V∗V (X)+
(−V∗T)∥∥≥ ∥∥V∗T∥∥ (3.10)

for all X ∈ �(H). That ‖δV(X)+T‖ ≥ ‖T‖ for all X ∈ �(H) now follows from the

fact that

δV(T)= 0 �⇒ T = V∗TV �⇒‖T‖ =
∥∥V∗TV∥∥≤ ∥∥V∗T∥∥‖V‖ = ∥∥V∗T∥∥≤ ‖T‖. (3.11)

Again, if δV(T)= 0 with V an isometry, then∥∥δV∗(X)+T∥∥≥ ∥∥(δV∗(X)+T)V∥∥= ∥∥�V∗V (X)+TV
∥∥, (3.12)
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and hence, since V∗TV −T = 0 implies �V∗V (TV)= 0,∥∥δV∗(X)+T∥∥≥ ‖TV‖ = ‖T‖ (3.13)

for all X ∈�(H). This completes the proof.

Results of the type of Lemma 3.4 have been proved earlier, but under the stronger

hypothesis that the intertwining operator S is compact (cf. [12]). The argument of

the proof of Lemma 3.5 in fact leads to a stronger result, namely that: if A is left

invertible by a contraction, the operator B is a contraction, and if T ∈ ker(δAB), then

‖δAB(X)+T‖ ≥ ‖T‖ for all X ∈�(H).

Proof of Theorem 3.3. If V is an isometry such that δV(S)= 0, then Lemma 3.5

implies that

min
{∥∥δV(X)+S∥∥,∥∥δV∗(X)+S∥∥}≥ ‖S‖ (3.14)

for all X ∈�(H). Assuming now that S is a smooth point, it follows from Lemma 3.2

that there exists a unique (up to multiplication by a constant of modulus one) unit

vector f ∈H such that

δV(f ⊗Sf)= 0= δV∗(f ⊗Sf). (3.15)

The operator X = f ⊗Sf is then the required rank one operator. Since a similar argu-

ment, using this time Lemmas 3.4 and 3.2, implies the existence of a rank one operator

X such that �A(X) = 0, and since this (in view of the compactness of X) implies by

[5, Theorem 8] that �A∗(X)= 0, the proof is complete.

The rank one operator X in Theorem 3.3 satisfies ‖X‖1 = ‖S‖ and tr(SX) = ‖S‖2

(see [10, Lemma 1]). Also, in view of Lemma 3.2, δV(X) = 0 = δV∗(X) if and only

if min{‖δV(Y)+ S‖,‖δV∗(Y)+ S‖} ≥ ‖S‖, and �A(X) = 0 = �A∗(X) if and only if

min{‖�A(Y)+S‖,‖�A∗(Y)+S‖} ≥ ‖S‖, for all Y ∈�(H).
We consider now the case dAB|�p , where A,B ∈ �(H) and 1 < p <∞. Recall from

Proposition 3.1 that, given S ∈�p ,

min
{∥∥dAB(X)+S∥∥p,∥∥dA∗B∗(X)+S∥∥}≥ ‖S‖p (3.16)

if and only if

dBA
(|S|p−1U∗

)= 0= dB∗A∗
(|S|p−1U∗

)
. (3.17)

As seen in the proof of Theorem 2.1, (3.17) implies that |S|2(p−1) and so also |S| com-

mutes with B, |S∗| =U|S|U∗ commutes with A, and dBA(U∗)= 0= dB∗A∗(U∗). Hence

dBA(S∗)= 0= dB∗A∗(S∗), that is,

dAB(S)= 0= dA∗B∗(S). (3.18)

Thus, given an S ∈�p (1<p <∞), (3.16) holds for allX ∈�p if and only if S ∈ ker(dAB)
and (A,B)∈ PF(d(S)) (see also [7]).

Theorem 3.6. Let A,B ∈ �(H), and let S(= U|S|) ∈ �p for some 1 < p < ∞. The

following statements are equivalent:

(i) Inequality (3.16) holds for all X ∈�p .

(ii) S ∈ ker(dAB) and (A,B)∈ PF(d(S)).



PUTNAM-FUGLEDE THEOREM AND THE RANGE-KERNEL . . . 581

(iii) dAB(U)= 0= dA∗B∗(U), and

min
{∥∥δA(X)+∣∣S∗∣∣∥∥p,∥∥δA∗(X)+∣∣S∗∣∣∥∥p,∥∥δB(X)+|S∣∣∥∥p,∥∥δB∗(X)+|S∣∣∥∥p}≥‖S‖p (3.19)

for all X ∈�p .

Proof. As seen above, (i)�(ii). To prove (ii)�(iii), we start by noting that if (ii)

holds, then, by Theorem 2.1 and its proof, [A,|S∗|] = 0 = [B,|S|] and dAB(U) = 0 =
dA∗B∗(U). Hence to prove that (ii)�(iii), it will suffice to prove that inequality (3.19)

holds if and only if [A,|S∗|] = 0 = [B,|S|]. Let T denote either of |S| and |S∗|. Then,

since S ∈ �p , T ∈ �p . The map T → ‖T‖pp is Frechèt differentiable, with the Frechèt

derivative DT given by DT(Y)= p�tr(Tp−1Y) (see [1, Theorem 2.1]). Let Z =A or A∗

in the case in which T = |S∗| in δZ(T), and let Z = B or B∗ in the case in which T = |S|
in δZ(T). Then Proposition 3.1 translates to ‖δZ(X)+T‖p ≥ ‖T‖p for all X ∈ �p if

and only if (tr(Tp−1δZ(X)) = 0 for all X ∈ �p if and only if δZ(Tp−1) = 0 (see [10,

Theorem 2] and [7, Lemma 2]). Hence inequality (3.19) holds if and only if δZ(T)= 0.

We close this paper by considering the case dAB|�1 . Let S = U|S| ∈ �1 be such that

either S or S∗ is injective. Then S is a smooth point (of Ball(�1)) and the map S →‖S‖1

is Frechèt differentiable. Let V =U∗ if S is injective and V =U if S∗ is injective. Then

min
{∥∥dAB(X)+S∥∥1,

∥∥dA∗B∗(X)+S∥∥1

}≥ ‖S‖1 (3.20)

for all X ∈�1 if and only if

tr
(
VdAB(X)

)= 0= tr
(
VdA∗B∗(X)

)
(3.21)

for all X ∈�1. (This is proved for the case in which d= δ and A= B in [10]; the general

case follows from a similar argument.) Choose X to be the rank one operator (x⊗y);
x,y ∈H.Then,since VAX and VX are in �1 for all X ∈�1,

tr
(
V�AB(X)

)= 0⇐⇒ tr
(�BA(V)X

)= 0⇐⇒ (�BA(V)x,y
)= 0;

tr
(
V�A∗B∗(X)

)= 0⇐⇒ tr
(�B∗A∗(V)X

)= 0⇐⇒ (�B∗A∗(V)x,y
)= 0,

tr
(
VδAB(X)

)= 0⇐⇒ tr
(−δBA(V)X)= 0⇐⇒ (δBA(V)x,y)= 0;

tr
(
VδA∗B∗(X)

)= 0⇐⇒ tr
(−δB∗A∗(V)X)= 0⇐⇒ (δB∗A∗(V)x,y)= 0

(3.22)

for all x,y ∈H. Hence, if (3.20) holds, then

dAB
(
V∗
)= 0= dA∗B∗

(
V∗
)
. (3.23)

Theorem 3.7. Let S ∈�1 be such that either S or S∗ is injective. If A,B ∈�(H) and

the operator V is as above, then the following statements are equivalent:

(i) Inequality (3.20) holds for all X ∈�1.

(ii) V∗ ∈ ker(dAB) and (A,B)∈ PF(d(V∗)).

Proof. We have already seen that (i)⇒(ii). To prove that (ii)⇒(i), let X ∈ �1. Then

both VAX and VX are in �1. By hypothesis dAB(V∗)= 0= dBA(V). Hence

tr
(
V�AB(X)

)=tr(VAXB)−tr(VX)=tr(BVAX)−tr(VX)=tr
(�BA(V)X

)=0;

tr
(
VδAB(X)

)=tr(VAX)−tr(VXB)=tr(VAX)−tr(BVX)=tr
(−δBA(V)X)=0.

(3.24)
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Since these equalities remain true when A and B are replaced by A∗ and B∗, respec-

tively, it follows (from above) that (ii)⇒(i).
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