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ROUGH MARCINKIEWICZ INTEGRAL OPERATORS
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ABSTRACT. We study the Marcinkiewicz integral operator Mg f(x) = (J55 | [y <ot f(x =
PyNQY) /|y dy|?dt/22t)1/2 where @ is a polynomial mapping from R" into R4
and Q is a homogeneous function of degree zero on R" with mean value zero over the
unit sphere $"~1, We prove an L? boundedness result of My for rough Q.

2000 Mathematics Subject Classification. 42B20, 42B15, 42B25.

1. Introduction. Let R", n = 2 be the n-dimensional Euclidean space and S"~! be
the unit sphere in R"™ equipped with the induced Lebesgue measure. Consider the
Marcinkiewics integral operator

© 1/2
ureo= ([ IR P8 .
where
B Qx-y)
Fe(x) = J\xfy\SZ‘f(y) [x —y|n-1 ay, (1.2)

and Q is a homogeneous function of degree zero which has the following properties:
QelL'(s"1), J 1Q(y')ala(y’):o. (1.3)
sn-

When Q € Lip,(S™'), (0 < & < 1), Stein proved the L? boundedness of u(f) for all
1 < p < 2. Subsequently, Benedek, Calder6n, and Panzone proved the L” boundedness
of u(f) for all 1 < p < o under the condition Q € C}(S"1) (see [2]).

The authors of [3] were able to prove the following result for the more general class
of operators

© 1/2
urf o= ([ IEnecol 55) (14)
where
N Q)
F = -P d 1.5
. (X) Ly\gztf(" (12D ) 1y 4 (1.5)

and P is a real-valued polynomial on R and satisfies P(0) = 0.

THEOREM 1.1 (see [3]). Let @ > 0, and Q € Vy(n). Then the operator up is bounded
in LP (R") for Qax+2)/(2x+1) <p <2+2«.
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In [1], Al-Salman and Pan studied the singular integral operator

Q@)
ly|n

Toof () =pv. | fle-2) 12 dy, (1.6)
where ® = (Py,...,P;): R" — R% is a polynomial mapping, d = 1, n > 2. The authors
of [1] proved that Tq is bounded in L? (R4) whenever (2+2x)/(1+2x) <p <2+2x
and Q € Wy(n). Here Wy (n) is a subspace of L' (S"!) and its definition as well as
the definition of Vy(n) will be reviewed in Section 2. It was shown in [1] that Wy (n) =
Vx(n), if n =2 and it is a proper subspace of Vy(n) if n > 3.

Our purpose in this paper is to study the L? boundedness of the class of operators

© 1/2
Mo = ([ B0 o) w.7)
where Qi)
_ _ Y
F.a»,t(x)—Lylsztf(x P) 5y - (1.8)

Our main result in this paper is the following theorem.

THEOREM 1.2. Let @ > 0, and Q € Wy(n). Then the operator My is bounded in
LP(RY) for Qax+2)/(2ax+1) < p < 2+ 2. The bound of My f is independent of the
coefficients of {P;}.

By [1, Theorem 3.1] and Theorem 1.2 we have the following corollary.

COROLLARY 1.3. Let & > 0, Q € V4(2) and ® : R?2 — R, Then My is bounded in
LP(R%) for Qax+2)/(2a+1) < p < 2+ 2«. The bound of My is independent of the
coefficients of {P;}.

2. Preparation. We start this section by recalling the following definition from [1].

DEFINITION 2.1. For « >0, N = 1, let ¥ (n,N) = UN,_, ¥ (n,m) and let Wy (N,n) be
the subspace of L' (S"!) defined by

Wa(N,n) = {Q e LY(s"1): J

gn-1

Q(y')do(y') =0, My(N,n) < oo}, (2.1)
where

My(N,n)

, 1 1+x . N . ~
_ max«”wl 20| <logm> do (') : P ¥ (n,N) with [|P]| = 1}.
2.2)

For « > 0, we define W4(n) to be

Wa(n) = [ Wa(N,n). (2.3)
N=1

Also, for @ > 0, we define Vy(n) by Vy(n) = Wy (1,n) (see [6]).
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Here V' (n,m) is the space of all real-valued homogeneous polynomials on R" with

degree equal to m and with norm || - || defined by
> awy®||= > laal. (2.4)
|ax|=m |lx|=m

Now we need to recall the following results.

LEMMA 2.2 (see van der Corput [7]). Suppose ¢ and @ are real-valued and smooth
in (a,b), and that |p® (t)| = 1 for all t € (a,b). Then the inequality

b b
| e*“d’“)w(t)dt’ <ClAl M lpw) 1+ [ oo e, 2.5)

a

holds when
i) k=2, or
(ii) k=1 and ¢’ is monotonic.
The bound Cy, is independent of a, b, ¢, and A.

LEMMA 2.3 (see [7]). Let® = (Py,...,P;) be a polynomial mapping from R" into R<.
Let deg(®) = max; <j<q deg(P;). Suppose Q € L' (S"1) and

Moo f(x) = sup %J flx=-2()Q(y)dy|. (2.6)
h>0 |yI<h

Then for every 1 < p < oo, there exists a constant Cp, > 0 which is independent of Q@ and
the coefficients of {P;} such that

luas fll, < CpllQlpsn-1) £l (2.7)
for every f € LP(R4).

To each polynomial mapping # = (Py,...,P;) : R" — R? with

deg?P=lma>§ideng=N, d>1,n=>2, (2.8)
<j=<

we define a family of measures
folal:1=01,...,N, ter} (2.9)

as follows.

For1<j<d,0<1l<NletP;=7Y,nCiay® and let Q! = (Q!,...,Ql) where
QL =3y Cjay™.

Now for 0 <1 <N and t € R, let 3! and A! be the measures defined in the Fourier
transform side by

15(5) = omig-qly) Q) 4y
(92) (8) lels?e |y|n-1 2t
20| 210
1505y — —emig-Qly 12(V) | dy
(At)(g) |y|s2‘e |y|"—1 ot
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The maximal functions ($!)* defined by
(997 (f)00) = sup [Arxf(x) |, (2.11)
€

forl=0,1,...,N.
For later purposes, we need the following definition.

DEFINITION 2.4. For each 1 <l < N, let N; = |[{x € N": |x| = l}| and let {«x €
N": || = 1} = {x1,...,n;}. For each 1 < | < N, define the linear transformations
LV :R4— Rand L;: R4 — RN by

d
L9E = (Crp i )& =1,y
l 1221( o) l (2.12)

Li(®) = (L (©),. Ly L (E)).
To simplify the proof of our result we need the following lemma.

LEMMA 2.5. Let {O‘tl :1=0,1,...,N, t € R} be a family of measures such that O‘to =0
forallt € R. LetD;: R" — R4, [ =0,1,...,N be linear transformations. Suppose that
forallteR andl=0,1,...,N, then

ol < (D),
My
(log[c2t | Dy(E) 1)

| (o) ()~ (o) (®) | < 2% |Di(¥)|.

(o)) (®)] <C

(2.13)

Then there exists a family of measures {vtl :l=1,...,N}ier such that

Vil < c),
My
(log[c2! |Dy(E) [

(V)| <C2"|Dy(E) |,

N

N _ 1

o => vl
=1

|(vHE | <c
(2.14)

PROOF. By|[5,Lemma 6.1], foreachl =1,...,N choose two nonsingular linear trans-
formations
Ap:R™W R4 B:RY— RY, (2.15)

such that
| Ayt Bi(E) | < |Di(E) | < N|Amtd  Bi(E)], EeR, (2.16)

where 7 (1) = rank(D;) and Tl'fl(l) is the projection operator from R4 into R*®.



ROUGH MARCINKIEWICZ INTEGRAL OPERATORS 499

Now choose n € C5’(R) such that n(t) =1 for |t| <1/2 and n(t) =0 for [t| = 1. Let
@(t) = ¢p(t?) and let

vH(E = (e)® [1 e(l2vA;md, B;(®)])

l<j<N

—(af® 1 e(2vA;m;,B;@©)])
l-1<j<N

(2.17)

with the convention [[jegza;=1,1<I<N.
Hence, one can easily see that {(rtl :l=1,...,N, t € R} is the desired family of
measures. O

Now for the boundedness of the maximal functions ($1)*,1=0,1,...,N, we have the
following lemma whose proof is an easy consequence of Lemma 2.3, polar coordinates
and Holder’s inequality:

LEMMA 2.6. Forl=1,...,N andp € (1, ), there exists a constant C,; which is inde-
pendent of the coefficients of the polynomial components of the mapping Q' such that

18 * £l = Coall £l (2.18)

3. Boundedness of some square functions. For a nonnegative C* radial function
® on R"™ with

supp(@)c{xeR":%slxlsZ}, medtzl, 3.1)
0

and for a linear transformation L : R" — R4, define the functions y;, t € R by (J;(y) =
D (2'L(y)).

For a family of measures {0 };cgr, real number u and € N, let J,, (f) be the square
function defined by

0 1/2
L) = (| ook pua < £ %at) (3.2

For such a square function we have the following theorem.

THEOREM 3.1. If {0} }cr is a family of measures such that the corresponding maxi-
mal function

a*(f)(x) = sup | lor] * f(x)] (3.3)

is bounded on LP (R9) for every 1 < p < o, then

05 ) = Cot 10 e s 0T (3.4

for every 1 < p < . Here Cp is a constant that depends only on p and the dimension
of the underlying space.
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PROOF. If sup;cg ll0¢|l = o0, then the inequality holds trivially. Thus we may assume
that sup;cp llotll < 0. In this case we follow a similar argument as in [4]. Let p > 2 and
q = (p/2)’. Choose a nonnegative function v € L1 with ||v Il = 1 such that

H\Ll,l(f)H; = .[uxd (.[700 [ o0 % Wigeu) * f(x) |2dt)v(x)dx. (3.5)
Thus it is easy to see that

WO <supllorll | [ T+ £ )P0 ) (-2)dzde
teR —o JRA

(3.6)

SSHDH@HJ [9(NH P (2)0* (v)(~2)dz,

ter R4
where

© ) 1/2

g = ([ v =reol®a) (3.7)
Now since [pa ¢ (x)dx = 0, it is well known that

gy <Cpllfll, Vi<p<oo (3.8)

with constant C, that depends only on p and the dimension of the underlying space.
Thus by (3.6) and Holder’s inequality we have

1L (O] < suplloe] g (H113]o* w)l,
teR (39)
< Gy sup||otl][0*| oy 11115

Hence our result follows by taking the square root on both sides. The case p < 2
follows by duality. O

4. Proof of the main theorem. Let @x > 0, Q € Wy(n). Let 9 = (Py,...,P3) be a
polynomial mapping from R” into R4 with deg® = maxi<j<qdegP; = N, whered > 1
and n > 2. For 0 <l <N let Nj, Q!, v}, A, and L, be as in Section 3.

The first step in our proof is to show that each 9!, 1 = 1,...,N satisfies the hypothe-
ses of Lemma 2.5, that is,

I|94] < c ), (4.1)
N M
)& | =C “ —, 4.2)
|8 ®] (log[c2t|Li(E)[])'
(9 @® - (91 ®) | <c2 L) |. 4.3)

One can easily see that (4.1) holds trivially. Using the cancellation property of Q,
it is easy to see that (4.3) holds. Thus, we need only to verify (4.2). To see that, we
notice that

~ 1 ) ¢ ,
[(81)(©®) ] SJ [Q(y") ] ‘ JO e 2RI qy | dor (). (4.4)

S'l’l—l
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Now the quantity & - Q!(2!vy’) can be written in the form
£-Q'(2Mry") =2"AGH(»') +E-R(2'ry"), 4.5)

where Q! is a homogeneous polynomial of degree [ with |G| = 1, R is a polynomial
of degree at most [ — 1 in the variable v,

Ny )
A= L7 ®] = N|Li(®) | (4.6)
i1

and «q,..., oy, are the constants that appeared in Section 2. Thus by van der Corput
lemma, we have

1
‘ J e—ZHiE.Ql(ZtTy')dT‘ < Cl’l’lil’l{l, (2”|Ll(§) | |Gl(y’) | )71/1} 4.7)
0
and hence
-1yl
‘ J»l e—Zﬂig'Ql(Zt”y,)dT‘ <C [log (¢ | Gl(y ) < )]1 o ’ (4.8)
0 (log[c2t|[Li(®)[]) ™

where C is a constant independent of t and &. Since Q € Wy(n), the estimate (4.2)
follows.
By Lemma 2.5, there exists a family of measures {vtl :l=1,...,N, t € R} such that

Vil < c), (4.9)
. M,
v | =<C = —, (4.10)
DO = e 2 L@ )
|V (&) | < c2k | Ly(E)], (4.11)
N
9N =>vi. 4.12)

=1
Also by Lemma 2.6 and the definition of vf (see the proof of Lemma 2.5), we have
O I, < Cpall fll, V1<p <oo. (4.13)

Now one can easily see that

N
27 Fy (x) = 9N % f(x) = D vi* f(x). (4.14)
1=1
Therefore,
N
1M £l < D 1IM5 S, (4.15)
1=1
where

© 1/2
Mglpf(x):(J |v§*f(x)|2dt) i (4.16)
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Thus to show the boundedness of My f, it suffices to show that
IM5.fll, < Coll fllp 4.17)

forpe (2+20)/(1+2x),2+2x), and forall I =1,...,N.
To show (4.17), we proceed as follows: let ® and y; be as in Section 3. Then

© © 2 172
MLf(x) = log2l<J J VEk Qe * f(x)du dt)
e (4.18)
slongJ SLf(x)du,
where
© 5 1/2
SLf(x) = (L [V Wi * f(x) | dt) . (4.19)
Now by (4.13) and Theorem 3.1, we have
ISt S, < Collf 1l (4.20)
for all p € (1,0) and for L = 1,...,N which in turn implies that
1
JflllSLfllpduﬂCpr\lp Vp € (1,0). 4.21)
On the other hand, if u > 1, by the estimate (4.11) we have
ISR = || IV £ P dedx
=[], @ELE)* |0 @171 @) | g
TR (4.22)

. ) log(2L/IL (§))~u
< Zzl—zluj ) | £ (&) (J dt) ag
R

log(1/2L L (E))-u

= 2log 222172 713,

Thus

[ISLAIl, < +/2log 2251 £11. (4.23)

By interpolating between (4.20) and (4.23) we get
IS8 f1l < Coa2? 21 £ 11 (4.24)

for all 1 < p < o and for some 9 = 6(p) > 0. Hence we have

[ Ustfily < Golipty tor pe 1,0 @.25)
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Finally, if u < —1, by the estimate (4.10) and similar argument as in the case of
u <1, we get

ISLFI, < Cllul) =1 Fl. (4.26)

By interpolating between (4.26) and any p € (1,c) in (4.20), we get that, if p €
(2+2x)/(1+2x),2 +2x) there exists > 0 such that

ISLA11, < Cp Qul) Pl £llp, (4.27)

which implies that

-1
L [1Sufll, dw < Gyl £l (4.28)

forpe (2+200)/(1+2x),2+2x).
Hence by combining (4.18), (4.21), (4.25), and (4.28) we get (4.17). O
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