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1. Introduction. The order of magnitude of the Fourier transforms (coefficients) of

Lipschitz functions on various domains is an active field of investigation. For example

in [9, 11] this problem was studied for Lipschitz functions on the groups SU(2) and

SU(1,1). In the present work we take the same problem for Lipschitz functions but

defined on SL(2,R), the special linear group of real matrices of order two. This note is

organized as follows: in Section 2, we give the necessary definitions and notation to be

employed in the sequel. In Section 3, we deal with the problem in the context of L2, the

space of square integrable functions on SL(2,R). The main conclusions obtained are

extended to functions in Lp , 1 < p ≤ 2 in Section 4. The closing Section 5 is devoted

to few remarks and comments pointing to possible further extensions.

2. Definitions and notation. We collect here the basic material needed for our work

in the sequel. In this noteG stands for the group SL(2,R) unless mentioned otherwise.

Our main sources of information on the groupG are [3, 5]. The treatment of the subject

matter is based on a suitable decomposition of G. Several decompositions of G are

available in the literature (see [3, page 199] and [5, page 351]). In particular, there is

the Iwasawa decomposition given as G =KAN , where

K =
[

cosθ sinθ
−sinθ cosθ

]
, 0< θ < 2π,

A=
[
eφ 0

0 e−φ

]
, 0<φ<π,

N =
[

1 t
0 1

]
, t ∈R.

(2.1)

Two other decompositions areG =K1AK2 andG =A1KA2, where K1, K2,A1, andA2

are similar copies ofK andA. The domain of parameters used in these decompositions

will be specified in due course. We emphasize here that the variety of decompositions

of G do not cause any annoyance to us, they give rise to different but equivalent Haar
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measures on G. Thus in the form G =KAN if f(g)∈ L1(G), g ∈G, then

∫
G
f(g)dg =

∫ 2π

0

∫∞
0

∫∞
0
f
(
uφ,at,nξ

)
et dφdtdξ, (2.2)

where uφ ∈K, at ∈A, and nξ ∈N , whereas if G =K1AK2, then (2.2) takes the form

∫
G
f(g)dg =

∫ 2π

0

∫∞
0

∫ 2π

0
f(g)sinhtdφdtdψ, (2.3)

here f(g)= f(uφ,at,uψ), (see [3, pages 251–252]).

We have dropped the normalizing factors from the integrals, their presence is not

necessary.

It is noted that in the second decomposition one domain [(0,∞)] is suppressed

into [0,2π]. This is immaterial here since the real line R is the product of the circle

group T and the group of integers Z which in turn has a compact dual (on which

our conclusions hold trivially) isomorphic to T according to the famous duality of

topological groups (see [1, Theorem 24.8, page 378]). So, it is enough to check the

validity of a certain conclusion for functions defined on the circle group T in order

to be convinced that it holds for functions defined on the real line. The interested

reader may consult [6, 7] to see that the theorems proved for Lipschitz functions

on the circle group (on the torus Tn in general) have exactly the same conclusions

as the theorems proved for Lipschitz functions on R (on the n-dimensional Euclidean

space Rn in general). It should be stressed, however, that one cannot suppress the two

infinite domains (0,∞) altogether, simply because G is noncompact (locally compact).

If one is obliged to do so, he must employ the structure theorem of topological groups

for instance. In the present work we take the decomposition G = A1HA2, where A1

and A2 are diagonal groups with parameters φ,ψ,0 ≤ φ, ψ ≤ 2π and H = H(θ) =
[ coshθ sinhθ

sinhθ coshθ ],−∞< θ <∞, (see [5, pages 351, 364]). In this decomposition we discarded

matrices of the forms [−1 0
0 −1] and [ 0 1

−1 0] since their presence has no significant bearing

on the present work. With these (so-called Euler) parameters the Haar integral on G
takes the form in (2.3).

Coming now to Lipschitz functions we recall that if f =f(x,y,z)∈Lp(R3) (Lp(T 3)),
then f is said to belong to the Lipschitz class Lip (α1,α2,α3,p), 1<p ≤ 2, 0<αi ≤ 1, if

∥∥∆h1∆h2∆h3f
∥∥
p =O

(
hα1

1 h
α2
2 h

α3
3

)
(2.4)

as hi→ 0, i= 1,2,3, where∆h1∆h2∆h3f stands for the successive differences of f with

steps h1, h2, and h3 in x, y , and z, respectively, ‖·‖p is the usual Lp norm. As was

shown in [6, 7]. This definition is equivalent to another one in which we take hi = h,

and 0<α=α1+α2+α3 ≤ 3. Thus (2.4) could be written as

∥∥∆h∆h∆hf∥∥p =O(hα). (2.5)

Besides its brevity the expression in (2.5) will facilitate the writing of the proof

considerably as will be seen. We start with the following definition.
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Definition 2.1. Let f(g)= f(φ,θ,ψ)∈ Lp(G), 1<p ≤ 2. Then f ∈ Lip(α,p,G) if

(2.5) holds as h→ 0, 0<α≤ 3.

One could still cast Definition 2.1 for increments hi, with 0<αi ≤ 1, i= 1,2,3 as in

(2.4) if necessary. In order to see the type of conclusions if (2.4) were to be employed,

the reader may refer to [6, 7] where he can find detailed analysis in connection with

the two alternatives (2.4) and (2.5).

Our next target in this section is to choose a suitable form of the group representa-

tion. Two basic forms are to be found in [3, pages 208–209] and in [5, page 359]. Thus

for a function f(g), g ∈G the representation in [3] is given by

(
Vgj,sf

)
(ξ)=

∣∣β̄ξ+ᾱ∣∣−2s
(
β̄ξ+ᾱ
|β̄ξ+ᾱ|

)2j
f (g−1 ·ξ), (2.6)

where g−1 ·ξ = (αξ+β)/(β̄ξ+ᾱ),

j = 0,
1
2
, s = 1

2
+iσ , σ ∈R. (2.7)

In [5, page 359] one finds the following

Tχ(g)f(x)= |βx+δ|2l sign(βx+δ)2εf
(
αx+γ
βx+δ

)
, (2.8)

where χ = (l,ε), l= 1/2+iλ, λ∈R, ε = 0,1/2.

Taking into account the way in which the matrix elements g and g−1 are defined

and comparing parameters carefully, one concludes that the two forms (2.6) and (2.8)

are exactly the same. In addition to (2.8) Vilenkin (see [5, page 361]) gives another

(yet equivalent) form of Tχ(g)f in terms of the Mellin transform F(λ) of f(x) (see [5,

pages 356–357]), for the definition of F(λ) for x > 0, x < 0, and for inversion formula

of the Mellin transform. Thus one has the following

Tχ(g)f(x)=Rχ(g)F(λ)=Rχ(g)
(
F+(λ),F−(λ)

)=
∫ a+i∞
a−i∞

K(λ,µ,g)F(µ)dµ, (2.9)

where K (called by Vilenkin the kernel of the group representation) is written as

K =
[
K++ K+−
K−+ K−−

]
. (2.10)

In this formulation Rχ(g)F+ is expressed in terms of two integrals containing K++,

K+−, whereas Rχ(g)F− is given by two integrals containing K−+ and K−−. A typical

component K++ of the kernel is given by (see [5, page 361])

K++(λ,µ,g)=
∫∞

0
xλ−1

∣∣∣∣αx+γβx+δ

∣∣∣∣
−µ

+
|βx+δ|2l sign2ε |βx+δ|dx. (2.11)

Since the three other components of K are defined basically by (2.11) with slight

changes in the sign of the variable x (which are immaterial in the present work),
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it turns out that if we succeed in solving our problem for K++, then virtually it is com-

pletely solved taking into account the decomposition G = A1HA2 and the fact that

for both A1(φ) and A2(ψ) the representations are given by eimφ and einψm, n ∈ Z,

respectively, we arrive finally at the cornerstone of the present analysis by tackling our

problem on the kernel K++ of Rχ(g)F+ which we denote by R+χ(g)F+ for brevity, viz.

R+χ (g)F+ = ei(mφ+nψ)
∫∞

0
K++(λ,µ,g)F(µ)dµ. (2.12)

It is (almost entirely) on this component that our analysis will be based. Thus, in

view of what has been already achieved, the only problem to be tackled is the effect

of Lipschitz conditions in the variable θ on the order of magnitude of the Fourier

transforms of functions in Lp(G). In [9, 11] we treated similar situations by proving a

lemma as a prelude to the main theorems. This is what we are going to do in the next

section also.

3. Main theorems. For brevity the Fourier transform of f will be denoted by f̂ .

As we mentioned earlier, we focus our attention on f(g) = f(φ,θ,ψ) as a function

of θ, since in terms of the variables φ and ψ the problem reduces simply to that of

functions of two variables in Lp(T 2) or in Lp(R2) and this has been already settled

(see [6, 7], for example). The Fourier transform of f(g) ∈ L1(G) is given as (see [3,

page 329])

f̂ (j,s)=
∫
G
f(g)Vj,sg−1dg, (3.1)

f̂ (n)=
∫
G
f(g)Ung−1dg. (3.2)

Here (3.1) and (3.2) give the contributions to f̂ by the principal continuous series

and the discrete series of the representation (no contribution by the complementary

continuous series). We will leave (3.2) aside for a while and will return to it after

we have finished with (3.1). Firstly, taking into consideration the decomposition G =
A1(φ)H(θ)A2(ψ) and viewing f(g) as a function of θ, we can write (3.1) as follows:

f̂ (j,s)= f̂ (ε,l)=
∫∞

0
f(θ)

(∫∞
0
K++(λ,µ,H(θ))F(µ)dµ

)
sinhθdθ. (3.3)

Turning to K++ and replacing α, β, γ, and δ in (2.11) by their corresponding param-

eters in H(θ) we see that (see [5, page 365, equation (3)])

K++ =
∫∞

0
xλ−1(x coshθ+sinhθ)−µ(x sinhθ+coshθ)2l+µdx. (3.4)

It is obvious that as a function of θ, K++ =O(coshθ)2l. This can also be seen easily

from (2.11), since the only part (in the integral) which contributes to this order of mag-

nitude is |βx+δ|2l. We emphasize that this estimate for K++ is shared by all the other

components of the kernel K. Strictly speaking, if we are able to settle our problem for

K++, then we are completely done with the whole issue. Observe that one could have

as well estimated K++ by O(sinhθ)2l, but this would create unnecessary difficulties
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(cothθ goes to infinity as θ approaches zero). We now take K++ = B(coshθ) = B(y)
for brevity and proceed by proving the following lemma.

Lemma 3.1. Let f(g) = f(·,θ,·) belong to L1(G). Then |∆hf̂ | = |f(θ+h)−f(θ̂) =
O(hf̂ ).

Proof. With the new notation for K++, the transform of ∆hf(θ) is

∫∞
0

∣∣f(θ+h)−f(θ)∣∣B(coshθ)sinhθdθ; (3.5)

by a slight change of variables (3.5) is equal to

∫∞
1

∣∣f(y+h)−f(y)∣∣B(y)dy
=
∫∞

1

∣∣f(y)∣∣(B(y−h)−B(y))dy
=O

∫∞
1

∣∣f(y)∣∣((y−h)2l−y2l)dy
=O

∫∞
1

∣∣f(y)∣∣y2l
((

1− h
y

)2l
−1
)
dy.

(3.6)

Since (1−h/y)2l−1 = 1− (2lh/y)−1+ terms of higher order in h which can be

neglected, and since 1/y is bounded near 1 and ∞, the last integral is majorized by a

constant multiple of the integral

h
∫∞

1
f(y)B(y)dy =O(hf̂ ). (3.7)

This proves the lemma. At this point it should be recalled that f̂ (j,s) = f̂ (ε,l)
given by (3.3) splits actually into two integrals corresponding to ε = 0, and ε = 1/2,

respectively. A careful examination of the definition of K++ as well as the proof of

Lemma 3.1 shows that these two values of ε have no bearing on the main lines of the

proof. In view of this we can simplify our notation by discarding the parameter ε and

writing f̂ = f̂ (l) which can be expressed as follows

f̂ (l)=
∫ 2π

0

∫∞
0

∫ 2π

0
f(φ,θ,ψ)ei(mφ+nψ)

[∫∞
0
K++F(ψ)dµ

]
sinhθdφdθdψ. (3.8)

Integrals corresponding to K+−, . . . can be expressed in a similar fashion.

We are now ready to prove the following theorem.

Theorem 3.2. Let f(g) belong to L2(G) such that

∥∥∆h∆h∆hf∥∥2 =O
(
hα
)
,

1
2
<α≤ 3, h �→ 0. (3.9)

Then ∫∞
λ

∥∥f̂ (1)∥∥2
2 λtanhπλdλ=O(λ−2α) (3.10)

as λ→∞ and conversely.
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Proof. It is well known (see [6, 7], for example) that the Lipschitz conditions on f
with respect to φ and ψ result in the multiplicative factor

eij(mφ+nψ)/2 sin
mh
2

sin
nh
2

(3.11)

which has a modulus of the order of |mnh2|, 0<m, n< 1/h. The effect of Lipschitz

condition in θ is given by Lemma 3.1. Putting all these results together one finds

that |∆h∆h∆hf̂ | =O|mnh3f̂ |. Applying the Parseval’s identity (see [3, page 346]) we

obtain

∫∞
0

M∑
m=1

N∑
n=1

∣∣mnh3f̂
∣∣2λtanhπλdλ=O(h2α),

∫∞
0

M∑
1

N∑
1

|mnf̂ |2λtanhπλdλ=O(h2α−6).
(3.12)

Recalling that tanhπλ → 1 as λ → ∞ and appealing to the proof of [4, Theorem 85,

page 117] (see also [6, 7]), with the observation that m, n, and λ approach infinity at

the same rate we conclude that

∫∞
X

∞∑
m>|X|

∞∑
n>|X|

∣∣mnf̂∣∣2λtanhπλdλ=O(X6−2α) (3.13)

or equivalently (by a straightforward partial summation argument)

∫∞
X

∞∑
X

∞∑
X
|f̂ |2λdλ=O(X2−2α),

∫∞
X

∞∑
X

∞∑
X
|f̂ |2dλ=O(X1−2α) (3.14)

as X →∞. The condition α> 1/2 gives the convergence of the left-hand side of (3.14),

and thus the first part of the theorem is proved. To prove the converse one could

resort to the corresponding part in [5, page 117] and in more details to [6, 7], this part

of the proof will not be given here.

It must have been clear by now that one can obtain the same result for the second

component of f̂ given by (3.2), namely f̂ (n) by just replacing integration in (3.14) by

yet another summation and tackling the relevant part of the Parseval’s identity. Thus

by these remarks and illustrations the theorem is valid for the three components

of f̂ . This completes the proof. In fact, one can go few steps forward. Firstly, since

(3.14) applies to each component of f̂ , it applies to their sum also in the sense of the

Parseval’s identity. Another point is that because K−+, K+−, K−− are either zero (see

[5, page 365]) or have similar structures of K++, one can obtain in each individual case

exactly the same conclusions already obtained for K++, thus proving the theorem in

its full generality.

We like to indicate that whether one works with Rχ(g) or with Tχ(g) the conclusion

of Theorem 3.2 is the same, simply because in both cases the Lipschitz conditions in

φ, θ, and ψ have not much to do with other parameters, however, we feel that Rχ
is more compact and lends itself easily to the present analysis more than Tχ . This
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easiness comes mainly from the role of the Mellin transform in Rχ . Another point is

that one could have easily applied (2.4) in the proof; eventually this would have given

estimates of the form

∫∞
X

∞∑
M

∞∑
N
|f̂ |2λdλ=O(M−2α1N−2α2X2−2α3

)
,

∫∞
X

∞∑
M

∞∑
N
|f̂ |2dλ=O(M−2α1N−2α2X2−2α3

)
,

(3.15)

as M , N , and X →∞, along with the condition α3 > 1, α3 > 1/2 for the boundedness

of the left-hand sides of (3.15), respectively. The proof in this case can be carried out

with no difficulty, except for some technical complications.

Remark 3.3. We hinted earlier that Lipschitz functions in Lp(Tn) and in LR(Rn)
yield the same conditions for the boundedness of their Fourier coefficients (trans-

forms) in certain function spaces, we explained that on the grounds of duality and

structure theorems for locally compact groups. Here we meet a similar situation in

the sense that for the Lipschitz functions on SU(2), on SU(1,1), and on SL(2,R) the

conditions as well as the conclusions of the main theorems are the same apart from

the increasing generality from Jacobi polynomials on SU(2), through the Jacobi func-

tions on SU(1,1) to the hypergeometric functions on SL(2,R). This is not surprising

since, in the integral representation of these three functions, it is the |Bx+δ|2l which

plays the essential role in connection with the effect of Lipschitz conditions on the

order of magnitude of the Fourier transforms. For more on the integral representa-

tions of these functions one may consult [5, Chapters 3, 6, 7]. We remark here that in

[9, 11] both the Jacobi polynomials and functions appeared in our estimates, whereas

in here we have deliberately avoided the use of the hypergeometric functions and

preferred (for ease and smoothness of some expressions) to work directly with K++.

For rather complicated relations between the various components K++,K+−, . . . and

hypergeometric functions the interested reader may refer to [5, page 365].

Remark 3.4. So far we have worked with a decomposition ofG characterized by the

Euler angles as the group parameters. The natural question arises as to the capability

of carrying the present analysis on the Iwasawa decomposition: G = KAN . We do

conjecture that the answer will be in the affirmative. We support this by emphasizing

that on the subgroup A the problem boils down to the order of magnitude of the

Mellin transforms of Lipschitz functions, a problem which was studied in [8]. On the

subgroupN the question reduces to the Radon transforms of certain Lipschitz classes.

The close relation between these two transforms and the ordinary Fourier transform

would enhance our surmise that in the Iwasawa decomposition ofG the above analysis

is quite amenable to be fully implemented without difficulty.

4. Further extensions. In this section we try to extend Theorem 3.2 to Lipschitz

functions in Lp(G), 1 < p ≤ 2. Here one invokes the Hausdorff-Young inequality

instead of the Parseval’s identity. In contrast with the L2 theory, our problem is not

reversible in Lp(G). Now we state the following theorem.
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Theorem 4.1. Let f(g) belong to Lp(G), 1 < p ≤ 2, such that (2.5) is satisfied for

1/p < α≤ 3. Then each component of f̂ belongs to Lr (Ĝ) for

3p(αp+3p−4) < r ≤ p′ = p
(p−1)

, (4.1)

where Ĝ is the group dual to G.

The proof will not be given in detail; it is modeled on that of Theorem 3.2 the main

equations in the argument are

∫∞
0

∞∑
1

∞∑
1

∣∣mnh3f̂
∣∣p′λtanhπλdλ=O(hαp′),

∫ λ
0

M∑
1

N∑
1

|mnf̂ |p′λtanhπλdλ=O(hαp′−3p′)=O(X3p′−αp′),
∫ λ

0

M∑
1

N∑
1

|f̂ |p′λtanhπλdλ=O(Xp′−αp′),

(4.2)

or equivalently ∫ λ
0

M∑
1

N∑
1

|f̂ |p′dλ=O(Xp′−αp′−1), (4.3)

where M , N , and λ=O(X) near infinity.

Hölder’s inequality when applied to (4.2) and (4.3) for r < p′ yields the conditions,

4p/(αp+3p−4) < r ≤ p′, 3p/(αp+3p−4) < r ≤ p′, respectively, for the bounded-

ness of the last estimates, this completes the proof. We close this section by indicating

that most of the comments and ramifications mentioned in the last section are valid

here too with the necessary modifications and therefore will not be repeated again.

5. Concluding remarks. We first hint that in view of their generality, the theorems

proved in the present work embrace all those already worked out in [9, 11]. This is

simply because the representation (especially their matrix elements) of SU(2) and

SU(1,1) are just special cases of those for SL(2,R). In addition, the present analysis

is applicable for the Lorentz group G(2) without much effort (see [3, page 205]) for

the relation between G(2) and SL(2,R).
Since the kernel φ(g,s) (see [3, page 349]) of the spherical Fourier transform on

SL(2,R) (SU(1,1)) is a special form of the matrix element Tχ(g) (in fact it is a special

form of theK++, . . . ), hence the order of magnitude of the spherical-Fourier transforms

of Lipschitz functions is automatically included in the above results. We shall not deal

with that question here. For more information in this direction one may consult [10],

where the spherical-Fourier transforms of Lipschitz classes on the hyperbolic plane

(which is isomorphic to the unit disc with its Riemannian structure as a homogeneous

space associated with the group SU(1,1)) is studied.

The rich variety of the special subgroups of G such as those given by [α B0 8 ], [
1 B
0 1 ],

[α 0
γ δ], and so forth, leads to numerous classes of functions along with some of their

integral representations (transforms). The Mellin, the Radon, and the Mehler-Fock
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transforms are just few examples. See [5, page 541] for the definition of the Mehler-

Fock transforms.

It is well known that for smooth functions defined on non-abelian groups (cf. [2])

there are several criteria for the absolute convergence (and for the order of magni-

tude) of their Fourier transforms (coefficients). In [11], we worked out some of these

criteria for the Jacobi polynomials. Here, one could do the same thing for the various

components of f̂ , however, we will not go into these issues here, one may refer to [11]

for more on this topic.

We have employed here the rather conventional Lipschitz class Lip(α,p). For more

general spaces (Lorentz, Besov, Nikolski, and Herz, to mention a few) the present

treatment would lead to interesting results. This task needs a lot of preparation and

will be studied in a forthcoming paper. Still, a more formidable and overwhelming task

lies ahead; the extension of our conclusions to Lipschitz functions on more general

groups (SU(m,n), SO(n), SP(p,q), and semi-simple Lie groups) and on SL(n,R) in

particular. In the Iwasawa decomposition KAN of this group the analysis on A would

amount to an n-dimensional Mellin transform, a problem which is easily manageable

within the framework of the above analysis. On K and N , however, things seem to

be rather vague, especially the structure of the kernel of representation K and its

components in case of an n×n matrix with trigonometric or hyperbolic entries. One

has a strong feeling that this would lead to a higher order of complexity (generalized

hypergeometric functions and the so called ultra spherical functions) in the functions

treated on SL(2,R).
Although a decomposition of SL(n,R) amenable to the usage of Euler parameters

would make the problem more akin to an easier approach, where in that decomposi-

tion the elements of the representations corresponding to the φ’s and ψ’s are simply

those obtained for the Euclidean Fourier analysis (exponential functions of several

variables). There still remains the main hurdle (bête noire) of finding the kernel K
along with its nonvanishing components. We hope to have some progress on these

issues along with the treatment of the present subject for Lipschitz functions on

MH(2), the group of motions in the pseudo Euclidean plane andMH(n), the group of

hyperbolic rotations of the n-dimensional Euclidean space (see [5, Chapters 5, 8, 10]).
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