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Abstract. We discuss some properties of the Banach-valued sequence space �p[X] (1 ≤
p < ∞), the space of weakly p-summable sequences on a Banach space X. For example,
we characterize the reflexivity of �p[X], convergent sequences on �p[X], and compact
subsets of �p[X].
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1. Introduction. It is known that the general theory of scalar-valued sequence spa-

ces (SVSS) plays an important role in the theory of topological vector spaces (cf.

[11, 21]). Furthermore, the theory of generalized sequence spaces, or vector-valued

sequence spaces (VVSS) (cf. [10, 18, 24]) which has emerged as an outgrowth of the

development of SVSS also plays an important role in the theory of locally convex

spaces, especially in the investigation of nuclear spaces through λ-summing opera-

tors (cf. [3, 4, 5, 19, 20]). For example, Pietsch [19, 20] characterized a nuclear locally

convex space X in terms of the absolutely p-summable sequence space �p(X) and the

weakly p-summable sequence space �p[X]. Because of Pietsch’s work, people began to

be interested in the properties of the spaces �p(X) and �p[X]. Some results about the

space �p(X) are presented (cf. [1, 2, 6, 7, 8, 12, 14, 15, 16, 17]). But few results about

the space �p[X] have been presented for a long time. Recently, Wu and Bu [26] have

shown a representation of the Köthe dual of the space �p[X] and a characterization

that �p[X] is a Grothendieck space. Gupta and Bu [9] have characterized GAK-ness of

the space �p[X] in terms of the (q)-property of a Banach space X for 1<p <∞, and

in terms of non-containment of c0 of X for p = 1 (a locally convex space containing

no copy of c0 has a number of nice properties, cf. [13, 25]).

In Section 3, by the definitions and basic results given in [9, 26], we characterize the

GAK-ness of the space �p[X] in terms of the Köthe dual �p[X]× and the topological

dual �p[X]∗ of �p[X]. Then by using this result, we characterize the reflexivity of the

space �p[X] in terms of the reflexivity and (q)-property of a Banach space X. This

result shows that the characterization of the reflexivity of the space �p[X] is different

from the characterization of the reflexivity of the space �p(X) (the reflexivity of �p(X)
is discussed in [12]).

In Section 4, by using the characterization that �p[X] is a GAK-space (cf. [9]) and

some properties about Köthe dual of �p[X] (cf. [26]), we characterize convergent

sequences of �p[X] with respect to the norm topology and with respect to the weak

topology.
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In Section 5, by using the results in Section 4, we characterize compact subsets of

�p[X] and relatively weakly sequentially compact subsets of �p[X].

2. Concepts and basic results. Throughout this paper, we denote a Banach space

by X and its topological dual by X∗. Then (X,X∗) forms a dual pair (cf. [23]). We

denote the strong topology and the weak topology with respect to the dual pair (X,X∗)
by β(X,X∗) and σ(X,X∗), respectively. BX stands for the closed unit ball of X. For

1≤ p <∞, we introduce the Banach-valued sequence space �p[X], the space of weakly

p-summable sequences on X, that is,

�p[X]=
{
x̄ = (xi)i ∈XN :

∑
i≥1

∣∣f (xi)∣∣p <∞ ∀f ∈X∗
}

(2.1)

and introduce a norm ‖·‖p on �p[X], that is,

‖x̄‖p = sup




∑
i≥1

∣∣f (xi)∣∣p

1/p

: f ∈ BX∗

. (2.2)

Then (�p[X],‖·‖p) is a Banach space (cf. [9, 26]). By the results in [9], we have another

form about �p[X] and ‖·‖p as follows.

Proposition 2.1. The space of weekly p-summable sequences on X has the form

�p[X]=
{
x̄ = (xi)i ∈XN :

∑
i≥1

tixi converges ∀(ti)i ∈ �q
}
. (2.3)

and for each x̄ ∈ �p[X],

‖x̄‖p = sup



∥∥∥∥∥∥
∑
i≥1

tixi

∥∥∥∥∥∥ :
(
ti
)
i ∈ B�q


. (2.4)

Here the space �q, denotes the dual space of �p for 1<p <∞ (i.e., 1/p+1/q = 1), and

denotes the space c0 for p = 1.

It is easy to see that the coordinate projections

Pi : �p[X] �→X, Pi(x̄)= xi for i= 1,2, . . . (2.5)

are continuous. For x̄ ∈XN, we introduce the symbols

x̄(i≤n)= (x1,x2, . . . ,xn,0,0, . . .
)
; x̄(i > n)= (0, . . . ,0,xn+1,xn+2, . . .

)
. (2.6)

Definition 2.2. The Banach-valued sequence space �p[X] is called a GAK-space if

for all x̄ ∈ �p[X], limn‖x̄(i > n)‖p = 0 (cf. [9, 10, 26]).

We denote the GAK-subspace of �p[X] by �p[X]G, that is,

�p[X]G =
{
x̄ ∈ �p[X] : lim

n

∥∥x̄(i > n)∥∥p = 0
}
. (2.7)
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The Köthe dual of �p[X] with respect to the dual pair (X,X∗) is denoted by

�p[X]×|(X,X∗) (cf. [10, 26]), that is,

�p[X]×|(X,X∗) =
{
f̄ = (fi)i ∈X∗N :

∑
i≥1

∣∣fi(xi)∣∣<∞ ∀x̄ ∈ �p[X]
}
. (2.8)

We denote �p[X]×|(X,X∗) simply by �p[X]× if the meaning is clear from the context.

Proposition 2.3. The Köthe dual of �p[X]× is

(
�p[X]×|(X,X∗)

)×|(X∗,X∗∗) = �p[X∗∗]. (2.9)

Proof. See [26].

For x̄ ∈ �p[X] and f̄ ∈ �p[X]×, define

〈
x̄, f̄

〉
=
∑
i≥1

fi
(
xi
)
. (2.10)

Then (�p[X],�p[X]×) forms a dual pair with respect to the bilinear functional 〈·,·〉
defined in (2.10). And for each f̄ ∈ �p[X]×,〈·, f̄ 〉 is a linear functional on �p[X]. Fur-

thermore, we have the following proposition.

Proposition 2.4. For each f̄ ∈ �p[X]×, 〈·, f̄ 〉 is a continuous linear functional on

(�p[X],‖·‖p), that is,

〈
·, f̄

〉
∈ (�p[X],‖·‖p)∗ := �p[X]∗. (2.11)

Proof. For f̄ ∈ �p[X]×, n∈N, define the linear functionals F and Fn on �p[X] by

F(x̄)=
∑
i≥1

fi
(
xi
)
, Fn(x̄)=

n∑
i=1

fi
(
xi
)
. (2.12)

Then it is easy to see that Fn ∈ �p[X]∗ and for each x̄ ∈ �p[X], limnFn(x̄)= F(x̄). So

the Banach-Steinhaus theorem (cf. [23, page 137]) implies that F ∈ �p[X]∗.

By Proposition 2.4, the space �p[X]× can be considered as a subspace of �p[X]∗,

that is,

�p[X]× ⊆ �p[X]∗. (2.13)

Now denote the dual norm of ‖ · ‖p on the dual space �p[X]∗ by ‖ · ‖∗p . Then we

have the following proposition belonging to [26].

Proposition 2.5. For 1<p <∞, (�p[X]×,‖·‖∗p) is a GAK-space.

By [26, Lemma 1] and [10, Corollary 4.9], we have the following two propositions.
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Proposition 2.6. For 1≤ p <∞,

�p[X]× =
(
�p[X]G

)× = (�p[X]G,‖·‖p)∗ := (�p[X]G)∗. (2.14)

Proposition 2.7. If a Banach-valued sequence space (λ[X],‖·‖) is both a Banach

space and a GAK-space, then (λ[X],‖·‖)∗ = λ[X]×|(X,X∗).

Definition 2.8. For 1< q ≤∞, a Banach space X is said to have the (q)-property

if the following two statements about a sequence {xi}∞1 in X are equivalent:

(i)
∑
i≥1 tixi converges for each (ti)i ∈ �q;

(ii)
∑
i≥1 tixi converges uniformly for all (ti)i ∈ B�q .

Swartz [22] has proved that every Banach space has the (∞)-property. More results

about (q)-property can be seen in [9]. For 1 < p < ∞, let q be its conjugate, that is,

1/p+1/q = 1. Then we have the following proposition which belongs to [9].

Proposition 2.9. The space �p[X] (1<p <∞) is a GAK-space if and only if X has

the (q)-property.

3. Reflexivity

Lemma 3.1. For a sequence x̄ ∈ �p[X], define a linear map

Ix̄ : �p[X]× �→ �1, Ix̄
(
f̄
)= (fi(xi))i. (3.1)

Then Ix̄ is σ(�p[X]×,�p[X])-σ(�1,�∞) continuous.

Proof. The proof can be easily completed and so is omitted.

Lemma 3.2. Let f̄ (n) = (f (n)i )i ∈ �p[X]× such that {f̄ (n)}∞1 is σ(�p[X]×,�p[X])-
bounded. If for each i∈N, there exists fi in X∗ such that σ(X∗,X)- limnf

(n)
i = fi, then

f̄ = (fi)i ∈ �p[X]×.

Proof. Let x̄ ∈ �p[X]. By Lemma 3.1, {(f (n)i (xi))i}∞n=1 is a σ(�1,�∞)-bounded sub-

set of �1 and hence, is β(�1,�∞)-bounded. Thus

M = sup
n≥1

∑
i≥1

∣∣∣f (n)i
(
xi
)∣∣∣<∞. (3.2)

Fix m ∈ N. Since σ(X∗,X)- limnf
(n)
i = fi for each i ∈ N, there exists an n ∈ N such

that ∣∣∣f (n)i
(
xi
)−fi(xi)∣∣∣< 1

m
, i= 1,2, . . . ,m. (3.3)

So
m∑
i=1

∣∣fi(xi)∣∣≤ m∑
i=1

∣∣∣f (n)i
(
xi
)−fi(xi)∣∣∣+ m∑

i=1

∣∣∣f (n)i
(
xi
)∣∣∣< 1+M. (3.4)

Since m is arbitrary in N,
∑
i≥1|fi(xi)|<∞. Thus we have proved that f̄ ∈�p[X]×.

Theorem 3.3. For 1≤ p <∞, the following hold:

(i) �p[X]× is a closed subspace of �p[X]∗;
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(ii) for each x̄ ∈ �p[X],

‖x̄‖p = sup
{∣∣∣〈x̄, f̄〉∣∣∣ : f̄ ∈ �p[X]×,

∥∥∥f̄∥∥∥∗
p
≤ 1

}
; (3.5)

(iii) �p[X]× = �p[X]∗if and only if �p[X] is a GAK-space.

Proof. (i) To prove that �p[X]× is a closed subspace of �p[X]∗, we only need to

prove that �p[X]× is complete with respect to the norm ‖·‖∗p .

Let {f̄ (n)}∞1 be a Cauchy sequence in (�p[X]×,‖·‖∗p). By the continuity of the coor-

dinate projections from (�p[X]×,‖·‖∗p) to X∗, {f (n)i }∞n=1 is a Cauchy sequence in X∗

for each i ∈ N. Thus the completeness of X∗ implies that there exist fi in X∗ such

that limnf
(n)
i = fi for each i ∈ N. So f̄ = (fi)i ∈ �p[X]× by Lemma 3.2. Next we will

prove that limn f̄ (n) = f̄ .

Fix x̄ ∈ �p[X]. By Lemma 3.1, {(f (n)i (xi))i}∞n=1 is a σ(�1,�∞)-Cauchy sequence in

�1 and hence, is β(�1,�∞)-Cauchy. So for any given ε > 0, there exists an n0 ∈N such

that for n>n0, ∑
i≥1

∣∣∣f (n)i
(
xi
)−f (n0)

i
(
xi
)∣∣∣< ε

4
. (3.6)

Since f̄ , f̄ (n0) ∈ �p[X]×, there exists an i0 ∈N such that

∑
i>i0

∣∣fi(xi)∣∣< ε
4
,

∑
i>i0

∣∣∣f (n0)
i

(
xi
)∣∣∣< ε

4
. (3.7)

And furthermore, since limnf
(n)
i = fi for each i ∈ N, there exists an n1 ∈ N with

n1 >n0 such that for n>n1,

∣∣∣f (n)i
(
xi
)−fi(xi)∣∣∣< ε

4i0
, i= 1,2, . . . , i0. (3.8)

So for n>n1, we have

∣∣∣〈x̄, f̄ (n)− f̄〉∣∣∣≤ i0∑
i=1

∣∣∣f (n)i
(
xi
)−fi(xi)∣∣∣+∑

i>i0

∣∣∣f (n)i
(
xi
)−f (n0)

i
(
xi
)∣∣∣

+
∑
i>i0

∣∣∣f (n0)
i

(
xi
)∣∣∣+∑

i>i0

∣∣fi(xi)∣∣< ε.
(3.9)

It follows that weak∗- limn f̄ (n) = f̄ . Note that {f̄ (n)}∞1 is Cauchy. So limn f̄ (n) = f̄ .

Therefore, we have proved that (�p[X]×,‖·‖∗p) is complete and (i) follows.

(ii) Let x̄ ∈ �p[X] and q the conjugate of p, that is, 1/p+1/q = 1. Then

‖x̄‖p = sup




∑
i≥1

∣∣∣f (xi)∣∣∣p

1/p

: f ∈ BX∗



= sup

{∣∣∣∣∣∑
i≥1

tif
(
xi
)∣∣∣∣∣ : f ∈ BX∗ ,

(
ti
)
i ∈ B�q

}
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= sup
{∣∣∣〈x̄,(tif )i〉∣∣∣ : f ∈ BX∗ ,

(
ti
)
i ∈ B�q

}

≤ sup
{∣∣∣〈x̄, f̄〉∣∣∣ : f̄ ∈ �p[X]×,

∥∥∥f̄∥∥∥∗
p
≤ 1

}
(3.10)

since (tif )i ∈ �p[X]× and ‖(tif )i‖∗p ≤ 1 for each (ti)i ∈ B�q and for each f ∈ BX∗ . On

the other hand,

‖x̄‖p = sup
{∣∣〈x̄,F〉∣∣ : F ∈ �p[X]∗, ‖F‖∗p ≤ 1

}
≥ sup

{∣∣∣〈x̄, f̄〉∣∣∣ : f̄ ∈ �p[X]×,
∥∥∥f̄∥∥∥∗

p
≤ 1

}
.

(3.11)

So (ii) follows.

(iii) If �p[X] is a GAK-space, it follows from Proposition 2.6 that �p[X]× = �p[X]∗.

On the other hand, suppose that �p[X]× = �p[X]∗. Fix x̄ ∈ �p[X]. By Lemma 3.1 and

the Banach-Alaoglu theorem (cf. [23, page 130]),

{
Ix̄
(
f̄
)

: f̄ ∈ �p[X]×,
∥∥∥f̄∥∥∥∗

p
≤ 1

}
(3.12)

is a σ(�1,�∞)-compact subset of �1. So by [11, Proposition 6.11, page 108],

lim
n

sup



∣∣∣∣∣∣
∑
i>n
fi
(
xi
)∣∣∣∣∣∣ : f̄ ∈ �p[X]×,

∥∥∥f̄∥∥∥∗
p
≤ 1


= 0. (3.13)

It follows from (ii) that limn‖x̄(i > n)‖p = 0. Thus we have proved that �p[X] is a

GAK-space and hence, (iii) follows.

Lemma 3.4. Let (X,‖·‖) be a reflexive Banach space and Y a closed subspace of X.

If (Y ,‖·‖)∗ = (X,‖·‖)∗, then Y =X.

Proof. The proof can be easily completed and so is omitted.

Theorem 3.5. The Banach space �p[X] (1<p <∞) is a reflexive space if and only if

(i) X is a reflexive space; and

(ii) �p[X] is a GAK-space.

Proof. Suppose that (i) and (ii) hold. By Theorem 3.3, �p[X]× = �p[X]∗. Moreover,

by Propositions 2.5 and 2.7,

(
�p[X]×

)×∣∣
(X∗,X∗∗) =

(
�p[X]×,‖·‖∗p

)∗ = (�p[X]∗,‖·‖∗p)∗ := �p[X]∗∗. (3.14)

So by Proposition 2.3, �p[X∗∗] = �p[X]∗∗. It follows from (i) that �p[X] = �p[X]∗∗.

So �p[X] is a reflexive space.

On the other hand, suppose that �p[X] is a reflexive space. Since X is isometrically

isomorphic to a subspace of �p[X], (i) holds.

Now, by Propositions 2.3, 2.5, and 2.7,

(
�p[X]×,‖·‖∗p

)∗ = (�p[X]×)×∣∣(X∗,X∗∗) = �p[X∗∗]. (3.15)
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Since X and �p[X] are reflexive,

(
�p[X]×,‖·‖∗p

)∗ = �p[X∗∗]= �p[X]= (�p[X]∗,‖·‖∗p)∗. (3.16)

It follows from Lemma 3.4 that �p[X]× = �p[X]∗. Thus (ii) holds by Theorem 3.3.

Now by Proposition 2.9, we have the following theorem.

Theorem 3.6. The Banach space �p[X] is a reflexive space if and only if the Banach

space X is both a reflexive space and has the (q)-property (1<p <∞, 1/p+1/q = 1).

4. Convergent sequences

Lemma 4.1. Let x̄ ∈ �p[X] (1≤ p <∞). Then limn‖x̄(i≤n)‖p = ‖x̄‖p .

Proof. By Proposition 2.1,

‖x̄‖p = sup



∥∥∥∥∥∥
∑
i≥1

tixi

∥∥∥∥∥∥ :
(
ti
)
i ∈ B�q


,

∥∥x̄(i≤n)∥∥p = sup



∥∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥∥ :
(
ti
)
i ∈ B�q


.

(4.1)

It is easy to see that ‖x̄(i≤n)‖p ≤ ‖x̄(i≤n+1)‖p . So {‖x̄(i≤n)‖p}∞n=1 is an increasing

sequence. Note that supn≥1‖x̄(i≤n)‖p = ‖x̄‖p . Hence limn‖x̄(i≤n)‖p = ‖x̄‖p .

Theorem 4.2. Let x̄(n), x̄ ∈ �p[X] (1≤ p <∞). Then

lim
n
x̄(n) = x̄ (4.2)

is equivalent to

(i) limnx
(n)
i = xi for each i∈N; and

(ii) limn‖x̄(n)(i > m)‖p = ‖x̄(i > m)‖p for each m ∈ N, if and only if �p[X] is a

GAK-space.

Proof. (⇐) Suppose that limn x̄(n) = x̄. Then (i) and (ii) hold obviously from the

continuity of the coordinate projections Pi and the norm ‖ ·‖p . On the other hand,

suppose that (i) and (ii) hold. We will prove that limn x̄(n) = x̄.

Fix ε > 0. Since �p[X] is a GAK-space, there exists an m0 ∈N such that

∥∥x̄(i >m0
)∥∥
p <

ε
4
. (4.3)

By (i) and (ii), there exists n0 ∈N such that for n>n0,

∥∥∥x(n)i −xi
∥∥∥< ε

4m0
, for i= 1,2, . . . ,m0,

∣∣∣∥∥x̄(n)(i >m0
)∥∥
p−

∥∥x̄(i >m0
)∥∥
p

∣∣∣< ε
4
.

(4.4)
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So for n>n0, we have∥∥x̄(n)− x̄∥∥p=∥∥x̄(n)(i≤m0
)+ x̄(n)(i >m0

)− x̄(i≤m0
)− x̄(i >m0

)∥∥
p

≤
∥∥x̄(n)(i≤m0

)− x̄(i≤m0
)∥∥
p+

∥∥x̄(n)(i >m0
)∥∥
p+

∥∥x̄(i >m0
)∥∥
p

≤
m0∑
i=1

∥∥∥x(n)i −xi
∥∥∥+∣∣∣∥∥x̄(n)(i >m0

)∥∥
p−

∥∥x̄(i>m0
)∥∥
p

∣∣∣+2
∥∥x̄(i>m0

)∥∥
p

<ε.

(4.5)

Thus we have proved that limn x̄(n) = x̄ and the sufficiency is proved.

(⇒) For any given x̄ ∈ �p[X], we want to show that

lim
n

∥∥x̄(i > n)∥∥p = 0. (4.6)

Let x̄(n) = x̄(i ≤ n). Then for each i ∈ N, x(n)i = xi if n > i. So x̄(n) and x̄ satisfy

condition (i). Now for each m∈N, by Lemma 4.1, limn‖x̄(n)(i >m)‖p = limn‖x̄(m<
i ≤ n)‖p = ‖x̄(i > m)‖p . So x̄(n) and x̄ satisfy condition (ii). Thus (i) and (ii) imply

that limn‖x̄(n)− x̄‖p = 0. Hence

lim
n

∥∥x̄(i > n)∥∥p = lim
n

∥∥x̄(n)− x̄∥∥p = 0. (4.7)

Therefore, we have proved that �p[X] is a GAK-space and the necessity is proved.

Corollary 4.3. Let x̄(n), x̄ ∈ �p[X]G (1≤ p <∞). Then

lim
n
x̄(n) = x̄ (4.8)

if and only if

(i) limnx
(n)
i = xi for each i∈N; and

(ii) limn‖x̄(n)(i >m)‖p = ‖x̄(i >m)‖p for each m∈N.

Theorem 4.4. Let x̄(n), x̄ ∈ �p[X] (1<p <∞). Then

σ
(
�p[X],�p[X]×

)
- lim
n
x̄(n) = x̄ (4.9)

if and only if

(i) σ(X,X∗)- limnx
(n)
i = xi for each i∈N; and

(ii) supn≥1‖x̄(n)‖p <∞.

Proof. It is easy to see that σ(�p[X],�p[X]×)- limn x̄(n) = x̄ implies that (i) and

(ii) hold. Conversely, suppose that (i) and (ii) hold. We will prove that

σ
(
�p[X],�p[X]×

)
- lim
n
x̄(n) = x̄. (4.10)

Fix any given f̄ ∈ �p[X]× and any given ε > 0. Let M = supn≥1‖x̄(n)‖p . By

Proposition 2.5, �p[X]× is a GAK-space. So there exists a k∈N such that

∥∥f̄ (i > k)∥∥∗p < ε
2
(
M+‖x̄‖p

) . (4.11)
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By (i), there exists n0 ∈N such that for n>n0,

∣∣∣fi(x(n)i

)
−fi

(
xi
)∣∣∣< ε

2k
, i= 1,2, . . . ,k. (4.12)

So for n>n0, we have

∣∣∣〈x̄(n)− x̄, f̄〉∣∣∣≤ k∑
i=1

∣∣∣fi(x(n)i

)
−fi

(
xi
)∣∣∣+

∣∣∣∣∣∣
∑
i>k
fi
(
x(n)i −xi

)∣∣∣∣∣∣
=

k∑
i=1

∣∣∣fi(x(n)i

)
−fi

(
xi
)∣∣∣+∣∣〈x̄(n)− x̄, f̄ (i > k)〉∣∣

≤ ε
2
+
∥∥x̄(n)− x̄∥∥p∥∥∥f̄ (i > k)∥∥∥∗p

≤ ε
2
+(M+‖x̄‖p)∥∥f̄ (i > k)∥∥∗p < ε.

(4.13)

Thus we have proved that

σ
(
�p[X],�p[X]×

)
- lim
n
x̄(n) = x̄. (4.14)

This completes the proof.

Remark 4.5. Theorem 4.4 is not valid for the space �1[X]. For example, pick x0 ∈X
and f0 ∈X∗ such that f0(x0)= 1. Let

f̄ = (f0,f0, . . .
)
, x̄(n) =


 n︷ ︸︸ ︷

0, . . . ,0,
1
2
x0,

1
22
x0,

1
23
x0, . . .


, (4.15)

where (1/2k)x0 is at the (n+k)th place, k=1,2, . . . .Then f̄ ∈ �1[X]×, x̄(n) ∈ �1[X] and

∥∥x̄(n)∥∥1 = sup


∑
k≥1

∣∣∣∣∣ 1
2k
f
(
x0
)∣∣∣∣∣ : f ∈ BX∗


= ∥∥x0

∥∥, n= 1,2, . . . . (4.16)

So x̄(n) and 0 satisfy conditions (i) and (ii) in Theorem 4.4. But

〈
x̄(n), f̄

〉
=
∑
k≥1

1
2k
f0
(
x0
)= 1. (4.17)

Hence

σ
(
�1[X],�1[X]×

)
- lim
n
x̄(n) ≠ 0. (4.18)

Thus we have shown that Theorem 4.4 is not valid for the space �1[X].

5. Compact sets. A subset B of �p[X] is called normal if (xi)i ∈ B and (ti)i ∈ �∞
imply that (tixi)i ∈ B.

Theorem 5.1. A normal subset B of �p[X] (1≤ p <∞) is compact if and only if

(i) B is closed;
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(ii) limn x̄(i > n)= 0 uniformly for all x̄ ∈ B;

(iii) Pi(B) is a compact subset of X for each i∈N.

Proof. First, let B be a normal compact subset of �p[X]. Then (i) holds obviously.

By the continuity of Pi, (iii) holds. Now suppose (ii) does not hold. Then there exist

ε0 > 0, x̄(k) ∈ B, and n1 <n2 < ··· such that

∥∥x̄(k)(i > nk)∥∥p ≥ ε0, k= 1,2, . . . . (5.1)

Let

ȳ(k) =
(
0, . . . ,0,x(k)nk+1,x

(k)
nk+2, . . .

)
. (5.2)

Since B is normal, ȳ(k) ∈ B for k = 1,2, . . . . Noticing that B is compact and ȳ(k) con-

verges to 0 coordinate-wise as k→∞, limk ȳ(k) = 0 which contradicts (5.1). This con-

tradiction shows that (ii) holds.

Now, suppose (i), (ii), and (iii) hold. We want to show that B is compact. By (i), B is

complete. By [23, page 88], it suffices to show that B is totally bounded.

Fix ε > 0, by (ii), there exists n0 ∈N such that

sup
{∥∥x̄(i > n0

)∥∥
p : x̄ ∈ B

}
<
ε
2
. (5.3)

By (iii),A=:
⋃n0
i=1Pi(B) is a totally bounded subset ofX. So there exists a finite subset F

of X such that for each x ∈A, there exists y ∈ F satisfying ‖x−y‖< ε/2n0. Now let

D =:
{
ȳ = (yi)i ∈XN :yi ∈ F for 1≤ i≤n0, yi = 0 for i > n0

}
. (5.4)

Then D is a finite subset of �p[X]. Now for each x̄ = (xi)i ∈ B, since xi ∈ A for

i= 1,2, . . . ,n0, there exists yi ∈ F such that

∥∥xi−yi∥∥< ε
2n0

, i= 1,2, . . . ,n0. (5.5)

Let ȳ = (y1, . . . ,yn0 ,0,0, . . .). Then ȳ ∈D and∥∥x̄−ȳ∥∥p ≤ ∥∥x̄(i≤n0
)−ȳ(i≤n0

)∥∥
p+

∥∥x̄(i > n0
)∥∥
p

≤ sup



∥∥∥∥∥∥
n0∑
i=1

ti
(
xi−yi

)∥∥∥∥∥∥ :
(
ti
)
i ∈ B�q


+ ε2 < ε,

(5.6)

where 1/p+1/q = 1. So we have showed that B is totally bounded. This completes the

proof.

Lemma 5.2. Let x̄(n) = (x(n)i )i ∈ �p[X] such that {x̄(n)}∞1 is σ(�p[X],�p[X]×)-
bounded. If for each i ∈ N, there exists xi ∈ X such that σ(X,X∗)- limnx

(n)
i = xi,

then x̄ = (xi)i ∈ �p[X].

Proof. As in the proof of Lemma 3.2, we can show that
∑
i≥1 |fi(xi)|<∞ for each

f̄ = (fi)i ∈ �p[X]×. So x̄ ∈ (�p[X]×|(X,X∗))×|(X∗,X). By Proposition 2.3,

(
�p[X]×|(X,X∗)

)×∣∣
(X∗,X) = �p[X]. (5.7)

Thus x̄ ∈ �p[X] and the proof is completed.
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Theorem 5.3. A subset B of �p[X] (1 < p < ∞) is a relatively σ(�p[X],�p[X]×)-
sequentially compact if and only if

(i) B is bounded;

(ii) Pi(B) is a relatively σ(X,X∗)-sequentially compact subset of X for each i∈N.

Proof. Suppose that B is a relatively σ(�p[X],�p[X]×)-sequentially compact sub-

set of �p[X]. Then B is σ(�p[X],�p[X]×)-bounded. By Theorem 3.3, B is bounded and

(i) holds. Since Pi is continuous and hence, σ(�p[X],�p[X]×)-σ(X,X∗) continuous for

each i∈N, (ii) holds.

On the other hand, suppose (i) and (ii) hold. Let {x̄(n)}∞1 ⊆ B. Using the diagonal

method, by (ii), there exist a subsequence {x̄(nk)}k≥1 of {x̄(n)}n≥1 and xi ∈X such that

σ
(
X,X∗

)
- lim
k
x(nk)i = xi, i= 1,2, . . . . (5.8)

By (i) and Lemma 5.2, x̄ = (xi)i ∈ �p[X]. By Theorem 4.4, σ(�p[X],�p[X]×)- limk x̄(nk)

= x̄. So we have proved that B is relatively σ(�p[X],�p[X]×)-sequentially compact.

This completes the proof.
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